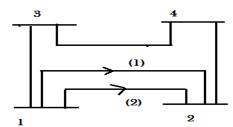

CMPS- EEE III-II

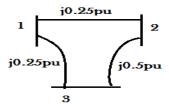
Unit.1


- Define below with examples.
 - (a). Graph and sub graph
 - (b). Element
 - (c). Node
 - (d). Path and Oriented
 - (e). Tree and Co-tree
 - (f). Branch
 - (g). Loop and Basic loop
 - (h). Links
 - (i). Cutset
 - (j).
- 2. Explain and difine with examples for given below.
 - (a). Incidence matrix
 - (b). Bus incidence matrix
 - (c). Branch path incidence matrix
 - (d). Basic cut-set incidence matrix
 - (e). Augmented cut-set incidence matrix
 - (f). Loop incidence matrix
 - (g). Augmented loop incidence matrix
- 3. Define primitive network? Represent primitive admittance and impedance with neat sketch and explain it clearly.
- 4. Explain and represent net work matrices by singular transformation.
- 5. Using network matrices by singular transformation, derive the equation for Bus admittance and Bus impedance matrix.
- 6. Using network matrices by singular transformation, derive the equation for Branch

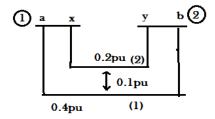
admittance and Branch impedance matrix.

- 7. Using network matrices by singular transformation derive the equation for loop admittance and loop impedance matrix.
- 8. For the given power system representation draw the oriented connected graph.

- (i). Find incidence matrix
- (ii). Bus incidence matrix
- (iii). Basic cut-set incidence matrix
- (iv). Augmented basic cut-set incidence matrix
- 9. For the given above figure(1). Find.
 - (i). Branch path incidence matrix.
 - (ii). Loop incidence matrix
 - (iii). Augmented loop incidence matrix
- 10. For the given below fig(2). Find Zbus
- 11. For the given below fig(2). Find Yloop
- 12. For the given below fig(2). Find Zbr


Element no impedance	Bus code	impedance	buscode

p-q	Zpq-pq	r-s	Zpq-rs
1	1-2(1)	0.6	
2 0.1	1-3	0.5	1-2(1)
3	3-4	0.5	
4 0.2	1-2(2)	0.4	1-2(1)
5	2-4	0.2	


Unit.2

- Write algorithm for formation of bus impedance matrix with neat sketch and write performance equations of a partial network.
- 2. Write short notes on performance equation of apartial network.
- 3. Derive Zqi for addition of branch with injected current at 'i' and caliculate voltage at 'q'.
- 4. Derive Zqq for addition of branch with injected current at 'q' and caliculate voltage at 'q'.
- 5. Derive Zli for addition of branch with injected current and voltage source in series. By injecting current at 'i' and caliculate voltage at 'l'.

- 6. Derive ZII for addition of branch with injected current and voltage source in series. By injecting current at 'l' and caliculate voltage at 'l'.
- 7. Derive the equation for bus admittance matrix by direct inspection method
- 8. Compute the bus impedance matrix for the system shown in fig(3). By adding element by element take bus (1) as reference.

9. A transmission line exists b/w buses (1)and(2) with per unit impedance 0.4pu,another line of impedance 0.2pu is connected in parallel with it making it a double- ckt line with mutual impedance of 0.1pu. obtain by building algorithm method the impedance of the two ckt system.

<u>Unit.3</u>

- 1. Write short notes on power flow studies.
- 2. Write necessity for power flow studies.
- 3. Write conditions for successful operation of a power system.
- 4. Derive the static load flow equation.

- 5. Derive the static load flow equation in polar form.
- 6. Derive the static load flow equation in rectungalar form.
- 7. Classify the buses and explain in few words.
- 8. Write algorithm for N-R method.
- 9. write flow chart for N-R method.
- 10. Derive the equation for N-R method for single dimensionalcase.

Unit.4

- Write algorithm for Gauss-seidel method.
- Derive the equation for G-S method using load flow equations
- 3. Write flow chart for G-S method.
- 4. A two bus system having admittance values

5. For the given data find out the voltage at the end of two iteration by using G-S method.

BUS	Pi(pu)	Qi(pu)	Vi	REMARK

1	-	-	1.04	SLACK BUS
2	0.5	-0.2	-	PQ BUS
3	-0.1	0.5	-	PQ BUS
4	0.3	-0.1	-	_