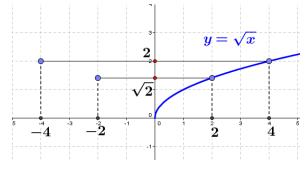
Построение графика функций y = f(-x)

1. Построим график функции y=f(-x) по известному графику функции y=f(x). Рассмотрим, как можно осуществить это построение на примере функции $f(x)=\sqrt{x}$, то есть по графику функции $y=\sqrt{x}$ построим график функции $y=\sqrt{-x}$

При x=2 функция $y=\sqrt{x}$ принимает значение $\sqrt{2}$. Это же значение $\sqrt{2}$ функция $y=\sqrt{x}$ принимает при x=-2. При x=4 функция $y=\sqrt{x}$ принимает значение 2, которое функция $y=\sqrt{-x}$ принимает при x=-4 (рис. 1). Мы видим, что то же значение, что и $y=\sqrt{x}$ функция $y=\sqrt{-x}$ принимает при противоположном значении аргумента x. Это верно для всех допустимых значений x: то значение, которое функция \sqrt{x} принимает при $x=x_0$, то есть $\sqrt{x_0}$, функция $y=\sqrt{-x}$ принимает при $x=x_0$. Действительно, $\sqrt{-(-x_0)}=\sqrt{x_0}$.



 $y=\sqrt{-x}$ $y=\sqrt{x}$ $y=\sqrt{x}$ $(-x_0,\sqrt{x_0})$ $(x_0,\sqrt{x_0})$ x_0

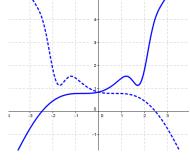
Рисунок 1

Рисунок 2

Это означает, что точка $(-x_0; \sqrt{x_0})$, симметричная относительно оси ординат 0y точке $(x_0; \sqrt{x_0})$, принадлежит графику функции $y = \sqrt{-x}$ (рис. 2). Кроме того, для любой точки этого графика найдется симметричная ей точка графика функции $y = \sqrt{x}$. Поэтому график функции $y = \sqrt{-x}$ получается в результате симметрии относительно оси ординат 0y графика функции $y = \sqrt{x}$.

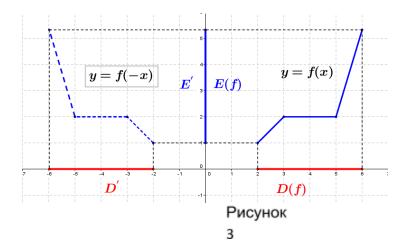
Все приведенные выше рассуждения применимы и в общем случае для построения по известному графику функции y=f(x) графика функции y=f(-x). Рассмотрим точку графика y=f(x) с абсциссой $(x_0;f(x_0))$. Симметричная ей относительно оси ординат 0y точка плоскости $(-x_0;f(x_0))$ принадлежит графику функции y=f(-x). Это следует из того, что координаты этой точки удовлетворяют уравнению y=f(-x), так как $f(x_0)=f(-(-x_0))$. Значит, при симметрии точки графика функции y=f(x) получится точка графика функции y=f(-x). Осталось показать, что таким образом мы можем получить <u>любую</u> точку этого графика. Для точки искомого графика с координатами (d;f(-d)) симметричная ей точка имеет координаты (-d;f(-d)), а, значит, принадлежит графику функции y=f(x). Это завершает доказательство следующего способа построения графика функции y=f(-x):

Чтобы получить график функции из графика функции необходимо



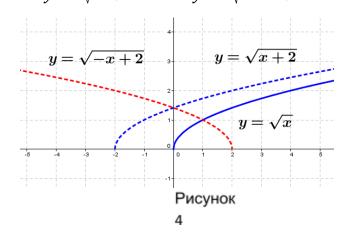
отразить симметрично относительно оси ординат Оу график функции

2. Поскольку симметрия относительно оси ординат Oy не изменяет ординату точки, то множество значений функции y = f(-x) совпадает с множеством значений функции y = f(x) (рис.3). Ордината точки при этой симметрии приобретает противоположное значение, поэтому область определения функции y = f(-x) симметрична области определения функции y = f(x) относительно начала координат (рис.3).



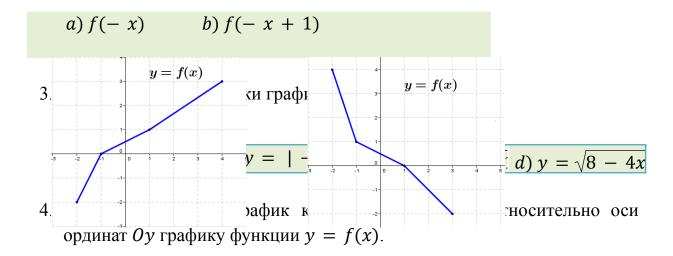
3. Пример. Построить график функции $y = \sqrt{2 - x}$.

Решение. Построим сначала график функции $y=\sqrt{x+2}$, сдвинув влево на 2 единицы вдоль оси Ox график функции $y=\sqrt{x}$. Затем график функции $y=\sqrt{x+2}$ симметрично отразим относительно оси ординат Oy и получим график функции $y=\sqrt{-x+2}$ (рис.4). Последовательность построения графиков можно записать в следующем виде: $y=\sqrt{x} \implies y=\sqrt{x+2} \implies y=\sqrt{-x+2}$.



Упражнения

- 1. Приведите примеры функций y = f(x), для которых графики функций y = f(x) и y = f(-x) совпадают. Как называются такие функции?
- 2. На рисунке изображен график функции y = f(x). Построите график функции



a)
$$y = x^2 - x + 1$$
 b) $y = 3x - 2$ c) $y = -x^2 + 2x - d$ d) $y = -x - 1$

5. Найдите область определения функции y = f(-x), если известна область определения функции y = f(x).

(0; 5]	(− ∞; − 1]	$(-\infty; -3) \cup (3; \infty)$
(− ∞; ∞)	$(-6;1)\cup(2;3)$	$(-\infty;1)$