CAPAIAN PEMBELAJARAN	Peserta didik mampu menerapkan operasi matematika dalam perhitungan kimia; mempelajari sifat, struktur dan interaksi partikel dalam membentuk berbagai senyawa; memahami dan menjelaskan aspek energi, laju dan kesetimbangan reaksi kimia; menggunakan konsep asam-basa dalam keseharian; menggunakan transformasi energi kimia dalam keseharian; memahami kimia organik. Peserta didik mampu menjelaskan penerapan berbagai konsep kimia dalam keseharian dan menunjukkan bahwa perkembangan ilmu kimia menghasilkan berbagai inovasi. Peserta didik memliki pengetahuan Kimia yang lebih mendalam sehingga menumbuhkan minat sekaligus membantu peserta didik untuk dapat melanjutkan ke jenjang pendidikan berikutnya agar dapat mencapai masa depan yang baik. Peserta didik diharapkan semakin memiliki pikiran kritis dan pikiran terbuka melalui kerja ilmiah dan sekaligus memantapkan profil pelajar pancasila khususnya jujur, objektif, bernalar kritis, kreatif, mandiri, inovatif, bergotong royong, dan berkebhinekaan global				
ALUR TUJUAN PEMBELAJARAN PERTAHUN	Peserta didik mampu menerapkan operasi matematika dalam perhitungan kimia; mempelajari sifat, struktur dan interaksi partikel dalam membentuk berbagai senyawa; memahami dan menjelaskan aspek energi, laju dan kesetimbangan reaksi kimia; menggunakan konsep asam-basa dalam keseharian;				
RASIONALISASI	Alur dibuat dengan mempertimbangkan hierarki konten materi. Hierarki konten materi pembelajaran yang dimaksud adalah kompetensi yang lebih mudah disampaikan terlebih dahulu sebelum yang kompleks. Selain itu, alur ini juga mempertimbangkan hierarki kompetensi yang tercantum dalam capain pembelajaran. peserta didik diharapkan mampu memahami interaksi partikel dalam membentuk senyawa sehingga membentuk sifat dan karakteristik suatu senyawa dan berbagai fenomena reaksi-reaksi kimia seperti : termokimia, kecepatan reaksi, kesetimbangan reaksi dan reaksi asam-basa. Dalam pelaksanaannya, alur tujuan pembelajaran ini mengedepankan pemahaman dasar serta penerapannya dalam berbagai aspek kehidupan, seperti : industri, lingkungan, dll				
ALUR TUJUAN F	PEMBELAJARAN	JP	KATA KUNCI	Profil Pelajar Pancasila	
11.1 Menganalisis penerapan perhitungan kimia konsep mol dan stoikhiometri dalam berbagai reaksi di kehidupan sahari-hari		20 JP	Konsep mol, stoikhiometri, konsentrasi larutan, kadar zat	Kreatif, gotong royong, bernalar kritis, objektif	
11.2 Merancang, melaksanakan dan membuat laporan percobaan ilmiah tentang penerapan konsep mol dan stoikhiometri				Kreatif, gotong royong, bernalar kritis, objektif	

11.3	Menganalisis dan menentukan interaksi atom/molekul dalam senyawa kimia yang ada di lingkungan sekitar	24 JP	Ikatan ionik, ikatan kovalen, ikatan logam, ikatan hidrogen, gaya van der walls, gaya	Bernalar kritis, mandiri, objektif
11.4	dan karakteristik suatu senyawa berdasarkan interaksi atom/molekulnya		london	
11.5			Bentuk molekul	Kreatif, gotong royong, bernalar kritis
11.6	Menganalisis konsep perubahan entalpi/energi reaksi kimia dalam termokimia	12 JP	Persamaan termokimia, reaksi eksoterm, reaksi endoterm	Bernalar kritis, mandiri, objektif
11.7	Menentukan nilai perubahan entalpi reaksi kimia berdasarkan data percobaan		Kalorimeter, hukum hess, energi ikatan	Bernalar kritis, mandiri, objektif
11.8	Menganalisis fenomena di lingkungan sekitar yang berkaitan dengan laju reaksi	12 JP	Laju reaksi	Bernalar kritis, mandiri, objektif
11.9	Menganalisis data percobaan untuk menentukan persamaan laju reaksi suatu reaksi kimia		Persamaan laju reaksi	Bernalar kritis, mandiri, objektif
11.10	Merancang, melaksanakan dan mempresentasikan hasil percobaan ilmiah berdasarkan teori tumbukan dan faktor yang mempengaruhi laju reksi		Teori tumbukan, suhu, konsentrasi, luas permukaan bidang sentuh, katalis	Bernalar kritis, mandiri, objektif
11.11	Menganalisis dan menjelaskan konsep kesetimbangan kimia dengan bahasa sendiri yang lebih sederhana	16 JP	Kesetimbangan kimia	Bernalar kritis, mandiri, objektif
11.12	11.12 Menjelaskan dan menyajikan hasil pengolahan data untuk menentukan nilai tetapan kesetimbangan kimia		Tetapan kesetimbangan (konsentrasi & tekanan parsial)	Bernalar kritis, mandiri, objektif
11.13	Menganalisis faktor-faktor yang mempengaruhi serta menyimpulkan arah kesetimbangan reaksi kimia		Faktor yang mempengaruhi arah kesetimbangan kimia : tekanan,	Bernalar kritis, mandiri, objektif

dalam penerapannya di kehic sehari-hari dan industri	lupan	volume, suhu, konsentrasi, katalis		
11.14 Menjelaskan konsep kelaruta hasil kali kelarutan dalam fen larutan jenuh dengan bahasa	omena	Kelarutan dan hasil kali kelarutan	Bernalar kritis, mandiri, objektif	
11.15 Memprediksi terbentuknya e dan menganalisis pengaruh id senama dalam suatu larutan berdasarkan konsep Ksp			Bernalar kritis, mandiri, objektif	
11.16 Merancang, melaksanakan da membuat laporan tentang pe konsep kelarutan dan hasil ka kelarutan dalam analisis kimi	nerapan ili		Bernalar kritis, mandiri, inovatif, objektif, gotong royong	
11.17 Menjelaskan konsep asam-ba dengan bahasa sendiri dan menganalisis larutan asam-ba ada di kehidupan sehari-hari		Asam-Basa	Bernalar kritis, mandiri, inovatif, objektif	
11.18 Menentukan kekuatan/ deraj keasaman/kebasaan suatu la asam dan basa		Ph	Bernalar kritis, mandiri, inovatif, objektif, gotong royong	
11.19 Menjelaskan prinsip larutan k dan penerapannya di kehidur sehari-hari		Buffer/ Larutan Penyangga	Bernalar kritis, mandiri, inovatif, objektif, gotong royong	
11.20 Merancang, melaksanakan da membuat laporan ilmiah tent pembuatan larutan buffer pH	ang		Bernalar kritis, mandiri, inovatif, objektif, gotong royong	
11.21 Menganalisis fenomena reaks asam-basa dalam kehidupan sehari-hari	si 12 JP	Reaksi Asam-Basa, Hidrolisis Garam	Bernalar kritis, mandiri, inovatif, objektif	
11.22 Menganalisis dan menentuka keasaman/kebasaan larutan l reaksi asam-basa dan larutan	hasil		Bernalar kritis, mandiri, inovatif, objektif	
11.23 Merancang, melaksanakan da membuat laporan percobaan tentang titrasi asam-basa		Titrasi Asam-Basa	Bernalar kritis, mandiri, inovatif, objektif	
GLOSARIUM Mol: satuan pengukuran dalam Sistem Satuan Internasional (SI) untuk jumlah zat				

stoikhiometri: ilmu yang mempelajari dan menghitung hubungan Kuantitatif dari reaktan dan produk dalam reaksi kimia (persamaan kimia)

Konsentrasi: perbandingan zat terlarut dengan larutannya dalam suatu larutan

Kadar: banyak nya zat yang terkandung dalam suatu campuran/senyawa

Ikatan Kimia: sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil

Polaritas/Kepolaran: pemisahan muatan listrik yang mengarah pada molekul atau gugus kimia yang memiliki momen listrik dipol

Bentuk Geometri Molekul : penataan atom yang menyusun molekul secara tiga dimensi

Teori VSEPR (Valence Shell Electron Pair Repulsion): suatu model kimia yang digunakan untuk menjelaskan bentuk-bentuk molekul kimiawi berdasarkan gaya tolakan elektrostatik antar pasangan elektron

Entalpi: Entalpi adalah kaidah dalam termodinamika yang menyatakan jumlah energi dalam, volume dan tekanan panas dari suatu zat

Hukum Hess: hukum yang digunakan untuk memprediksi perubahan entalpi dari hukum kekekalan energi (dinyatakan sebagai fungsi keadaan ΔH) kalorimeter,

Energi Ikatan: merupakan perubahan entalpi yang diperlukan untuk memutuskan ikatan tertentu dalam satu mol molekul gas

Kalorimeter: alat yang digunakan untuk mengukur jumlah kalor (panas) yang terlibat dalam suatu perubahan atau reaksi kimia.

Laju reaksi: berubahnya konsentrasi reaktan/produk per satuan waktu

Orde: faktor konsentrasi reaktan yang memperngaruhi laju reaksi

Tetapan laju reaksi: suatu tetapan yang mempengaruhi laju reaksi, dimana besarnya tetapan laju reaksi bergantung pada kondisi reaksi tersebut

Tumbukan: ketika suatu benda-benda dibuat saling bertabrakan

Katalis: suatu zat yang dapat mempercepat/memperlambat suatu reaksi kimia tanpa zat sendirinya tersebut berubah

Kesetimbangan Kimia: keadaan saat kedua reaktan dan produk hadir dalam konsentrasi yang tidak memiliki kecenderungan lebih lanjut untuk berubah seiring berjalannya waktu

Kelarutan: jumlah maksimal zat terlarut yang dapat larut dalam suatu larutan jenuh

Larutan: campuran homogen (serba sama) yang terdiri dari dua atau lebih zat.

pH (power of Hydrogen) : derajat keasaman yang digunakan untuk menyatakan tingkat keasaman atau kebasaan yang dimiliki oleh suatu larutan

Larutan buffer : suatu sistem larutan yang dapat digunakan untuk mempertahankan pH suatu larutan

Hidrolisis: penguraian zat dalam reaksi kimia yang disebabkan oleh air.

Garam: senyawa ionik yang terdiri dari ion positif (kation) dan ion negatif (anion), sehingga membentuk senyawa netral (tanpa bermuatan)

Titrasi: salah satu metode kimia untuk dapat menentukan konsentrasi suatu larutan dengan cara mereaksikan sejumlah volume larutan itu terhadap sejumlah volume larutan lain yang konsentrasinya itu sudah diketahui