
Java Programming
Storage Project - Scatter Plots

Required Skills: 1D/2D Arrays, ArrayLists, LinkedLists, Sorting &
Searching, File Reading.

Assignment:In this project, you will take a series of points (x, y)
showing a relationship between two quantities. The resulting output
will be a scatterplot of the data as well as some statistical describers.

Requirements:

1.​ The data should be taken from a file as a comma separated list of points. x1, y1, x2, y2, x3, y3, …
2.​ The data should be transformed into an array of ints.
3.​ There should be a library file called ScatterPlot.java that contains the following methods:

a.​ getXs - takes the original data in and returns an ArrayList of the x values
b.​ getYs - takes the original data in and returns an ArrayList of the y values
c.​ plot - takes the original data and returns a 2D array of Strings representing the scatter plot of the

points. The first column will show the y values (all values from min to max) and the last row will
show the x values(all values from min to max). The points should be represented using a *.

4.​ There should be a library file called Statistics.java that contains the following methods:
a.​ getMax - takes an ArrayList of ints and returns the maximum value
b.​ getMin - takes an ArrayList of ints and returns the minimum value
c.​ mode - takes an ArrayList of ints and returns the mode. If there are multiple modes, return any

one. (Hint: may be easier if sorted)
d.​ mean - takes an ArrayList of ints and returns the mean
e.​ median - takes an ArrayList of ints and returns the median (Hint: easier if sorted)

5.​ The output should have a scatterplot with title and the statistical measures of each of the measures.

Sample Input: The file will have three lines of data. The first line is the x variable, the second line is the y
variable and the third line is the data.
​ Shoe Size
​ Mass(kg)
​ 5, 65, 12, 97, 7, 68, 10, 92, 10, 78, 9, 78, 8, 76, 11, 88, 6, 74, 8, 80

Sample Output:
(the output will be stacked in the actual program - shown side by side here for ease of viewing)

Grading:

 2 1 0

Coding Style All code is well written and readable. Variable
and method names are meaningful. Code is
well organized, indented, and commented
where necessary. Functions and events work
well with each other.

Code is functional. Variable and method names are
meaningful. There may be some confusing
sections of code, but a majority of the code works
as intended.

Code is hard to follow and more often
than not does not work. There is a
general lack of structure and readability
in the code.

Modularization Libraries and methods are used effectively and
appropriately. The main method is used mostly
as a control to take input, call methods and
display output.

Libraries and methods are used, but may be
over/under used. The main method contains some
code that should be wrapped into a method.

Libraries/methods are not used or not
used enough. The main method
contains a majority of the code for the
project.

Efficiency Code is written efficiently. This includes all free
form code and any code written in methods.
Algorithms and code have clearly Pbeen
planned, evaluated, and edited.

Code is mostly written efficiently. There is evidence
of algorithmic planning, though the execution may
not be in the most efficient, clearest form.

A majority of the code is not written
efficiently. Code was clearly not planned
or edited, just written.

Interaction The file is read appropriately and without error.
The output is clear and easy to read. Outputs
are all in the specified format.

The file is read appropriately and without error.
Output may be correct, but is difficult to read and
may not be in the specified format. There may or
may not be safeguards in place to correct user
input.

The file input does not work.

Arrays Arrays are used appropriately and with correct
syntax and logic. Choices are made where to
use arrays based on efficiency of code and run
time analysis (big O). Arrays passed into
methods are not altered unless that is the
desired effect.

Arrays are used with correct syntax and logic. They
may not be used appropriately at all times. Arrays
passed into methods may be altered accidentally
causing unwanted side effects.

Arrays are not used or not used
appropriately most of the time.

Lists Lists are used appropriately and with correct
syntax and logic. Choices (ArrayList v
LinkedList) are made to use lists based on
efficiency of run code and run time analysis (big
O). List methods are written generically to take
both Array or Linked, based on programmers
preference AND do not modify the list, unless
that is the desired effect.

Lists are used with correct syntax and logic.
Appropriate choices for the type of list may not be
made at all times. Methods that use lists may not
work for all list types or may alter the list causing
unwanted side effects.

Lists are not used or not used
appropriately most of the time.

Sorting/
Searching

When sorting and searching, appropriate
algorithms are always selected based on the
programmers knowledge of data size, purpose
and efficiency (Big O). Sorting and searching
methods are called from previously created
library files.

When sorting and searching appropriate algorithms
are often selected based on data size, purpose and
efficiency (Big O). Sorting and searching methods
are not called from previously created library files.

If sorting/searching is present, the
appropriate choices are most often not
made. Sorting and searching may not
be implemented in method form, and are
not called from previously created library
files.

Correctness Outputs for the program are correct for all runs
of the program.

A majority of outputs are correct for all runs of the
program. There may be minor calculation errors.

Few to no outputs are correct. There
may be major, and far reaching,
calculation errors.

Final Product The final product shows significant student
learning and reflection. Design decisions show
thoughtfulness and provide a logical and
smooth flow of information. There is evidence
of exemplary student effort.

The final project shows some evidence of student
learning and reflection. Design decisions show
some thoughtfulness and provide all a logical flow
of information. There is evidence of student effort.

The final project shows minimal student
learning and/or reflection. Design
decisions seem unfounded and
expedient. There is minimal evidence of
student effort

18 -> 100​ ​ 14 -> 85​ 10/11 -> 75​ 8 -> 65​ ​ 5 -> 50
17 -> 95​ ​ 12/13 -> 80​ 9 ->70​ 6/7 -> 60​ ​ 4 -> 40
15/16 -> 90​ ​ ​ ​ ​ ​ ​ ​ 3 -> 30
​ ​ ​ ​ ​ ​ ​ ​ ​ 2 -> 20

1 -> 10
0 -> 0

​ ​
NOTES:

