

Zero Velocity Graph

Set the acceleration to a = 0 ms⁻² Set the velocity slider to v_0 = 0.0 ms⁻¹ Move the x_0 slider between -4 m and + 4m.

- 1. Describe the effect on the position time graph as you move the x_0 slider.
- 2. Using the general equation y=mx+b, identify the term that is associated with the variable x_0 in the equation (y, m, x, or b)
- 3. Describe why the position slider is designated with the subscript x_0 .

Constant Velocity Graph

Set the acceleration to a = 0 ms⁻² Set the position to x_0 = 0 m Move the velocity slider (green) from -4 ms⁻¹ to +4 ms⁻¹

- 1. Qualitatively describe the impact of changing the velocity on the **position**-time graph.
- 2. In the image below, determine the quantitative relationship between the velocity-time graph and position-time graph.

- 3. On the **position-time** graph, using the general equation y=mx+b, identify the term that is associated with the variable v_0 in the equation (y, m, x, or b)
- 4. Describe why the velocity slider is designated with the subscript v₀.
- 5. With the v_0 slider set to +1 ms⁻¹, move the **position** slider from -4 m to + 4 m, from a mathematical perspective, what effect does this have on the position-time graph?
- 6. Complete the following: The value of v_0 determines the _____ of the ____ time graph.

Constant Acceleration Graph

Set the velocity to $v_0 = 0 \text{ ms}^{-1}$ Set the position to $x_0 = 0 \text{ m}$ Move the acceleration slider (red) from -4 ms⁻² to +4 ms⁻²

In the image below, the $a = +0.5 \text{ ms}^{-2}$, $v_0 = 0 \text{ms}^{-1}$, and $x_0 = 0 \text{ m}$.

- 1. Describe the mathematical relationship of each of the graphs.
- 2. Based on your experimentation with the acceleration slider, outline the relationship between the value of the acceleration graph and the shape of the velocity-time graph.
- 3. In the simulation the position and velocity sliders are represented by x_0 and v_0 respectively. Explain why the acceleration slider is not designated with a_0 .