
Further development of Klever in favor of
verification of the Linux kernel

Klever [1-3] is a software verification framework that aims at automated thorough
checking of programs developed in the GNU C programming language against
specified requirements. It uses software verification tools (also known as software
model checkers) implementing such methods of formal verification as Bounded
Model Checking [4] and Counterexample-Guided Abstraction Refinement [5]. These
tools allow finding faults that hardly can be detected by other software quality
assurance techniques like code review, testing and static analysis. In addition, they
are capable to prove formal correctness of programs checked against particular
requirements under certain, explicitly stated assumptions.

Currently Klever supports verification of Linux kernel loadable modules, Linux kernel
subsystems and BusyBox applets. This list can be extended further by developing
corresponding configurations, specifications and, perhaps, appropriate Klever
components that will adapt the framework for specifics of target software.

For the Linux kernel Klever includes specifications for detecting:

●​ Memory safety issues, e.g. buffer over-reads/writes and null pointer
dereferences.

●​ Incorrect usages of the most popular Linux kernel API.
●​ Data races.

On the base of specifications Klever generates environment models for invoking:

●​ Interrupt and timer handlers.
●​ Callbacks of different device types (USB, PCI, SCSI, network, etc.).
●​ File system operations.
●​ Some other most widely used interfaces.

These environment models allow reaching more than 50% code coverage of Linux
device drivers and subsystems on average. At the moment a false alarm rate ranges
from 0% to 80% depending on checked requirements. One can incrementally improve
verification results primarily by fixing existing specifications and developing new
ones. Faults found by Klever in the Linux kernel and acknowledged by the developers
are listed here.

As software verification back-ends Klever supports CPAchecker [6] and 1

Ultimate Automizer [7]. There are predefined configurations of these tools that are
suitable for checking particular requirements. To obtain better verification results
one can try other options. Moreover, it is possible to integrate within Klever tools
participated in the Competition on Software Verification [8].

1 CPAchecker is used in Klever by default.

1

https://forge.ispras.ru/projects/klever
http://linuxtesting.org/results/ldv
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de/automizer
https://sv-comp.sosy-lab.org/

For managing verification processes and for assessment of verification results
Klever provides a multi-user web interface. For the former it provides means to
develop and to arrange verification jobs, to start/terminate their solution and to
observe a solution progress. For the latter it shows:

●​ Statistics like the total number of detected faults and false alarms.
●​ Error traces that contain statements from program entry points to places

where requirements are violated as well as concrete values of variables and
function arguments at every particular point.

●​ Code coverage demonstrating completeness of used environment models.

Experts can estimate whether issued warnings represent faults or false alarms while
Klever automatically associates corresponding expert assessments with new
warnings having similar error traces. In addition, experts can compare verification
results obtained at different times.

This document provides possible directions for further development of Klever that
can contribute verification of the Linux kernel in some way. Section 1 introduces
tasks required for easier and more convenient use of Klever. These tasks are vital for
newbies, but also they are helpful for advanced users and experts as well. Section 2
includes features/bugs that should be implemented/fixed to get verification results
faster with better quality and fewer failures. In Section 3 there are tasks that are
essentially specific for verification of the Linux kernel. All tasks are provided with
descriptions, priorities and evaluation of efforts for their implementation. Evaluation
assumes work of one person that has a high qualification in corresponding areas.
Some tasks from Section 1 and especially from Section 2 are important for
verification of different software, so we can proceed to them in advance.

2

1.​ Adaptability and usability

1.1.​ Automatic deployment

1.1.1.​ Reliable operation of services (urgent , 0.5 man-month)
At the moment deployment scripts create, start and stop a number of init.d services
corresponding to Klever components. Some operations of these services are not
reliable. For instance, starting services with some internal bugs due to, say, an invalid
deployment configuration produces no error messages, stopping services can
remain child processes and so on. After these issues happen, automatic deployment
fails and one needs to perform some extra actions manually that is not trivial
sometimes and can damage Klever installations in an unpredictable way.

We suggest switching to systemd and ensuring reliable operation of services in
various cases. Besides, it would be great to have a command-line tool for simple
checking of statuses of all Klever services as well as for some basic
troubleshooting.

1.1.2.​ Building Docker images (high , 0.5 man-month)
Features 1.1.3 and 1.1.4 are aimed at improving native Klever deployment. A good
alternative for that is to run Klever inside containers.

We suggest developing necessary configuration files and scripts that will allow
building Docker images with Klever inside. This task should be completed prior to
2.5.

1.1.3.​ Deployment on additional distributions (normal , 1 man-month)
Klever can be deployed on Debian 9 and perhaps on some other versions of Debian
and its derivatives like Ubuntu.

Customers can be interested in extending support for other distributions and various
versions of these distributions. This task assumes support of automatic Klever
deployment at least on Debian, Ubuntu, Fedora and openSUSE. We suggest treating 2
latest major versions of these distributions.

1.1.4.​ Deployment within specific production environments (normal ,
1 man-month)

There is the following warning in the Klever deployment documentation:

Do not deploy Klever at your workstation or valuable servers unless you are
ready to lose some sensitive data or to have misbehaved software. We hope
that one day Klever will be more safe and secure, so this warning will be
redundant.

This is because Klever uses inappropriate deployment means sometimes, e.g.
installing Python packages globally rather than using virtual environments, running
tools from a user home directory, etc. It can be deployed and operate more or less

3

https://www.docker.com/

safely just on a new installation of Debian 9 without any other specific software and
services.

This feature includes using more standard means for deployment that will enable
using Klever within specific production environments. Together with 1.1.3 it will need
more resources as various distributions can differ considerably.

1.1.5.​ Security (normal , 2 man-months)
We do not care about security with Klever much while this is a very important issue
for production systems.

It is required to analyze potential security issues and to mitigate them. Like the
previous feature together with 1.1.3 it will need more resources as various
distributions can differ considerably.

1.2.​ User interface

1.2.1.​ More means for expert assessment of verification results (urgent ,
1.5 man-month)

One of primary goals of Klever UI is providing means for experts assessment of
verification results. Many relevant things were already developed for evaluation of
warnings, analysis of error traces and code coverage, comparison of verification
results. But in some use cases they are not convenient enough and too much time is
necessary for expert assessment. For instance, if experts create new marks or
change existing ones, it can affect previously analyzed verification results, and after
that they need additional evaluation.

We have already suggested several additional means that will help experts in all of
the mentioned use cases. It is necessary to implement them.

1.2.2.​ Generalization and simplification (high , 2.5 man-months)
At the moment different parts of Klever UI look quite differently, and they have
non-uniform management tools, e.g. for performing various actions with entries, for
sorting and filtering table rows and so on. This confuses even advanced users and
complicates different operations.

We need to think about and to implement a more generic and convenient UI. Since
this touches too many things, this feature is rather complex.

1.2.3.​ Improving help (high , 1 man-month)
Klever UI has several short popup help messages clarifying some things. But many
non-trivial places do not have any hints. Besides, UI lacks support for large help
pages that are necessary for describing, say, development of specifications and
configurations.

This feature suggests adding short popup help messages for all ambiguous places
of UI as well as basic support of large help pages developed using a markup

4

language like reStructuredText. Sources of large help pages should be developed
within scope of 1.3.

1.2.4.​ Improving troubleshooting (high , 1 man-month)
When using Klever UI different bad things can happen, e.g. users can provide invalid
configuration files or data in an outdated format. At the moment many of them are
not troubleshooted well enough. That leaves users in an uncertain state since they
know neither issue reasons nor things to do.

We suggest improving troubleshooting at least for those bad cases that are already
well-known.

1.3.​ Documentation
At the moment Klever lacks documentation except for deployment instructions.

1.3.1.​ Tutorial (urgent , 1 man-month)
It will be extremely helpful for users to have a tutorial describing all basic things from
deployment to analysis of verification results. More complicated things should be
treated within other documentation.

1.3.2.​ Documenting top-level configuration options (urgent , 1 man-month)
To initiate new verification processes users need to adjust top-level configuration
options basing on predefined or previously set ones. These options describe:

●​ What should be checked: particular parts of the Linux kernel, configuration,
architecture.

●​ Requirements to be checked and specifications to be used.
●​ Quality of service and computational resource limitations.
●​ Auxiliary settings like logging levels and task priorities.

There are quite many top-level configuration options that can affect verification
results very much. Usually it is hard for new users to adjust them properly.

1.3.3.​ Documenting checked requirements (urgent , 2 man-months)
Klever can check many requirements. To understand verification results (reasons of
faults, false alarms and failures) users need a comprehensive description of these
requirements that will provide:

●​ Descriptions of requirements.
●​ Consequences of requirement violations.
●​ Examples of requirement violations.
●​ Most frequent reasons of faults, false alarms and failures.

In addition, this part of user documentation should describe an overall level of
support of different versions, configurations and architectures of the Linux kernel.

5

http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

1.3.4.​ Documenting development of environment model specifications (high ,
3 man-months)

Above it was mentioned that environment models generated on base of
specifications allows covering about 50% of source code of the Linux kernel at the
moment. Besides, inaccurate environment models result in false alarms in most
cases. To check drivers and subsystems of unsupported types it is necessary to
develop new environment model specifications (3.5 is devoted to this work). To
reduce a false alarm rate we need to fix existing environment model specifications
(3.4).

A corresponding part of user documentation should describe development of
environment model specifications for the Linux kernel. 2.8 can affect this task
considerably as it suggests a new format for environment model specifications.

1.3.5.​ Documenting development of requirement specifications (high ,
1 man-month)

To check specific requirements with Klever it is necessary to develop requirement
specifications. This part of user documentation should describe how to do that. It
will help to fix both existing requirement specifications and to develop new ones.

1.3.6.​ Documenting low-level configuration options (normal , 2 man-months)
When a software verification back-end consumes too much computational resources
 or produces false alarms because of insufficient accuracy of analysis, users can 2

adjust different low-level configuration options to overcome these problems. We
suggest treating most influencing such options. They can be related with both
various Klever components and software verification tools.

1.3.7.​ Video guides (normal , 2 man-months)
A set of video guides with subs can assist new users. We suggest developing video
guides corresponding to things covered by 1.3.1 and 1.3.2. Video guides for other
use cases will need additional effort.

1.3.8.​ Writing developer documentation (normal , 4 man-months)
Developer documentation will describe a structure, a principle of operation and inter
component interfaces at various levels of details. We have some drafts of its various
parts, but they are neither completed nor up to date.

2 When a tool consumes more computational resources than allowed by limits, there are either
timeouts or out of memory errors.

6

2.​ Verification workflow improvements

2.1.​ Support of extended violation witnesses (urgent , 3 man-months)
Software verification back-ends output violation witnesses when they find violations
of checked requirements. Klever converts these violation witnesses to error traces
that are visualized for further analysis by experts. By design violation witnesses lack
many details necessary for visualization and manual analysis. At the moment Klever
tries to recover some of these details using ad-hoc solutions. Because of this error
traces visualization is broken sometimes. We suggest supporting an extended
format for violation witnesses that will not miss vital details.

In addition, we plan to get rid of some auxiliary source code transformations that
break visualization of error traces even more and to enable seamless usage of
violation witnesses produced by different software verification back-ends. For the
latter we suggest supporting translating of those violation witnesses to violation
witnesses in the extended format with help of CPAchecker. Using non-default
verification back-ends will allow obtaining better verification results in some cases.

2.2.​ More robust specification parsers and code generators (urgent ,
3 man-months)

Klever takes as input specifications developed in different DSLs and perform several
source code transformations before verification takes place:

●​ From specifications to source code with help of environment model
generators and translators.

●​ Source code weaving with help of C Instrumentation Framework [9].
●​ Slicing and source files merging with help of CIL [10].

There are quite many well-known issues with parsing of specifications and
generation of code. Often these issues result in internal failures that are quite hard
for understanding as a rule. Sometimes they can prevent verification at all, e.g. at the
moment Klever fails to verify recent versions of the Linux kernel.

We suggest fixing all most crucial issues in specification parsers and code
generators. This will help to decrease the number of internal failures 2-3 times. For
new versions of the Linux kernel as well as for non-standard configurations and
architectures new issues can arise that will need some extra effort for their fixing.

2.3.​ Fixing and optimizing CPAchecker (high , 6 man-months)
We already know some crucial issues and most suboptimal operations in
CPAchecker. They can either completely break verification of some Linux kernel
loadable modules and subsystems, e.g. in case of parsing failures and other internal
exceptions, or slow it down very considerably.

We suggest fixing all most crucial issues and make most important optimizations in
CPAchecker including:

7

https://docs.google.com/document/d/1C23l-4l1B6Tc1zegwhKMpi7wWS8M8QqgW9IFvigw5ck/
https://docs.google.com/document/d/1C23l-4l1B6Tc1zegwhKMpi7wWS8M8QqgW9IFvigw5ck/
https://forge.ispras.ru/projects/cif
https://people.eecs.berkeley.edu/~necula/cil/

●​ Fixing and optimizing implementation of the Symbolic Memory Graph
technique that is used for detecting memory safety issues:

○​ It is not accurate enough in some cases.
○​ It is extremely inefficient.
○​ It can produce spurious violation witnesses.

●​ Fixing implementation of the Block Abstraction Memoization technique that is
used for caching intermediate analysis results:

○​ There are well-known internal failures.
○​ Violation witnesses can be contradictory.
○​ Sometimes CPAchecker with this optimization can not output violation

witnesses at all.
●​ Fixing detection of data races:

○​ More accurate memory model.
○​ Filtering of outputted violation witnesses.

●​ Fixing function pointer analysis that can call inappropriate functions by
pointers as well as miss function calls at all.

2.4.​ Improving troubleshooting (high , 2 man-months)
In case of various issues with configurations, specifications and an environment
Klever produces internal failure reports. Unfortunately, these reports do not describe
issues well enough often. For instance, neither failure reasons nor their places are
provided for incorrect specifications often. This hardens corresponding fixes very
much.

One needs to have good internal failure reports that will both describe issues
accurately and provide some hints on how to eliminate them.

2.5.​ Distributed verification (normal , 2 man-months)
To verify all device drivers (3.3) against one requirements specification Klever needs
from several hours up to several days when using rather powerful nodes (say,
modern CPU with 4 cores and 64 GB of RAM). We have more than 30 requirement
specifications in total and new ones can be developed, so, a complete verification on
a single node will take very much time.

Verification of software can be distributed within a cluster or a cloud. Klever already
can schedule verification jobs and tasks at different nodes, but there is not an
infrastructure for managing nodes.

This feature implies development of the distributed verification infrastructure based
on Kubernetes. The infrastructure should support hot-plugging of new nodes and
software verification back-ends as well as it should gracefully support various issues
like network disconnects, drive breaks and so on. This feature should be
implemented after 1.1.2.

2.6.​ Internal optimizations (normal , 1 man-month)
Klever generates verification tasks to be solved by software verification back-ends in
parallel and rather efficiently. But there are several places to be optimized.

8

https://kubernetes.io/

Klever components should reuse the same models generated for various verification
tasks. Several inter-component delays should be minimized by using, say, message
queuing. Excessive file operations should be avoided as much as possible.

2.7.​ Integration of additional software verification back-ends (normal ,
1 man-month per a tool)

Software verification back-ends other than CPAchecker can provide better facilities
at checking the Linux kernel against particular requirements.

This feature implies developing appropriate configurations for deployment and
launching as well as basic evaluation of additional software verification back-ends.
Using them for large-scale verification of, say, device drivers is outside of this issue.
Integration of additional software back-ends should be done after 2.1 since
otherwise we will have too many issues related with processing of violation
witnesses.

2.8.​ New DSL for environment model specifications (normal ,
3 man-months)

At the moment environment model specifications are JSON files with very complex
syntax and semantics that have many implicit restrictions.

We suggest developing a new DSL that will simplify development of environment
model specifications quite considerably. Developing an appropriate DSL editor will
take 2 times more effort. This feature affects 1.3.4 quite considerably.

9

3.​ Tasks specific for verification of the Linux kernel

3.1.​ Support of various Linux kernel configurations (urgent ,
0.5 man-month)

Klever supports Linux kernel configuration allmodconfig well. For this configuration
most drivers are built as loadable kernel modules and the kernel has many various
features enabled. Klever can verify just that kind of modules and assumes that all
these features are enabled. For other configurations some drivers can be built into
the kernel while the kernel can miss some features. Built-in drivers are not verified.
When there are no features expected by default environment model and requirement
specifications, verification fails completely.

We suggest making Klever more flexible to avoid complicated adjustment of Linux
kernel configurations as well as specifications. It should start to verify built-in drivers
like drivers built as loadable kernel modules. Also, Klever should adjust its
specifications automatically according to enabled kernel features.

3.2.​ Adapting specifications for various Linux kernel versions (urgent ,
1 man-month per each next major version)

Klever verifies drivers of Linux 3.14 pretty well since there are specifications
developed specially for that version. To have good verification results for, say, Linux
3.15 or Linux 3.15.10 we need to adapt these specifications. Indeed, this is not
necessary to support verification of all major versions and one may miss some ones.
Corresponding changes in this case will be harder since there are more things to be
treated. Some related work was already done for Linux 4.6.7, 4.11.6 and 4.16.10, but
it was not completed.

We suggest making necessary adaptations of specifications for all target versions of
the Linux kernel that are important for customers. Without appropriate user
documentation (1.3.5 and especially 1.3.4) this work can be done efficiently just by
Klever developers. This feature does not include fixing of Klever components that
can fail to process source code of new versions of the Linux kernel (2.2). Also, this
feature does not include fixing existing specifications and development of new ones
(3.4).

3.3.​ Verification of all device drivers against all specified 3

requirements (high , 2 man-months per each next major version)
Conducting verification, analyzing verification results, preparing patches and final
accounts take quite much time. Like with the previous task, skipping major versions
will result in more effort.

3 All built-in or loadable kernel modules from directory drivers that are built for configuration
allmodconfig and architecture x86_64.

10

We suggest doing this job for all target versions of the Linux kernel. In principle, all
advanced enough Klever users with appropriate documentation (1.3.1, 1.3.2, 1.3.3)
can do this without our aid.

3.4.​ Fixing existing specifications(high , 3 man months)
There are many known issues for existing specifications of environment models and
requirements. These issues result in missed faults and annoying false alarms.

Either Klever developers or advanced users with appropriate documentation (1.3.4,
1.3.5) can fix existing specifications. Fixes of specifications will reduce a false alarm
rate 2-3 times. This feature does not include fixing of Klever components that can
fail to process source code of new versions of the Linux kernel (2.2). Sometimes
some fixes of Klever components can be necessary.

3.5.​ Development of new specifications (high , 0.5 man-month per
each new specification)

To support verification of new types of drivers and checking of new requirements,
one needs to develop new specifications.

Either Klever developers or advanced users with appropriate documentation (1.3.4,
1.3.5) can develop new specifications step by step. Concrete specifications to be
developed strictly depend on customer needs:

●​ New environment model specifications can increase code coverage for
particular types of device drivers very considerably, but on average it will not
increase much as most popular interfaces are already specified.

●​ Similarly, new requirement specifications will allow checking specific rules of
correct usage of the kernel API. Supporting checking of vital generic rules, e.g.
integer overflows, will need considerable effort.

This feature does not include fixing of Klever components that can fail to process
source code of new versions of the Linux kernel (2.2). Sometimes some fixes of
Klever components can be necessary.

3.6.​ Verification of Linux kernel subsystems (high , 1 man-month per
each subsystem)

Recently Klever started to support verification of Linux kernel subsystems. We
already have some preliminary results for 3 subsystems [11]. But there is still much
work to do.

Customers can suggest subsystems to be verified, and we can investigate the ability
of this.

3.7.​ ARM support (normal , 0.5 man-month)
Klever supports just architectures x86 and x86_64. There are several components
that depend on a target architecture much, namely, CIF and CPAchecker.

11

One may need support of other architectures rather than x86 and x86_64. We made
some preliminary experiments for ARM, so its support will be not so hard. In case of
other architectures the situation can be worse. It is better to implement this feature
after 3.1 since architectures can affect configurations.

12

4.​ Tasks specific for verification of other software
Different software has different specifics that can affect the verification workflow
quite considerably, thus, it has less sense to provide any particular values here. We
can evaluate an amount of these specifics for one or another target program if
customers will be interested in verification of particular software in addition to the
Linux kernel.

Supporting verification of software written in programming languages other than C
(e.g. C++, Java, etc.) will take a lot of time as we will need to change many core
things in Klever. Nevertheless, this can be achieved since many software verification
tools support different programming languages as well as intermediate
representations like Boogie or LLVM bitcode.

13

https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://llvm.org/docs/BitCodeFormat.html

References
1.​ Novikov E., Zakharov I. Towards automated static verification of GNU C

programs. In: Petrenko A., Voronkov A. (eds) Proceedings of the 11th
International Andrei P. Ershov Informatics Conference on Perspectives of
System Informatics (PSI’17). LNCS, volume 10742, pp. 402–416. Cham,
Springer. 2017. https://doi.org/10.1007/978-3-319-74313-4_30

2.​ Zakharov I.S., Mandrykin M.U., Mutilin V.S., Novikov E.M., Petrenko A.K.,
Khoroshilov A.V. Configurable toolset for static verification of operating
systems kernel modules. Programming and Computer Software, volume 41,
issue 1, pp. 49–64. Pleiades Publishing. 2015.
https://doi.org/10.1134/S0361768815010065

3.​ Beyer D., Petrenko A.K. Linux Driver Verification. In: Margaria T., Steffen B.
(eds) Proceedings of the 5th International Symposium on Leveraging
Applications of Formal Methods, Verification, and Validation. Applications and
Case Studies (ISoLA’12). LNCS, volume 7610, pp. 1-6. Springer, Berlin,
Heidelberg. 2012. https://doi.org/10.1007/978-3-642-34032-1_1

4.​ Clarke E., Biere A., Raimi R., Zhu Y. Bounded model checking using
satisfiability solving. Formal Methods in System Design, volume 19, issue 1,
pp. 7–34. Kluwer Academic Publishers. 2001.
https://doi.org/10.1023/A:1011276507260

5.​ Clarke E., Grumberg O., Jha S., Lu Y., Veith H. Counterexample-guided
abstraction refinement. In: Emerson E.A., Sistla A.P. (eds) Proceedings of the
12th International Conference on Computer Aided Verification (CAV’00).
LNCS, volume 1855, pp. 154-169. Springer, Berlin, Heidelberg. 2000.
https://doi.org/10.1007/10722167_15

6.​ Beyer D., Keremoglu M.E. CPAchecker: A tool for configurable software
verification. In: Gopalakrishnan G., Qadeer S. (eds) Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV’11). LNCS,
volume 6806, pp. 184–190. Berlin, Heidelberg, Springer. 2011.
https://doi.org/10.1007/978-3-642-22110-1_16t

7.​ Heizmann M., Christ J., Dietsch D., Ermis E., Hoenicke J., Lindenmann M., Nutz
A., Schilling C., Podelski A. Ultimate Automizer with SMTInterpol. In: Piterman
N., Smolka S.A. (eds) Proceedings of 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’13).
LNCS, volume 7795. Springer, Berlin, Heidelberg. 2013.
https://doi.org/10.1007/978-3-642-36742-7_53

8.​ Beyer D. Software verification with validation of results. In: Legay A., Margaria
T. (eds) Proceedings of 23rd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’17). LNCS,
volume 10206. Springer, Berlin, Heidelberg. 2017.
https://doi.org/10.1007/978-3-662-54580-5_20

14

9.​ Novikov E.M. An approach to implementation of aspect-oriented
programming for C. Programming and Computer Software, volume 39, issue
4, pp. 194–206. Pleiades Publishing. 2013.
https://doi.org/10.1134/S0361768813040051

10.​Necula G.C., McPeak S., Rahul S.P., Weimer W. CIL: Intermediate language and
tools for analysis and transformation of C programs. In: Horspool R.N. (eds)
Proceedings of the 11th International Conference on Compiler Construction
(CC’02). LNCS, volume 2304, pp. 213–228. Berlin, Heidelberg, Springer. 2002.
https://doi.org/10.1007/3-540-45937-5_16

11.​Novikov E., Zakharov I. Verification of operating system monolithic kernels
without extensions. In: Margaria T., Steffen B. (eds) Proceedings of the 8th
International Symposium on Leveraging Applications of Formal Methods,
Verification, and Validation. Industrial Practice (ISoLA’18). LNCS, volume
11247, pp. 230–248. Springer, Cham. 2018.
https://doi.org/10.1007/978-3-030-03427-6_19

15

	Further development of Klever in favor of verification of the Linux kernel
	1.​Adaptability and usability
	1.1.​Automatic deployment
	1.1.1.​Reliable operation of services (urgent , 0.5 man-month)
	1.1.2.​Building Docker images (high , 0.5 man-month)
	1.1.3.​Deployment on additional distributions (normal , 1 man-month)
	1.1.4.​Deployment within specific production environments (normal , 1 man-month)
	1.1.5.​Security (normal , 2 man-months)

	1.2.​User interface
	1.2.1.​More means for expert assessment of verification results (urgent , 1.5 man-month)
	1.2.2.​Generalization and simplification (high , 2.5 man-months)
	1.2.3.​Improving help (high , 1 man-month)
	1.2.4.​Improving troubleshooting (high , 1 man-month)

	1.3.​Documentation
	1.3.1.​Tutorial (urgent , 1 man-month)
	1.3.2.​Documenting top-level configuration options (urgent , 1 man-month)
	1.3.3.​Documenting checked requirements (urgent , 2 man-months)
	1.3.4.​Documenting development of environment model specifications (high , 3 man-months)
	1.3.5.​Documenting development of requirement specifications (high , 1 man-month)
	1.3.6.​Documenting low-level configuration options (normal , 2 man-months)
	1.3.7.​Video guides (normal , 2 man-months)
	1.3.8.​Writing developer documentation (normal , 4 man-months)

	2.​Verification workflow improvements
	2.1.​Support of extended violation witnesses (urgent , 3 man-months)
	2.2.​More robust specification parsers and code generators (urgent , 3 man-months)
	2.3.​Fixing and optimizing CPAchecker (high , 6 man-months)
	2.4.​Improving troubleshooting (high , 2 man-months)
	2.5.​Distributed verification (normal , 2 man-months)
	2.6.​Internal optimizations (normal , 1 man-month)
	2.7.​Integration of additional software verification back-ends (normal , 1 man-month per a tool)
	2.8.​New DSL for environment model specifications (normal , 3 man-months)

	3.​Tasks specific for verification of the Linux kernel
	3.1.​Support of various Linux kernel configurations (urgent , 0.5 man-month)
	3.2.​Adapting specifications for various Linux kernel versions (urgent , 1 man-month per each next major version)
	3.3.​Verification of all device drivers against all specified requirements (high , 2 man-months per each next major version)
	3.4.​Fixing existing specifications(high , 3 man months)
	3.5.​Development of new specifications (high , 0.5 man-month per each new specification)
	3.6.​Verification of Linux kernel subsystems (high , 1 man-month per each subsystem)
	3.7.​ARM support (normal , 0.5 man-month)

	4.​Tasks specific for verification of other software
	References

