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Today’s post will teach how computer vision impacts the semiconductor industry with a 
specific example of defect detection and classification.  
 
Introduction 
A semiconductor manufacturing process and its design rules are called a technology node, 
process node, or process technology.  
 
Roughly speaking, the size of a transistor in a 90 nm process technology used by Pentium M 
in 2003  is nine times larger than a 10 nm process technology used in Icelake processors of 
2019. That, in turn, leads to faster speed and lower power consumption.  
 
Scaling of the devices has been happening continuously over the last few decades while 
keeping Moore’s law alive and valid from node to node, as shown in Fig. 1.  

 
 
The latest generation semiconductor chips achieve this incredibly small process technology 
using various techniques like multi-patterning steps or Extreme Ultra-Violet Lithography 
(EUV).  
 
The final device dimensions are often below 40 nm!  
 
Electron Beam Inspection (EBI)  
 
The quantitative measure of the quality of a semiconductor process is called yield. We can 
think of it as the ratio of flawless chips that were actually produced to the maximum number 
of chips that could have been produced.  

 

https://en.wikichip.org/wiki/technology_node


 
Extensive inspection and metrology runs are required to ensure a high yield for a process 
technology. Hundreds of process steps must be performed with 99.999% yield to ensure a 
technology node is profitable!  
 
A semiconductor chip is created in layers, and every layer is scrutinized extensively during 
the yield ramp to weed out any yield detractors.  
 
Defect detection and analysis need to be as accurate as possible.  
 
While an inspection of these microscopic structures is still possible with optical tools (Broad 
Band Plasma  - ref KLA-Tencor), they still need a lot of Scanning Electron Microscopy 
(SEM) verification and classification.  
 
The wavelength of electrons is much shorter than the wavelength of photons. Consequently, 
an Electron Microscope that uses a beam of electrons (e-beam) can resolve finer details.  
Therefore, measurements done during the design and manufacturing of chips (technically 
called metrology) require e-beam based tools.  
 
However, metrology using e-beams is inherently noisy, making it difficult to use for correct, 
repeatable, and accurate measurements.  
 

 
 

Fig 1: Scaling in the EUV era [1] 

 
 

Fig. 2: The Defect Inspection and Review Space 
 

Current state-of-the-art defect detection tools (optical/e-beam) have certain limitations as 
these tools are driven by some rule-based techniques for defect classification and detection. 
These limitations often lead to misclassification of defects, which leads to increased 
engineering time to classify different defect patterns correctly.  

 



 
This blog post will discuss our proposed deep learning-based approach, based on RetinaNet, 
to solve challenging defect detection problems in SEM images. In particular, we propose a 
novel ensemble deep learning-based model to accurately classify, detect and localize different 
defect categories for aggressive pitches and thin resists (High NA applications).  
 
The figure below shows a typical example of a series of lines patterns created by a Exteme 
Ultra Violet Lithography tool (ASML 3400 series scanner) when viewed through a scanning 
electron microscope (SEM).  
 

 
 

Fig. 3: Line-Space pattern 
 
Problems in the patterning process cause defects and should be detected early on and fixed to 
prevent yield issues and can have disastrous consequences on the final product.  
 
The goal is to detect region-of-interest or defect locations in SEM images. These could be: 
 

�​ Classification of defect types: bridge, line_collapse, gap/breaks 
�​ Classification in a more challenging scenario: micro-bridges, micro-gaps 
�​ Detection/localization of each distinct defect of interest in the SEM image 

 
 

 
 
 
 
 
 
 

          (a)                                          (b)                                         (c)                                       (d) 
 
Figure 4: Different defect categories: (a) bridge, (b) line-collapse, (c) gaps/breaks, (d) 
micro-bridges 
 

 



The problem is very challenging since these defect patterns are only in the micro/nano-scale 
range and have varying degrees of pixel-wide defect level. Early detection of these defects 
helps reduce engineering time and tool cycle time associated with the defect inspection 
process. Once the defects are correctly detected, different parameters (area, length, width, and 
additional feature vectors) of the defects can be output for better classification and 
understanding of the root cause of the defects. 
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Proposed Ensemble Model-Based Defect Detection Framework 
 
Our proposed ensemble model-based defect detection framework, as illustrated in Fig. 5, 
consists of the RetinaNet [2] based detector and the U-Net architecture based denoiser [3].  
 
Defect inspection in ADI (After Develop Inspection) SEM images is the most challenging 
task as different noise sources generally shadow the detailed device feature information. This 
often leads to false defect detections and erroneous metrology.  
 
The challenge also lies for some resist profiles, in differentiation and detection of minute 
bridges (micro), breaks (zones of probable breaks), and resist footing from these noisy SEM 
images. Therefore, we have applied an unsupervised machine learning strategy to denoise the 
SEM images aiming to optimize the effect of stochastic noise on structured pixels and 
therefore, to remove the False-Positive defects (FP) for better metrology and enhanced defect 
inspection. The framework is trained and evaluated using imec datasets (both post-litho and 
post-etch resist wafer datasets) and classifies, detects, and localizes the candidate defect 
types.  
 

 



 
 

Fig. 5: Proposed ensemble model-based defect detection framework 
 
The focus of this section is to briefly discuss the key modules of the defect detection network 
only. The key modules of the defect detection network are: 
 
A. RetinaNet defect detector architecture 
B. Deep feature extractor networks as the backbone 
 
A. Overview of the RetinaNet architecture 
 

 
 

Fig. 6: RetinaNet defect detector architecture  
 

RetinaNet is a popular one-stage object detection model which works well with dense objects 
and effectively handles the foreground-background class imbalance problem affecting the 
performance of other one-stage detector models. RetinaNet architecture consists of a Feature 
Pyramid Network (FPN) [4] built on top of a deep feature extractor network, followed by two 
subnetworks, one for object classification and the other for bounding box regression. 
RetinaNet defect detector architecture is illustrated in Fig. 6. 
 

 



FPN takes one single resolution input image, subsamples it into multiple lower resolution 
images, and outputs the feature maps at different scales, thus building a multi-scale feature 
pyramid representation. Therefore, it enables the detection of objects of varying sizes from 
different layers of the feature pyramid. FPN combines low resolution features with 
high-resolution features via a top-down pathway with lateral connections to layers from a 
bottom-up pathway. The bottom-up pathway generates a feature hierarchy using feature maps 
of different scales from the input image. The top-down pathway performs up-sampling on the 
spatially coarser feature maps from higher pyramid levels. The lateral connections are then 
used to merge the feature maps of the same spatial size from both the paths, which gives 
semantically strong feature maps. 
 
The classification and regression subnetworks are connected to every layer of the feature 
pyramid and are independent of each other. The classification subnetwork predicts the 
probability of an object’s presence for every anchor box and object class. It consists of 4 fully 
convolutional layers [  Conv layer with 256 filters and ReLU activation]. It follows (3×3)
another convolutional layer having filters where K is the number of classes, and (3×3) 𝐾×𝐴 
A is the number of anchors (  anchors covering 3 different aspect ratios and 3 different 𝐴 = 9
scales).  
 
The regression subnetwork regresses the anchor boxes’ offset against the ground truth object 
boxes. It is a class-agnostic regressor that does not know what class the objects belong to and 
uses fewer parameters. The structure is similar to the classification network, except it outputs 
four bounding box coordinates for every anchor box. Anchor boxes are assigned to 
ground-truth boxes if the IOU between the boxes exceeds 0.5 and assigned to the background 
if the IOU is in the range [0,0.4). The anchor boxes having IOU in the range [0.4,0.5) are 
ignored. 
 
RetinaNet uses focal loss [5], which improves the prediction accuracy giving more 
importance to the hard samples during training and reducing the contribution of easy samples 
to the loss. It enhances the cross-entropy loss by introducing a weighting factor to offset the 
impact of class imbalance and a modulating factor to focus on training the hard negatives and 
less on the easy examples. 
 
B. Deep feature extractor networks as backbone: 
 
The proposed RetinaNet defect detector framework is an ensemble architecture based on a 
selective permutation of backbones as ResNet50, ResNet101, and ResNet152, as shown in 
Fig. 7. TABLE 1 describes custom variants of ResNet architectures with multiple 
convolutional layers with skip connections across them for feature extraction and fully 
connected layers for predicting different defect category probabilities. We have taken the 
affirmative ensemble [6] of the predictions from the 3 ResNet models with preference to the 
models showing better performance on the test dataset. So, we consider all the predictions 
from the first model and add predictions from the second-best model that do not overlap with 
the first model predictions. We use an IOU threshold of 0.5 to consider the boxes as 
overlapping. In this way, we add the non-overlapping predictions from the third-best model. 
This ensemble strategy ensures that all the predictions from the three models are taken, 
improving the accuracy of the test dataset.  

 



 
 

Fig. 7: Deep feature extractor networks as the backbone 
 
The goal of our proposed ensemble model-based defect detection framework is based on two 
significant steps.  
 
In the first step, train a RetinaNet defect detector architecture as discussed above to 
accurately classify and localize different defect types in SEM images such as bridge, 
line_collapse, gap, micro-bridges, and micro-gaps, respectively.  
 
In the second step, denoise those SEM images with challenging defects such as micro-bridges 
and micro-gaps to optimize the effect of stochastic noise on structured pixels. We then 
reiterate the defect detection step to remove the False-Positive defects (FP) towards better 
metrology and enhanced defect inspection. 
 
TABLE 1: RESNET50, RESNET101, AND RESNET152 BACKBONE ARCHITECTURE 
 
Layer Name ResNet-50 Backbone ResNet-101 Backbone ResNet-152 Backbone 

Conv1 , 64, stride 2 7×7

Conv2_x 

, max pool, stride 2 3×3
 
 1x1 , 64   

 3x3 , 64   x3 

 1x1 , 256   

 

 
 1x1 , 64   

 3x3 , 64   x3 

 1x1 , 256   

 

 
 1x1 , 64   

 3x3 , 64   x3 

 1x1 , 256   

 

Conv3_x 
 
 1x1 , 128   

 
 1x1 , 128   

 
 1x1 , 128   

 



 3x3 , 128   x4 

 1x1 , 512   

 

 3x3 , 128   x4 

 1x1 , 512   

 

 3x3 , 128   x8 

 1x1 , 512   

 

Conv4_x 

 
 1x1 , 256   

 3x3 , 256   x6 

 1x1 , 1024   

 

 
 1x1 , 256   

 3x3 , 256   x23 

 1x1 , 1024   

 

 
 1x1 , 256   

 3x3 , 256   x36 

 1x1 , 1024   

 

Conv5_x 

 
 1x1 , 512   

 3x3 , 512   x3 

 1x1 , 2048   

 

 
 1x1 , 512   

 3x3 , 512   x3 

 1x1 , 2048   

 

 
 1x1 , 512   

 3x3 , 512   x3 

 1x1 , 2048   

 
FC Average pool, 1000-d fc, softmax 

 
 
Experiments 
 
We implemented the ensemble model-based defect detection framework using Keras [7] and 
Tensorflow [8]. For training, we have used the Keras implementation in [9]. Due to IP 
(Intellectual property) and data confidentiality reasons, we can not open source our 
implementation in any form. 
 
Our model has been trained and evaluated on Lambda TensorBook with NVIDIA RTX 2080 
MAX-Q GPU.  
 
A. Datasets:  
 
The proposed ensemble model (Classifier + Detector) is trained and evaluated on post-litho, 
and post-etch P32 (Pitch 32 nm) resist wafer images.  
 
The dataset consists of 5,465 raw SEM images of  pixels in TIFF format with (1024 ×1024)
stochastic defects such as bridge, line-collapse, gaps/line-breaks, micro/nano-bridges, and 
probable nano-gaps as well as clean images without any such defects. The representative 
defect class images from this dataset are already shown in Fig. 4 (a) – (d). We have manually 
labeled 1170 SEM images  using 1053 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠,  117 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑖𝑚𝑎𝑔𝑒𝑠( )
LabelImg [10] graphical image annotation tool. The defect labeling strategy comprises 
diverse defect representative and challenging condition instances and as per naming 
convention in TABLE 2.  
 
The dataset was divided into a training set, a validation set, and a test set, as shown in 
TABLE 3. We have 2529 defect instances of these five different defect classes for training 

 



and 337 instances for validation. To comply with training criteria, we converted all images 
with “.tiff” format into “.jpg” format. We also implemented different data-augmentation 
techniques (such as rotation, translation, shearing, scaling, flipping along X-axis and Y-axis, 
contrast, brightness, hue, and saturation) to balance/increase the diversity of the training 
dataset defect patterns. We did not consider using any digital twins or synthetic datasets as 
cited in some previous citations as that does not solve the purpose of tackling real 
FAB-originated stochastic defectivity scenarios. We have also excluded any fabricated dataset 
patterned with intentionally placed or programmed defect types. 
 
 

TABLE 2: DEFECT CLASS LABELING CONVENTION 
 

DEFECT CATEGORY LABELLED AS 
BRIDGE bridge 

LINE-COLLAPSE line_collapse 
GAP/LINE-BREAKS gap 

MICRO/NANO-BRIDGE microbridge 
PROBABLE NANO-GAP p_gap 

 
 
 

TABLE 3: DATA DISTRIBUTION OF DEFECT SEM IMAGES 
 

Class Name Train (1053 images) Val (117 images) Test (154 images) 
gap 1046 156 174 

p_gap 315 49 54 
microbridge 380 47 78 

bridge 238 19 17 
line_collapse 550 66 76 

Total Instances 2529 337 399 
 
 
B. Evaluation criteria:  
 
We have considered Intersection over Union (IoU) [11] between the ground truth bounding 
box and the predicted bounding box 0.5. The “defect detection confidence score” metric is ≥ 
taken as 0.5. The proposed ensemble model-based defect detector overall performance is 
evaluated against mAP as Mean Average Precision, where mAP is calculated using the 
weighted average of precisions among all defect classes. AP or average precision provides 
the detection precision for one specific defect class. We have also considered the speed of 
detection per image (average-inference-time in milliseconds). We have taken the affirmative 
ensemble [6] of the predictions from top  backbones with preference to the models showing 𝑘
better performance on the test dataset. So, we consider all the predictions from the first model 
and then add those predictions from the second-best model that do not overlap with the first 
model predictions. We use an IOU threshold of 0.5 to consider the boxes as overlapping. In 
this way, we add the non-overlapping predictions from the third-best model and so on up to  𝑘
models. This ensemble strategy ensures that all the predictions from the top  backbones are 𝑘

 



taken, improving the accuracy of the test dataset. The improvement is noticeable for the most 
challenging defect category p_gap where the ensemble precision exceeds the individual 
model precisions. 
 
 
C. Training 
 
We have first trained the different individual backbone architectures (ResNet50, ResNet101, 
ResNet152, SSD_MobileNet_v1, SeResNet34, Vgg19, and Vgg16) on our SEM image 
dataset independently.  
 
For the proposed experiments, we have selected training parameters and hyperparameters as: 
40 epochs, batch-size of 1, initial learning rate at 0.00001, learning rate reduction by a factor 
of 0.1 if learning rate plateaus, and optimizer as ADAM [12]. TABLE 4 provides the 
comparative analysis for defect detection accuracies obtained per defect class and mAP on 
test images for the above experimental backbones with a score-threshold 0.5.  
 
We have selected the top three ResNet architectures with 78.7%, 77.5% and 78.8% mean 
average precision (mAP) respectively and SSD_MobileNet_v1 with 92.5% average precision 
(AP) for line_collapse defect as our final candidate backbones for the proposed ensemble 
model framework while discarding the others for worst average precision accuracy per defect 
class.  
 
The focal loss strategy is implemented for the proposed ensemble model with a weighting 
factor of  and focusing parameter . This helps tackle the class imbalance α = 0. 25 γ = 2. 0
problem and learn from challenging defect instances.  
 
TABLE 5 presents Test and Validation detection accuracies of top 3 ResNet architecture 
backbones per defect class along with average inference time in seconds. The proposed 
RetinaNet framework is an ensemble architecture based on a selective permutation of 
backbones as ResNet50 ResNet152 ResNet101. As presented in TABLE 6, our proposed → →
ensemble approach achieves better results with an overall mAP of 81.6% than the results 
obtained by the 3 top individual backbones separately, as shown in TABLE 4. There is further 
scope to improve the overall mAP metric by ensembling SSD_MobileNet_v1 architecture as 
a backbone with 92.5% average precision (AP) for line_collapse defect.  
 
 

TABLE 4: IMPLEMENTATION RESULTS WHEN EXPERIMENTING WITH 
DIFFERENT BACKBONE ARCHITECTURES 

 
 

Class Name ResNet50 ResNet101 ResNet152 MobileNet224_1.0 SeResNet34 Vgg19 Vgg16 

gap_AP 0.954 0.968 0.963 0.462 0.034 0.958 0.933 

p_gap AP 0.432 0.291 0.376 0.00 0.00 0.118 0.235 

 



bridge_AP 0.872 0.811 0.844 0.723 0.717 0.732 0.786 

microbridge_AP 0.603 0.633 0.669 0.104 0.003 0.7 0.715 

line_collapse_AP 0.828 0.816 0.789 0.925 0.925 0.799 0.788 

mAP 0.787 0.775 0.788 0.429 0.222 0.754 0.762 

 
TABLE 5: TEST/VALIDATION ACCURACY OF TOP 3 RESNET ARCHITECTURE 

BACKBONES 
 

Score_threshold: 0.5 Test Validation 
Class Name ResNet50 ResNet101 ResNet152 ResNet50 ResNet101 ResNet152 
gap_AP 0.954 0.968 0.963 0.969 0.963 0.947 
p_gap_AP 0.432 0.291 0.376 0.346 0.232 0.28 
bridge_AP 0.872 0.811 0.844 0.927 0.894 0.947 
microbridge_AP 0.603 0.633 0.669 0.738 0.792 0.786 
line_collapse_AP 0.828 0.816 0.789 0.909 0.864 0.864 
mAP 0.787 0.775 0.788 0.832 0.809 0.811 
average_inference_time (Secs) 0.0769 0.0656 0.0782 -- -- -- 

 
TABLE 6: OVERALL TEST ACCURACY OF PROPOSED RETINANET 

[ENSEMBLE_RESNET] FRAMEWORK 
 

Proposed Model Ensemble_ResNet 
[ResNet50 ResNet152 ResNet101] → →

gap_AP 0.959 
p_gap_AP 0.52 
bridge_AP 0.867 
microbridge_AP 0.675 
line_collapse_AP 0.828 
mAP 0.816 

 
 
Running Inference on Test Dataset 
 
Let’s now look at some results where the RetinaNet-inspired model could identify e-beam 
defects correctly. Fig. 8, Fig. 9, and Fig 10 show multiple defects of bridge, line-collapse, and 
gap/line-break categories, respectively. Fig. 11 shows the robustness of our proposed model 
in detecting relatively few, more challenging probable nano-gap defects in the presence of 
frequent gap defectivity. Differentiating these two marginal defect categories is challenging 
for current tools that use rule-based approaches. However, our proposed model demonstrates 
(1) semantic segmentation between two distinct defect classes as (a) gap/line-break and (b) 

 



probable nano-gap and (2) instance segmentation as detection of each distinct defect of 
interest under these two defect classes in the same image.  
 
Domain experts reported that when image intensity varies strongly from one line in the image 
to another, the performance in conventional tools takes a hit  [13]. This contrast change may 
be caused due to different levels of charging when a line, sometimes outside the current field 
of view, is broken. Fig. 12 and Fig. 13 show that our proposed model can classify and detect 
the above-mentioned two marginal defect categories.  
 
Fig. 14 and Fig. 15 show detection results of more challenging nano-bridge/micro-bridge 
defectivity on the test image dataset. The test image dataset was used to validate the proposed 
model performance and robustness as it is unseen during training and of a different resist 
family. The composition of a resist is a significant variable that impacts the number of 
stochastic defects like microbridge and possible nano-gap defects. The proposed model 
demonstrates robustness in detecting individual micro-bridges regardless of their extent. Our 
proposed ensemble model-based defect detection framework achieves the detection precision 
(AP) of 95.9% for gap, 86.7% for bridge, 82.8% for line_collapse, 67.5% for microbridge, 
and 52.0% for probable nano-gap defectivity, respectively. However, we believe there is a 
scope for further improvement for average precision for specific classes like microbridge and 
probable nano-ga in the future.  
 

 

                                
 

Fig. 8: Multiple correctly identified defects of bridges. 
 

 



 
 

Fig. 9: Multiple correctly identified defects of line-collapses. 
 

 
 

Fig. 10: Multiple correctly identified defects of gaps. 
 
 
 

 



 
 

Fig. 11: Detection results of more challenging probable nano-gap separately in the presence 
of gaps. The model shows robustness in detecting relatively few probable 

nano-gap defects in the presence of frequent gap defectivity. 
 

 
 

Fig. 12: Detection of nano-gap (green) and probable nano-gap (yellow) in the presence of 
contrast change. Contrast change does not affect the defect detection performance of the 

proposed ML model compared to the conventional approach. 
 

 

 



  
 

Fig. 13: Detection of nano-gaps in the presence of contrast change. Contrast change does not 
affect dthe efect detection performance of the proposed ML model compared to the 

conventional approach. 
 

 
 

Fig. 14: Detection results on more challenging nano-bridge/micro-bridge 
defects. 

 

 



 
 

Fig. 15: Detection results of more challenging nano-bridge/micro-bridge defects on new 
TEST dataset. The model demonstrates robustness in detecting 

variable degrees of pixel-level micro-bridge defectivity. 
 
 
 

How Denoising can help in Challenging Defect-Detection Scenario   
 

 
 

Fig. 16: Defect detection on same Noisy SEM image [P32]  with micro/nano-bridges: 
                     (a) Conventional Tool/approach, (b) Proposed ensemble model based approach 

 

 



 
 

Fig. 17: Defect detection on same Denoised SEM image [P32]  with micro/nano-bridges: 
(a) Conventional Tool/approach, (b) Proposed ensemble model-based approach 

 
In this section, we have demonstrated how denoising can improve defect inspection 
performance and accuracy in challenging defect-detection scenarios, specifically in the case 
of micro-bridge detection. The extraction of repeatable and accurate defect locations and CD 
metrology becomes significantly complicated in ADI SEM images due to continuous 
shrinkage of circuit patterns (pitches less than 32 nm). The noise level of SEM images may 
lead to false defect detections and erroneous metrology. Hence, reducing noise in SEM 
images is of utmost importance. In the presence of stochastic noise on structured pixels, resist 
footing generally appears as tiny microbridges that are expected to be removed during the 
next etch process step. Denoising optimizes this effect of stochastic noise on structured pixels 
and, therefore, helps to remove the false-positive defects (FP) for better metrology and 
enhanced defect inspection. We have shown two different strategies in this research as (1) 
remove any FP detection with strict defect detection confidence score ≥ 0.5 for microbridge 
and (2) adaptation of  resist footing as “weak microbridge” defect by lowering the confidence 
score enough (0.0 ≤ score ≤0.5). In Fig. 16 and Fig. 17, we have presented both approaches. 
For the first approach, we have repeated the defect inspection step on denoised images with 
the same trained model parameters with noisy images only, whereas for the later, we have 
retrained the model with denoised images and fine-tuned the model parameters. Another 
approach is possible as labeling of resist footing as a new defect category and training the 
model. This will be considered as our future scope of this research.  
 
Moreover, we have presented a comparative analysis on stochastic defect detection 
performance between our proposed deep learning-based approach and conventional approach 
[13]. Fig. 16 provides a challenging micro/nano-bridges detection scenario on the same Noisy 
L/S SEM image. With a “manual” selection of the detection threshold parameters (such as 
user-defined intensity-threshold, failure size parameter, noise etc.), the conventional approach 
was able to flag four out of seven observable defects. Whereas, our proposed deep learning 
based model automatically detects five out of the same with a strict defect detection 
confidence score ≥ 0.5 without any requirement of such manual trial-and-error based 
“threshold” selection method. Lowering the automated “confidence score” certainly flags 
other missing defects as demonstrated in Fig. 17. Fig. 17 demonstrates the same challenging 

 



micro/nano-bridges detection scenario on the corresponding denoised image. We can see the 
detection scenario is influenced by the condition if the image is noisy or denoised for 
conventional approach. Furthermore, after denoising, along with previous undetected defect 
instances, the conventional approach was not able to detect the “most obvious” microbridge 
defect instance which was flagged before. However, our proposed model demonstrates 
“stable” performance in detecting defects with better accuracy for both noisy or denoised 
images and replaces the manual trial-and-error based “threshold” selection method with 
automated “confidence score”. Once defects are correctly detected, different parameters (as 
length, width, area, additional feature vectors) about the defects can be output for better 
understanding the root cause of the defects. 
 
 

Application 
 
Web-based defect inspection app 
 

 
 

Fig. 18: Web-based defect inspection app 
 

We built a UI (User-Interface) using the Streamlit library in python script to deploy our 
proposed model as a web-based defect inspection app. A view of the application interface is 
depicted in Fig. 18. This is a template version of the originally proposed software interface, 
and we will add more user-friendly graphical widgets in near future. This will enable 
different partners/vendors to run the application on their local servers/workstations on their 
own tool data. This UI will enable the users to upload a dataset of SEM/EDR/Review-SEM 
images, to select and run one out of different defect detection inference models on the dataset, 
to visualize the prediction performance locally and finally to segregate and save the images in 
different folders according to their defect categorical classes in local machines. 

 
 
Conclusion 
 

 



In this post, we have presented a novel, robust, supervised deep learning training scheme 
based on RetinaNet architecture to accurately detect different defects in SEM images in 
aggressive pitches. This scheme includes: 
 

●​ Classification of defect types: bridge, line-collapse, line-breaks 
●​ Classification in more challenging scenario: micro-bridges, micro-gaps 
●​ Detection/Localization of each distinct defect of interest in the SEM image 

 
We have also investigated and demonstrated how the condition influences defect detection 
scenarios if the image is noisy or denoised and how denoised SEM images are aiding for 
better metrology and enhanced defect inspection. Future research direction can be 
extended to use data to model defect transfer from litho to etch as well as to other SEM 
applications (Logic/CH structures) as well as use TEM/AFM images. 
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