
Closures in Pallene.
This document records the specification for implementing closures in the Pallene programming

language.

Pallene calling convention.
Pallene compiles to C, using Lua’s C-API for communicating with Lua scripts when required.
Every exported function in Pallene is compiled to two C functions, each representing a
separate entry point. A C entry point, for when a function is called locally from within a
Pallene script, and a Lua entry point to be used by Lua scripts.

While the implementation of C Entry point is flexible, Lua requires all C-API functions to
follow a single type signature.

typedef int (*lua_CFunction) (lua_State *L);

To get around this, Pallene mandates separate calling conventions.

●​ When called from Lua, the arguments are read from the stack and passed over to the
C entry point. The return values thus received are pushed back onto the stack.

●​ When called from Pallene, the arguments are passed as C data types and the C
entry point is used directly.

Pallene closures can be implemented as Lua’s CClosure type. The C Entry points for
closures will then be handed down the upvalues they need as extra parameters in the
generated code.

Closures in Pallene.
Keeping the above constraints in mind, one possible implementation of closures can be to
represent all Pallene closures as Lua’s CClosure type.

●​ A closure would contain a lua_CFunction along with a single upvalue containing
some userdata used by pallene to represent the actual upvalues as C data types.

●​ Nested function declarations can be lifted up to the global scope and upvalues
captured by a closure can then be forwarded to the C entry point as arguments,
completing the lambda lift.

●​ Upvalues that are mutated inside the body of a closure can be “boxed” inside Udata
objects.

●​ Multiple CClosures can share the same C and Lua entry points.

For example, let us consider a function make_adder that takes an integer and returns a
closure that adds that integer to it’s argument.

https://github.com/pallene-lang/pallene

function make_adder(x: integer): integer -> integer​
 return function (y: integer): integer​
 ​ return x + y​
 end​
end

The make_adder can be compiled to two Lua and C entry points as usual, with the latter
having a return type of CClosure.

The inner closure returned by make_adder in the above snippet can have the following two
entry points:

/* C entry point for lambda returned by make_adder */​
static lua_Integer lambda_c(lua_State *L,​
 Udata *G,​
 StackValue *base,​
 lua_Integer x, /* upvalue x */​
 lua_Integer y /* param y */);

/* Lua entry point for lambda returned by make_adder */​
static int lambda_lua(lua_State *L);

Since the upvalue x is never mutated by the closure, it suffices to pass it by value.
The Lua entry point is used when a closure returned by make_adder is called from a Lua
script, for instance:

1 local m = require "adder"​
2 local add10 = m.make_adder(10)​
3 print(add10(20))

When add10 is called in line 3, the following steps can be followed:

1.​ add10 (a CClosure) is called, receiving 20 as an argument.
2.​ Control is handed over to the C-API’s lambda_lua.
3.​ lambda_lua retrieves the arguments and upvalues from the stack, storing them in

C local variables.
4.​ lambda_lua calls lambda_c, forwarding the argument y and upvalue x.
5.​ lambda_c computes the sum and returns it to lambda_lua.
6.​ lambda_lua pushes the sum onto the Lua stack and hands control back to the Lua

program.

When called from within a local Pallene function, lambda_c can be called directly without
having to manipulate the stack or calling lambda_lua in the process.

Calling a Pallene closure from Lua

For closures that need to store and mutate values the upvalues can be stored in Udata
“boxes” instead of being passed by value.

Terminology
The specification will be stated assuming the following terminology:
●​ Block scope: The scope inside do ... end blocks, bodies of loops and conditionals.

●​ Function scope: The scope present inside the body of a function. The ‘outer function

scope’ of a block is the scope of the function surrounding the current function we are in.

●​ Mutable upvalues: A captured variable whose value is changed (using the ‘=’ operator)

either in the body of the function capturing it, or outside. Note that ‘mutation’ only
constitutes reassignment. So in the code snippet given below, table is not a mutable
upvalue, rather a read-only upvalue as the variable is never reassigned a new value.

function outer()​
 local t = { a = 1 }​
 function inner(x)​
​ -- this mutates the table, but does not reassign to the​
​ -- variable ‘t’ itself. The upvalue still holds the same table.​
​ t.a = x​
​ return t​
 end​
 return inner​
end

In the Lua snippet given below, all closures present in the table fs capture the same
upvalue i with a value of 6. Note that i is being mutated after being initialized, therefore it
counts as a mutable upvalue.

local fs = {}​
local i = 1​
while i <= 5 do​
 fs[i] = function() return i end​
 i = i + 1​
end

For convenience, variables that are initialized after declaration will also be considered
mutable. The initial value of any uninitialized variable is considered nil. Therefore, x in the
snippet below is also considered mutable.

 local x: integer​
 if math.random(1, 10) > 5 then​
 x = 10​
 else​
 x = 20​
 end

Implementation.

To facilitate the above representation and usage of closures, several changes will have to be
made to the compiler passes. This section elaborates upon a possible approach.

Parser
Firstly, the parser would have to allow functions in expression contexts. This can be
achieved by adding a new derivation under the expression non-terminal in Pallene’s
grammar and updating parser.lua to reflect the same.
The grammar and the recursive descent parser can mimic Lua's parser from lparser.c. Look
for the parts that mention FUNCTION or TK_FUNCTION.

Checker
The type checker will then check the bodies of the function expressions, in addition to
regular top-level functions. Nested functions will be able to ‘see’ variables in outer blocks as
long as new blocks are added to the symbol table for every function body.

Recognizing and categorizing upvalues.
At this point, the closure bodies have been type checked. We now need to know the
upvalues that a closure captures and differentiate between mutable and read-only upvalues.
To facilitate this, a new pass over the compiler can be introduced.

●​ This new pass will add annotations to the AST. Specifically, it will:
○​ Annotate every ast.Exp.Lambda with an upvalues table containing all the

upvalues that this closure captures. Each entry in the upvalues table is either:
■​ A local variable from the enclosing function or block scope.
■​ An upvalue captured by the enclosing function.

○​ Mark a captured upvalue as either ‘local’ or ‘foreign’.
●​ The above can be achieved in a single pass over the AST. To distinguish the

upvalues, the _name field of the ast.Var.Name nodes can be examined to
determine the declaration scope.

IR
Every Pallene closure is a CClosure. The Lua C-API provides the function
luaF_newClosure to create Lua closure objects. To represent this in the IR, a
NewClosure IR instruction can be added.

Reading from and writing to upvalues can be done using setuvalue and getuvalue
helpers provided by Lua. This might not necessarily require new IR instructions, and can be
desugared in the IR generation pass itself.

IR generation and lambda lifting.
The nested closures will have to be lifted to the top-level scope in the C code.
The lambda lift can be performed in the IR generation pass.
Whenever a nested function is found in a block’s statement list or inside an expression, two
important actions that need to be performed are:

●​ Use the NewClosure IR instruction to create the closure, passing as an operand the
number of upvalues associated with it.

●​ Add a local function to the top-level ir.Module.
●​ Whenever an upvalue is read from or written to, generate the corresponding IR.
●​ When calling closures using the CallStat instruction, also pass along the upvalues.

Code generation
After all the above work has been laid out, the code generation can be modified with the
following changes.

●​ Generate C code for the NewClosure IR instruction.
●​ Add extra parameters to hold upvalues in a closure’s C entry point.

Representing upvalue boxes in C.
Mutable upvalues cannot be passed by value as extra parameters in C.
To retain the mutability of these upvalues, they need to be boxed inside some kind of table or
wrapper. The ‘box’ in C can be represented in two ways:

1.​ As Udata objects. Wherein the mutable upvalue will be a TValue associated with
the Udata.

2.​ As Pallene records inside Udata. Since Pallene records get compiled to C structs,
the compiler will need to figure out the ‘shape’ of a closure. A closure’s shape in this
context, is the type signature of the Pallene record required to hold all it’s upvalues.

To illustrate the point made about shapes, consider an example.

function make_closure(): integer -> (integer, integer)​
​ local x: integer = 1;​
​ local y: integer = 2;​
​
​ return function swap(): (integer, integer)​
 x, y = y, x​
 ​ ​ return x, y​
​ end​
end

make_closure returns a closure which captures two upvalues x and y. Both these upvalues
are mutable as they appear on the LHS of an assignment. For the closure ‘swap’ returned by
make_closure the shape is:

record shape​
 x: integer​
 y: integer​
end

When mutable upvalue boxes are represented using Pallene records, the compiler will need
to figure the corresponding shape for every closure that captures at least 1 mutable upvalue.

To be able to use C structs as boxes, the type signature for the shape of each closure will
have to be inferred by the additional pass over the compiler that comes after type checking.

