

Building, deploying, securing and managing your own
crypto-currency mining

Web Front End
an elaborate introduction

A Step by Step approach utilizing the Ubuntu Linux Operating System

Illustrated with MPOS, Mining Portal Open Source

Scripted, from the Ground Up

Edition 1

April, 2014

Steven J. Martin
M.S. MIS, MBA, B.S. MIS

Whether your interested in building a successful shared mining pool, or interested in the technology, or maybe
your interested in keeping all of the coins you actually mine; I think you can learn something from this book. This
is a step by step approach, from a bare-metal Linux installation to an operational web based shared mining pool

using the same approach, and consequently … likely, the same software professional mining sites use. Every step in
this book is explained in detail, organized by chapter. Each step of each chapter details the commands necessary for
success, and each chapter additionally includes a complete setup script for automation, and reuse.

With the contents of this book, you will be able to create a web based portal under the Apache SSL, MySQL, and
MPOS application suites, and be mining “your own” coins and keep 100% of them in your wallet. The first coin we
mine is Litecoin. Then it's on to Dogecoin. From there we set up for infinitecoin, and finally, we go international
with eMark. Each of these coin bases can run on a separate, or the same server. Each is configured with their own
database, and each uses it's own Stratum. Having the scripts necessary to accomplish this, and of course, the proper
procedures, makes these tasks easy and repeatable. By establishing one site, then “switching it up” to an alternate
coin, the book reinforces the small configuration changes necessary, and builds the knowledge necessary to be a
successful Internet entrepreneur, and owner of you very own public, or if you prefer, private pooled coin mining
web site.

If you are interested in solo mining, then this is the way to accomplish the task. Solo mining without variable
difference is near impossible because of the high network difficulty. This is why so many recommend pooled
mining. A pooled mining site includes the very software we are speaking about here. A mining site with workers,
variable differences, pools, rounds, shares, and found blocks. You may be able to find all of the information detailed
within these pages somewhere amongst the words strewn about the Internet. But I am unsure that you will find a
more concise, step by step approach as within this book you are now perusing … your go to reference.

Have a look at the table of contents, then decide; do I want to be the purveyor of an Internet based mining site? Do I
want to setup a shared mining pool for my close associates? Or do I simply wish to keep 100% of what I mine in my
own wallet. Chances are, based on your answer, some, if not all of the steps necessary are right here. If for nothing
other that personal mining, to actually keep the coins you mine, then this book,will pay for itself likely on the first
operational day. If you decide that you would like to pursue becoming an Internet entrepreneur, then so be it. Using
this book as a reference will certainly get you well on your way. If your desire is to establish a small private site for
friends and family, then great!

From scrypt mining to sha256d, pow and pos, vardiff, stratum's, coin daemons, and clients, cpu and gpu, asics
mining, twistd and config.py; It's in here waiting to be read and put to good use. Who knows what will be the future
of crypt coins. Which will succeed, and which will fail. Yes it is true that it is nearly impossible to find a Bitcoin
block these days, however there exists a plethora of alternatives, domestic and international ripe for the picking. In a
12 hour period, I personally solved an eMark (dem) block and banked 50 coins. In a 24 hour period, I found 9
infinitecoin (ifc) blocks that netted 1,200 coins for each block found. If I were mining on a pooled web site owned
by another entrepreneur, I would have shared these with any number of other individuals, and would have been paid
my shares, and maybe a block find bonus, plus I would have forked over 7.5 % of these to the purveyor of the site.
Instead they now exist in my wallet.

So read on Internet entrepreneur, or solo miner, or private pool purveyor, or simply an interested reader. Read on
and get your learn on. I encourage you to simply read on my friend.

An excerpt from Appendix “A”

Proof is sometimes in the pudding.

This next example is the infinitecoin. I was pleasantly surprised to find out that the infinitecoin block solution pays
1,200 coins per block found. This is a very easy coin to mine, yet has about the same potential return as the
Dogecoin, which is rather difficult to mine. Below is a chart from MPOS showing expected normal PPLNS, (say
from a normal Internet mining site,) and the actual return. The actual return is staggeringly higher than the
expected.

Prologue

An Introduction

In my previous book also available as a Kindle download “Automating the Installation, Configuration and Execution
of Crypto Currency Mining Applications using Linux,” I discuss the rudimentary aspects of establishing via
automation, the mining rigs. Conversely, this book details the opposing end of that technology which is the mining
server. The “mining server” provides the services of a pooled banking resource , much like a central bank, or the
“banker in a Monopoly game.” The public pooled mining web site is an application providing a shared pooling
resource for individual miners. Much like the banker in Monopoly, your the banker, and as such, you are responsible
for making payments based on your particular mining distribution topology.
Establishing a crypto-currency mining pool, or server if you will, can also be setup specifically for solo mining. It
offers the flexibility of a public pooled mining resource such as variable difficulties, multiple workers, password
protection, etc. right in your own back yard. Set it up and utilize it specifically as your own pooled mining server, or
set it up to share with a small group. It's your mining site, so basically it is up to you. There are no transaction fees to
pay so every share mined is your 100% to keep. That's good enough for me.
This book is a reference guide which provides a step by step, and scripted approach to establishing a pooled
cryoto-currency mining site utilizing the Ubuntu Linux Operating System. It is illustrated using MPOS, “Mining
Portal Open Source,” a PHP based consortium and the most widely used pooled mining server software solution in
service today. Scripting is embedded within this book which can also be downloaded. Links are provided within. We
start with the base Linux Operating System platform, then work our way up the chain delving into technologies
including MySQL, Apache Secure Server, PHP, the MPOS application, SendMail, Security Considerations and more.
This is a no nonsense, “soup to nuts,” step by step and scripted approach. Yes, all of this information is obtainable
somewhere on the Internet, possibly contained in several dozen or even hundreds of “posts,” be them right or wrong.
However here it is presented to you in a format that you can follow. Completely scripted, documented in a field
proven topology.
This book starts with the fundamentals of installing the Ubuntu Debian Linux Server and journeys up the ladder,
providing a ton of information. It's organized by chapter, and each chapter includes proven scripting for automating
the task at hand. I like the MPOS documentation available on-line so very much that I wish to share a paragraph
here:
“ Before following this guide this warning is given as advice and a word of warning. Running a live pool is a job which requires in depth
knowledge of pool code as well as the ability to debug and fix the pool. By NO means is this an in depth guide to running a pool and as
such should only be used for private/testnet pools! As running a pool is a long and tiresome process where many different things can affect
the stability and usability of the pool, it is guaranteed that problems will occur. “

This is very true, however there is so very much to learn simply by traversing the technology here within, and who
knows, together we may actually start a lucrative and legitimate pooled mining web site.
As a personal note, if you are running a Mac or Windows OS, the information presented here may or may not be
applicable to you. The instructions within this book are intended specifically for Linux, and to be even more specific,
the Ubuntu/Debian distribution, and may or may not be applicable to other platforms and architectures.

A “bit” about the Author

The author of this book, and associated programs and executable automation scripts is currently game fully employed
within the IT industry while his principle role is IT automation. He first started programming in the 1980's on a
TI-994a a monochrome monitor and an Advanced Basic Cartridge.
After graduating college with a B.S. in MIS, he was employed working in IT on Large IBM mainframes coding
RPG, Fortran, Cobol, and other so called “Mainframe” languages while working on his Masters. He graduated with a
M.S. MIS, and and MBA in 1986 and has been consistently employed in some form of Computer Science even since.
Around 1990 he picked up UNIX for the first time and realized there is just no going back!
He is VERY much interested in educating younger people with an attitude and aptitude for computer science, and he
believes it is the duty of “our generation” to help guide those young and eager individuals. His own thirst for
knowledge and his willingness to share, is what this book is all about. He hopes you enjoy and profit from it.

The author would like to thank all of the individual contributors to the ever growing technical base available as
open source for their hard work and diligence and in continuing to make this stuff fun to explore.

A “coin” of truth about Fonts

currier font indicates an executable script. This is actual executable code which can be used to accomplish
the designated task.

Table of Contents

Table of Contents goes here.

Table of Contents
Prologue

An Introduction
Chapter 1 The Base Operating System
Chapter 2 The Prerequisites
Chapter 3 The Coin Daemon and QT Client
Chapter 4 taking a test drive with CPU Miner
Chapter 5 divide and conquer the Stratum Proxy
Chapter 6 the initial MPOS installation using http
Chapter 7 the initial MySQL installation and configuration
Chapter 8 mail server send mail setup
Chapter 9 testing with Apache HTTP
Chapter 10 building the Apache SSL HTTPs Server
Chapter 11 putting it All Together with Litecoin
Chapter 12 converting over to Dogecoin
Chapter 13 infinitecoin possibilities
Chapter 14 going international with the eMark
Chapter 16 it's all about the Defense
Chapter 17 summary and closing remarks

Appendix A Sometimes the Proof is in the pudding

Chapter 1 The Base Operating System
Step One is installing the base Linux Operating System

Enter Linux

Prior to installing and or configuring anything one must have the Linux operating system installed on some form of
a computer. Be it a laptop, a cabinet, a so called “pizza box,” really is of no consequence. To get started all we need
is a computer that is applicable to the installation of the Linux operating system.

I have encountered absolutely NO problems with Ubuntu or Debian in performance and longevity, thus I personally
prefer these distributions. Any Linux distribution is simple to get up and running and most will recognize other
operating systems you may have currently installed and will setup a Dual Boot system for you, and as such, will
allow you to first repartition your hard drive to make room for their install. This is a great way to prototype your
environment. Or in other words, take it for a test drive, in a small, safe environment learning the ropes. Then when
ready to go production, however a heftier “production” environment would be preferable with a stand alone server

platform running a hardened OS. This is fairly easily obtainable, and is within the confines of this book. Please do
not get me wrong, setting up a production ready, hardened pooled mining server is a lot of work and requires a rather
large degree of over site. However having said this, I assume you're already “down the rabbit hole,” so to speak, and
ready for the challenge. So let's explore. There is nothing to lose, and all this technology waiting and wanting to be
learned.

Installing the host Linux operating system is your responsibility and the deciding which distribution is yours alone
to make. However this book makes the assumption that the base Linux distribution is Debian based, and the
instructions and scripts herein are ONLY applicable to and or have been tested on Ubuntu Server or Desktop 13.10.
 The Ubuntu Server offers a fairly robust and secure base platform that is hardened to be utilized as an industrial
server. This distribution is not a desktop, and is void of GUI, but offers a very suitable platform upon which to build
a secure and reliable web hosting application and is the Authors recommendation.

One word of caution if you do prototype using a personal computer is to make sure you have a backup prior to
installing anything on your. Installing Linux most definitely has the potential of overwriting your hard drive and
eliminating everything that is currently written there. If you can, you should consider using a separate computer, or
at least purchase another hard drive. Hard drives are so inexpensive and having a separate hard drive to install Linux
on is simply the best choice given all of the available options.

Once you have determined the where and what you will install Linux on, not to mention the distribution, it is a
relatively painless operation to actually install it. Several options are available. Most popular is to boot a Live CD
from a compact disk you burn, or burn this very same Live CD onto a USB stick that is 1GB or greater in size.
Either if these approaches are simple. The only problem with USB is I have found that not all computers offer to
boot from USB, and even some of those that do have problems booting from USB. Another problem is that some of
the Live CD distributions exceed the maximum allowable 800 MB of record able space of a standard CD. One can
also use a DVD to burn a Live DVD. This eliminates both of the above two problems if you have a DVD burner and
some extra writable DVDs.

Next determine if you are running a 32 bit or 64 bit compatible CPU. If you are running a 64 bit compatible CPU
then I suggest you install the 64 bit Linux distribution. Most new CPU's are not only 64 bit compatible, they often
are multi-processing cores. A quad core AMD CPU is perfect and around 100 dollars US. It fits nicely into a mini or
micro motherboard combined with a moderately decent supply of RAM, say around 8 GB and a standard SATA hard
drive of 500 GB to 1TB, and you have a perfect platform. A graphics card is on no consequence. Money would be
better spent on memory or a nice Ethernet card as this equipment is designated to be a powerful, secure server, not a
desktop PC.

This is the official Ubuntu server download URL for the latest 64 bit distribution. You can adjust it accordingly for
desktop and or 32 bit distributions as you see fit by altering distro=desktop, or bits=32 as is demonstrated by the
second URL.

Ubuntu 64 bit Sever URL

http://www.ubuntu.com/download/server/thank-you?distro=server&bits=64&release=latest

Ubuntu 32 bit Desktop URL

http://www.ubuntu.com/download/server/thank-you?distro=server&bits=64&release=latest

http://www.ubuntu.com/download/server/thank-you?distro=desktop&bits=32&release=latest

This step is perhaps the easiest of all steps within the book as it has been proven and improved upon so many times
it is nearly flawless. One note worth mentioning is that the 64 and 32 bit versions of the Ubuntu downloads fit rather
nicely on a single 800 MB CD. Using the tool “cdrecord” from a Linux command line passing in the ISO image
downloaded file name creates an easy and very fast mechanism for installation. If you do not yet have a Linux
environment, simply burn the ISO IMAGE to a CD or conversely write it to a USB stick using one of a plethora of
available tools like unetbootin.

Here is an excellent resource for installing Linux from a Live CD. It is really a very simple process that can be
repeated as many time as you wish. https://help.ubuntu.com/community/Live CD

These are the basic steps to most Live CD installations:
● •The Welcome Screen
● •Choose the Keyboard
● •Set the Locale and System Time
● •Set up and Partition the Hard Drive
● •Create the Primary Users and Passwords
● •Installation Overview
● •Install the Operating System
● •Install the BOOT Loader
● •Finish the Installation
● •Reboot the Computer

Following are instructions in detail for the patient participants.
If the computer currently has important files, then backup the files to a separate storage unit like a USB external

hard-drive. Once you feel the computer's hard-drive can be erased without regrets, place the Ubuntu installation disc
in the disc tray. The live disc will boot-up and a desktop will be seen. Soon, the system installer will appear with the
option to "Try Ubuntu" or "Install Ubuntu". On the side, the language can be chosen. Trying Ubuntu allows users to
try out the system or perform recovery on the system already on this computer. Please choose Install Ubuntu.

Next, click the timezone of your location or type it in the box.

The following window allows users to setup their keyboard type and layout. A text box is provided for testing.

In the next window, the user will type their name, the hostname, username, and password. The user can also choose

http://www.ubuntu.com/download/server/thank-you?distro=desktop&bits=32&release=latest
http://sourceforge.net/projects/unetbootin
https://help.ubuntu.com/community/LiveCD

to encrypt their home folder. Also, they can setup the system to automatically log in using that username. The
installer will then install the system. This can take some time, so read more cool articles on Linux.org while this
installs.

Once the installation is complete, remove the installation disc and click "Restart Now" on the new window.

We continue by erasing the contents of the disk, and partitioning the hard drive for the operating system. A partition
is like cutting up a pizza into slices with one exception. Some slices are very much larger than others. Normal
“slices” or partitions are as follows:
/ is the slash or root partition. This is where most of the OS will reside.

/boot is the boot partition and within this slice the kernel or the Linux OS and all necessary boot strap data and
executable files will reside.

SWAP is memory on disk and is used as an exhaustive measure of last resort. RAM is swapped to SWAP, and is
very undesirable as disk is millions, of not billions of times slower that memory.

/home is where the heart is at. This is where our own personal files reside, like for example our downloaded data
files.

/var is a partition that is particularly important to us as this is where the Apache www-ssl files for our application
will reside.

It is a best practice to over partition the “/” root and /var partitions when setting up a server environment. The
/home is not as relevant, so to speak, as compared to a Desktop installation.

Select the desired storage device and click "New Partition Table". Then, click some free space and press the "+"
button. In the new window, make the needed . If there is still more free space, repeat the process. This window will
allow users to choose a and the mount point. The mount point is the directory that will be attached to this partition.
For example, users may want /home/ and /var/ each on a separate partition from /. Unless the user has a specific
need, the partitions should be made EXT4. Make sure some space is left for the swap space. To make swap space,
set the file system type to swap. Generally, swap space should be twice the size of the current available memory. For
better performance, make the swap space two partitions, each the size of the current memory.

Once finished, click "Install Now".

For those of you that do not understand partition encryption, it is a privacy measure. Assume this computer contains
private data for a business or hospital. If the computer is ever stolen and the hard-drive is placed in another
computer, the data cannot be seen. However, this does not protect the data from being deleted or formatted.

LVM stands for Logical Volume Manager. LVM allows a set of hard-drives to be divided into logical volumes
instead of physical partitions. A user could have three 2-terabyte hard-drives. With LVM, the user could make two
logical volumes each three TB terabytes. The logical volumes allow partitions to be made that span multiple
physical hard-drives.

Boot-up the system and make sure all of your devices work properly. You can then configure the system to your
liking and install your needed applications.
Chapter Summary
If you do not know anything about UNIX this is a good starting point:

 http://www.dummies.com/store/Computers-Internet/Operating-Systems/Linux.html
When on a Linux server to record a CD from an ISO image simply use cdrecord from the command line as

“cdrecord isofile.iso.”
Creating a USB or a boot-able CD using a GUI from Windows or Linux use: unetbootin.
Look on the Internet for on line information like this: http://www.youtube.com/watch?v=GhnLk3gviWY
If you install the Ubuntu Server and would like to convert it to a Desktop.
sudo apt-get install tasksel

sudo tasksel

Here is an excellent resource for delving deeper into logical and physical volumes while planning your disk layout.
1. http://www.geekpeek.net/lvm-physical-volume-management/

2. http://www.geekpeek.net/lvm-volume-group-management/

3. http://www.geekpeek.net/lvm-logical-volume-management
Additionally, there is a LVM shell script written specifically for LVM management. It is necessary to boot into

single user mode in order to manage volumes while it is best practice to work directly from the console of the
computer. To boot into single user mode issue “init 1.”
http://geekpeek.net/download/lvm-management-v01.sh
Most important IMHO would be the disk layout. Certainly utilizing LVM is the way to go. Partitioning separate

LVMs for root, boot, usr, home, var, tmp, and of course SWAP space is preferable. More space is better than not
enough. Though LVM. MySQL, and Linux in general provide adequate resources for resizing “partitions,” it is
better to over think your needs. MySQL's datadir defaults to /var. This is going to be our main partition. On a 1 TB

http://www.dummies.com/store/Computers-Internet/Operating-Systems/Linux.html
http://unetbootin.sourceforge.net/
http://www.youtube.com/watch?v=GhnLk3gviWY
http://www.geekpeek.net/lvm-physical-volume-management/
http://www.geekpeek.net/lvm-physical-volume-management/
http://www.geekpeek.net/lvm-volume-group-management/
http://www.geekpeek.net/lvm-volume-group-management/
http://www.geekpeek.net/lvm-logical-volume-management/
http://geekpeek.net/download/lvm-management-v01.sh

disk, I would consider allocating 250 – 300 GB, ¼ or more of your resources to this partition alone. For the “/”
partition, I would recommend 100 GB. The remaining partitions are not as important, and with a 2 GB swap which
we hope to never use, the remainder can be divided rather equally.
When installing the operating system, choose defaults avoiding any 3rd party software. Do not install MySQL,

Apache, or other sub categories, as these will be downloaded and installed separately in later sections. For example
to harden Apache it really should be downloaded and compiled locally removing unwanted and unnecessary code.
So it is wisest to select most defaults while avoiding 3rd party software add-ons. It is also very likely that there will be
more than one installation of this application, as indicated previously. It may be best to prototype on a smaller
machine, then install into production once all of the learning curves are overcome.

Chapter 2 The Prerequisites
Step Two prepare the base Linux Operating System

Conflicts and controversy

Updating the operating system and applying the required packages for the array of applications that encompass this
technology is generally a controversy, while most definitely introduces operating system conflicts. These conflicts
are often resolved by the OS automatically, however installing the packages necessary to fulfill all of the necessary
prerequisites is sometimes a juggling act at best. This is why we start with a known operating system base and work
our way up from there. What works on a particular Ubuntu distribution may or may not work in a similar fashion on,
say Debian, while it most likely will not be the same on CentOS, and so on. It is important to start out on a solid
foundation. This is why we have chosen the latest distribution of the Ubuntu Server, or the Ubuntu Desktop.
"In the beginning there was the .tar.gz. Users had to compile each program that they wanted to use on their GNU/Linux

systems. When Debian was created, it was deemed necessary that the system include a method of managing the packages
installed on the machine. The name dpkg was given to this system. Thus the famous 'package' first came into being on
GNU/Linux, a while before Red Hat decided to create their own 'rpm' system.

A new dilemma quickly took hold of the minds of the makers of GNU/Linux. They needed a rapid, practical, and efficient way
to install packages that would manage dependencies automatically and take care of their configuration files while upgrading.
Here again, Debian led the way and gave birth to APT, the Advanced Packaging Tool, which has since been ported by
Conectiva for use with rpm and has been adopted by some other distributions."

-- From Debian APT HOWTO

All prerequisite packages will be installed within this step alleviating the pain of having to upgrade and install

additionally required packages as we progress through the steps. This step may take some time to complete.
However it is best to get this done prior to continuing. It is a necessary component. In an attempt to upgrade and
install all the necessary prerequisite components, not only for MPOS, but for ALL of the applications, the list of

packages may appear to be rather daunting. On a typical server, though it should be no more than half an hour to
complete this step.

We will be using the Debian package manager, and the counter part “apt-get”. All commands will be performed
with sudo, Super User Do. Please note that if you are running on a Debian platform, and not Ubuntu, then you may
need to su as the root user and issue this command substituting your user id for youruserid: echo 'youruserid

ALL=(ALL) ALL' >> /etc/sudoers.

Scripted approach

The script for this step is “step_1_os_prerequisites.sh”. As stated this is a prerequisite step that requires root
access in order to make the necessary and appropriate changes to the operating system. Her we will break the script
down into its components.

Update the Operating System to grab the latest OS patches, security updates, etc. form the manufacturer.
sudo apt-get -y update

Upgrade the Operating System to upgrade the package versions where applicable from the manufacturer, and their
recommendations.
apt-get -y upgrade

Install the general packages. These are the packages that most every other software installation relies on.
sudo apt-get -y install git wget build-essential

Install the wide prerequisite packages. These packages span multiple applications. That is to say that very many of
the application we will be installing depend on these as a base.
sudo apt-get -y install libboost-all-dev libcurl4-openssl-dev libdb5.1-dev libdb5.1++-dev
mysql-server

It is during this installation phase that the MySQL server is installed. This is an interactive installation which asks
us for our MySQL root access password. Please respond with your desired password, however, jot this down as it
will be very important in future tasks. Changing the root password in MySQL can be a rather tedious task, so please
keep this in mind. When presented with the following screen, or similar facsimile, enter your MySQL root
password.

A validation screen will appear for the password validation. Validate the password, and make note of it for later

steps.

For the Stratum server, the meat so to speak, we require python, and all of its prerequisite packages. The Stratum is
the pooled interface to the coin daemon. Its main components are python, though there is a middle layer structure in
C.
sudo apt-get -y install python-twisted python-mysqldb python-dev python-setuptools
python-memcache python-simplejson python-pylibmc

The easy_install python utility provides a standard format for distributing Python programs and libraries based on
the Python Eggs wrapper. Eggs are analogous to jar files in Java.
easy_install -U distribute

If after the initial easy_install distribute your easy_install ceases to operate, it is very likely that more than one
version exists. The correct easy_install should be in your path as the following commands show.
steven@steven-M275:~/mpos$ which easy_install

/usr/bin/easy_install

steven@steven-M275:~/mpos$ sudo /usr/bin/easy_install -U distribute

Executing other versions of easy install is not recommended. Please use the /usr/bin/easy_install from this point
forward if and when appropriate.

MPOS specific requirements include the PHP application, and Apache 2.
sudo apt-get -y install memcached apache2 php5 php5-memcached php5-mysqlnd php5-curl
php5-common php5-json libapache2-mod-php5

It should now be possible to open a browser to your IP address, or to 127.0.0.1 via the non secure http port 80.
Opening a browser and navigating to http://127.0.0.1 should present the following result.

It works!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

The complete script: step_1_os_prerequisites.sh
#!/bin/bash -

#title :dogon_--_mpos_automation.sh

#description :Step 01 -- Install the prereqs

#author :SJmariogolf

#date :20140401

#version :0.0-1

#notes :

#bash_version :4.2.45(1)-release

#==

H=`hostname -i`

http://en.wikipedia.org/wiki/Library_%28computing%29
http://127.0.0.1/

runyesorno(){

if ["${1}"] ; then

 yesorno="n"

 read -p "Inform: Would you like to run this step? [${2}/${1}] Enter y/n (n)? "
yesorno

 case "$yesorno" in

 y*|Y*) ${1};;

 n*|N*) echo "Skipped";;

 esac

fi

return 0

}

#-- general prereqs

runyesorno "sudo apt-get -y update" "Update the base OS."

runyesorno "sudo apt-get -y upgrade" "Upgrade the base OS."

runyesorno "sudo apt-get -y install git wget build-essential openssh-server" "General
prereqs."

#-- coin daemon prereqs

runyesorno "sudo apt-get -y install libboost-all-dev libcurl4-openssl-dev libdb5.1-dev
libdb5.1++-dev qt4-qmake libqt4-dev autoconf automake mysql-server" "Wide prereqs."

#-- stratum prereqs

runyesorno "sudo apt-get -y install uuid-runtime python-twisted python-mysqldb python-dev
python-setuptools python-memcache python-simplejson python-pylibmc" "Python specific
prereqs."

runyesorno "sudo easy_install -U distribute" "Distribute the python eggs."

#-- mpos and apache

runyesorno "sudo apt-get -y install memcached apache2 php5 php5-memcached php5-mysqlnd
php5-curl php5-common php5-json libapache2-mod-php5" "MPOS and apache 2."

Chapter 3 The Coin Daemon and QT Client
Step Three download, compile and execute the coin daemon

Daemons and clients

In multitasking computer operating systems, a daemon (/ˈdeɪmən/) is a computer program that runs as a
background process, rather than being under the direct control of an interactive user. Traditionally daemon names
end with the letter d: for example, syslogd is the daemon that implements the system logging facility and sshd is a
daemon that services incoming SSH connections.

Two compilation processes are involved with each of the coin methods chosen. One compile is for the daemon
process, and the other is for the client. The daemon process, and the client process cannot execute simultaneously.
Under normal circumstances we will be executing the daemon process, devoid of the client. The client process can
execute as a server, or daemon process by passing the -server flag as an executable option, however we will not be
using it in that manner. It is the daemon process we are mainly interested in, but will be compiling both the daemon
and client processes.

The daemon process performs two IMPORTANT functions.

ONE It downloads the block chain, and for Litecoin this is approximately ½ million records. This of course takes
some time to accomplish. Perhaps one half of a day. With Bitcoin it may take 2 and a half days to normalize. We
cannot proceed on without the daemon process up to date and normalized. There is a test network block chain that is
quite a bit smaller and we can use it to test with, but for mining of actual coins we require a normalized coin
daemon. Much more information exists specific to the daemon process and commands to determine its processing
state. The purveyor of a production mining site becomes very familiar with the daemon and its interaction.

TWO The daemon creates DEFAULT wallet information and selects a DEFAULT coin address. This address is
LOCAL to this establishment and this wallet. No other addresses are relevant at this juncture. We will locate this
default address and take special note of it throughout this book. However, this is very IMPORTANT as this is “the
address,” and it is OUR address. It is the definitive address we will be using from this time forward with this

http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Help:IPA_for_English
http://en.wikipedia.org/wiki/Help:IPA_for_English#Key
http://en.wikipedia.org/wiki/Help:IPA_for_English
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Background_%28computer_software%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Syslogd
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell

particular installation. We will make note of this on several occasions. For now it is enough just to keep this in mind.

For the sake of consistency we will begin with a proven technology. That is Litecoin. The Litecoin daemon and
client processes are known to compile and execute correctly and as such make for a perfect first installation. Later in
this book we will switch to an alternative coin, and at this juncture it is noteworthy to mention that the Bitcoin is
also an excellent coin. Alternative coins are alternative for a reason, and may or may provide support or
interoperability. Litecoin works consistently and for this reason alone, let us begin with Litecoin.

Let us begin by ensuring we are not root, rather we are logged in to our server using a normal login. Mine is steven.
All users have a $HOME environment variable that is normally /home/username, where username is in my case
steven. We should change directory to $HOME prior to downloading or installing any software. Generally I work
out of /home/steven/workspace, but in any event we should relocate to $HOME, and it would be a good idea to
create a folder, or in UNIX terms, a directory entitled mpos.

Make the directory mpos.
mkdir $HOME/mpos

Using the git process now download the Litecoin software.
git clone git://github.com/litecoin-project/litecoin.git

 Using qmake, make the make file for the QT-Client.
cd $HOME/mpos/litecoin

qmake bitcoin-qt.pro

make

sudo cp litecoin-qt /usr/bin

#-- create the $HOME/.litecoin/litecoin.conf

mkdir -p $HOME/.${COIN}

COIN=”litecoin”

MyCUser=${COIN}rpc

MyCPasswd=`uuidgen -r`

cat << EOF > ${HOME}/.${COIN}/${COIN}.conf

server=1

rpcuser=$MyCUser

rpcpassword=$MyCPasswd

rpcallowip=127.0.0.1

EOF

#-- start the daemon

litecoind -daemon

Now we wait and watch the daemon process the block chain. We can see the progress by tailing the debug.log file

within the $HOME/.litecoin directory. Another way to check the progress is by issuing these commands.
litecoind getinfo

litecoind help

Managing the coin daemon

This is a good opportunity to discuss the coin daemon process in general, the directory, debug.log file, commands,
wallet, etc. as the process to populate the coin data base can be rather time consuming. Performing a google search,
one can determine the normalized block count of most any coin, and by performing the correlative coin command.
In our case “litecoind getinfo”. We look for the correct block count using the Internet, then correlate this count
against the results of our get info command. In general I have found that the Bitcoin, for example may require up to
two days to normalize. It is also possible to backup, or simply securely copy the block chain from another server as
long as the coin daemon is stopped on the sending server.

The directory that contains the daemon and client data is generally, and by default contained within your $HOME
directory as a “.” dot notated, hidden directory of the same, or similar name as the coin. For example
/home/spiderman/.litecoin. That is, of course if your login to the Linux server happens to be spiderman. It is also
possible to redirect this data directory using a command line argument passed to the daemon at startup.
“-datadir=<dir>.” This argument will specify a new target data directory that you must adhere to if and whenever it
is altered.

Within the directory structure these directories and files are created and maintained by the daemon. For example.
steven@steven-M275:~/mpos$ cd ~/.litecoin/

steven@steven-M275:~/.litecoin$ ls

blocks chainstate database db.log debug.log litecoin.conf litecoind.pid peers.dat
 wallet.dat

A couple of file worthy of pointing out here are the debug.log, and of course our wallet. The debug. The debug.log
file is nice to tail, as it will indicate progress in our block chain download, errors, peer addresses and the like.

The wallet.dat is fundamental. The first and perhaps foremost command is to determine the default wallet account
for this installation. To do this we enter the command to display the default address as: “litecoind
getaddressesbyaccount "" ”. This command, combined with another display, as in our case: “litecoind
validateaddress LUZ8btg3Sp00f3d3p4p6bgAKGbv7KCunSh6” shows us as indicated below that this is our
address and that it is local, and ismine is true. This indicates that this address is in our wallet, and is validly our
address. Other addresses, even existing ones are not valid to this particular wallet. That is to say, we can copy and
replace our new wallet.dat file with an existing one from another server, but we cannot simply add existing
addresses into this wallet and expect renumeration. Old and existing addresses belong to an altogether different
wallet. This is a rather important concept, because as we mine, we may even solve a block. When this happens, we
also would like the rewards to be placed into an account whereby we actually have a valid address and this valid
address is actually ours. I hope this is clear.

steven@steven-M275:~/.litecoin$ litecoind getaddressesbyaccount ""

[

 "LUZ8btg3Sp00f3d3p4p6bgAKGbv7KCunSh6"

]

steven@steven-M275:~/.litecoin$ litecoind validateaddress
LUZ8btg3Sp00f3d3p4p6bgAKGbv7KCunSh6

{

 "isvalid" : true,

 "address" : "LUZ8btg3Sp00f3d3p4p6bgAKGbv7KCunSh6",

 "ismine" : true,

 "isscript" : false,

 "pubkey" : "037ac449e3bb196fdd7c31e94Sp00f3da2a75778cf98eb51415367e7b9b7e915c9",

 "iscompressed" : true,

 "account" : ""

}

This is a more complete description of the key, value, pairs returned from the getinfo coind daemon command. An
explanation of the meaning of the fields given by 'getinfo' :

version - The version number of this bitcoin-qt or bitcoind program itself. Both of are equivalent. -qt is simply the
graphical user interface version

protocolversion: The version of the bitcoin network protocol supported by this client (user agent software).

walletversion: The version of the wallet.dat file. Wallet.dat contains bitcoin addresses and public & private key
pairs for these addresses. There is additional data on the wallet. Care must be taken to not restore from an old wallet
backup. New addresses generated in the wallet since the old backup was made will not exist in the old backup!
Source: https://en.bitcoin.it/wiki/Wallet

balance: The total number of bitcoins held in the wallet.dat file.

blocks: The total number of blocks which constitute the shared block chain.

timeoffset: Seconds of difference between this node's "wall clock time" and the median reported by our network
peers.

connections: the number of peers on the bitcoin P2P network that this node is connected to.

proxy: If using a proxy to connect to the network, listed here, otherwise blank.

difficulty: the current mining difficulty factor. Difficulty is increased as more miners and more hash compute
power compete to be the next one to have a block of transactions added to the blockchain.

testnet: Boolean value (true OR false). There is a parallel bitcoin network, the testnet, where trials and experiments

https://en.bitcoin.it/wiki/Wallet

may be carried out without impacting the official, live bitcoin P2P network

keypoololdest: timestamp (UNIX epoch) of the oldest key in the keypool

keypoolsize: A number of addresses are kept in reserve by the client. This is the size of that reserve.

paytxfee: Specifies what fee the client is willing to pay to expedite transactions. Miners may choose to ignore
transactions that do not pay a fee, and these fee-less transactions will have low priority on queue of pending
transaction and may linger there for hours.

To determine if your coin daemon is receiving up to date blocks, and is, if you will, fully normalized data. We
can edit or otherwise, less, more, cat, etc. the $HOME/.coindaemon/debug.log, looking backwards from the bottom
of the file seeking the word “block.” When we find a block received, we can copy this block identifier, and issue the
coin daemon command getblock. We then inspect the time which is a epoch tic. To show the date in your time zone
in a human readable form, enter this Linux shell command: date -d @1396530101 – Thu Apr 3 09:01:41 EDT

2014, passing the time epoch derived from the getblock command. A recent date and time, say within the last half
hour pretty much assures us that the daemon is operating properly and is up to date.

2014-04-03 13:03:51 received block 34068d985edc4a3e1d671ef1cd503e75945e6917bfc8f9eaee7924b61201ec7a

litecoind getblock 34068d985edc4a3e1d671ef1cd503e75945e6917bfc8f9eaee7924b61201ec7a

{

 "hash" : "34068d985edc4a3e1d671ef1cd503e75945e6917bfc8f9eaee7924b61201ec7a",

 "confirmations" : 1,

 "size" : 3474,

 "height" : 542979,

 "version" : 2,

 "merkleroot" : "360ae413cbe5f923ec29be77243d067926784f5fda50bc883f5f8be56cdab735",

 "tx" : [

 "7e15711460beb856bc814c3448b7811bf55bf02ad58353e01caba1a9826a6753",

 "c37a4c56644c0d9413b1cbca03d34b0d5e3a6f8715fe33f83bcf39ae3e988e95",

 "6c273f3624c259e42f1cebab6d9949634055f7417028c39b48f9658a8f5b6cd4",

 "1782d14e6a344f88f671ff63487a8c3581a323d31584490ab1ac7c335216451d"

],

 "time" : 1396530101,

 "nonce" : 1060738048,

 "bits" : "1b0b6796",

 "difficulty" : 5746.34909167,

 "previousblockhash" : "2f1accc500435e59ec56207ef4f46bd5ff98d4e3360b12b497b4340839ea4902"

}

date -d @1396530101

Thu Apr 3 09:01:41 EDT 2014

Two more, “fundamental commands” with coin daemons are: coindaemond help, which will display all of the
associative command parameters, and coindaemond –help, to display run time parameters and options. The daemon
name illustrated coindaemond in our case would be litecoind.
steven@steven-M275:~/.litecoin$ litecoind --help

Litecoin version v0.8.6.2-6-gf389e65-beta

Usage:

 litecoind [options]

 litecoind [options] <command> [params] Send command to -server or litecoind

 litecoind [options] help List commands

 litecoind [options] help <command> Get help for a command

Options:

 -? This help message

 -conf=<file> Specify configuration file (default: litecoin.conf)

 -pid=<file> Specify pid file (default: litecoind.pid)

 -gen Generate coins (default: 0)

 -datadir=<dir> Specify data directory

 -dbcache=<n> Set database cache size in megabytes (default: 25)

 -timeout=<n> Specify connection timeout in milliseconds (default: 5000)

 -proxy=<ip:port> Connect through socks proxy

 -socks=<n> Select the version of socks proxy to use (4-5, default: 5)

 -tor=<ip:port> Use proxy to reach tor hidden services (default: same as -proxy)

 -dns Allow DNS lookups for -addnode, -seednode and -connect

 -port=<port> Listen for connections on <port> (default: 9333 or testnet: 19333)

 -maxconnections=<n> Maintain at most <n> connections to peers (default: 125)

 -addnode=<ip> Add a node to connect to and attempt to keep the connection open

 -connect=<ip> Connect only to the specified node(s)

 -seednode=<ip> Connect to a node to retrieve peer addresses, and disconnect

 -externalip=<ip> Specify your own public address

 -onlynet=<net> Only connect to nodes in network <net> (IPv4, IPv6 or Tor)

 -discover Discover own IP address (default: 1 when listening and no -externalip)

 -checkpoints Only accept block chain matching built-in checkpoints (default: 1)

 -listen Accept connections from outside (default: 1 if no -proxy or -connect)

 -bind=<addr> Bind to given address and always listen on it. Use [host]:port notation for IPv6

 -dnsseed Find peers using DNS lookup (default: 1 unless -connect)

 -banscore=<n> Threshold for disconnecting misbehaving peers (default: 100)

 -bantime=<n> Number of seconds to keep misbehaving peers from reconnecting (default: 86400)

 -maxreceivebuffer=<n> Maximum per-connection receive buffer, <n>*1000 bytes (default: 5000)

 -maxsendbuffer=<n> Maximum per-connection send buffer, <n>*1000 bytes (default: 1000)

 -bloomfilters Allow peers to set bloom filters (default: 1)

 -paytxfee=<amt> Fee per KB to add to transactions you send

 -mininput=<amt> When creating transactions, ignore inputs with value less than this (default: 0.0001)

 -daemon Run in the background as a daemon and accept commands

 -testnet Use the test network

 -debug Output extra debugging information. Implies all other -debug* options

 -debugnet Output extra network debugging information

 -logtimestamps Prepend debug output with timestamp (default: 1)

 -shrinkdebugfile Shrink debug.log file on client startup (default: 1 when no -debug)

 -printtoconsole Send trace/debug info to console instead of debug.log file

 -rpcuser=<user> Username for JSON-RPC connections

 -rpcpassword=<pw> Password for JSON-RPC connections

 -rpcport=<port> Listen for JSON-RPC connections on <port> (default: 9332 or testnet: 19332)

 -rpcallowip=<ip> Allow JSON-RPC connections from specified IP address

 -rpcconnect=<ip> Send commands to node running on <ip> (default: 127.0.0.1)

 -rpcthreads=<n> Set the number of threads to service RPC calls (default: 4)

 -blocknotify=<cmd> Execute command when the best block changes (%s in cmd is replaced by block hash)

 -walletnotify=<cmd> Execute command when a wallet transaction changes (%s in cmd is replaced by TxID)

 -alertnotify=<cmd> Execute command when a relevant alert is received (%s in cmd is replaced by message)

 -upgradewallet Upgrade wallet to latest format

 -keypool=<n> Set key pool size to <n> (default: 100)

 -rescan Rescan the block chain for missing wallet transactions

 -salvagewallet Attempt to recover private keys from a corrupt wallet.dat

 -checkblocks=<n> How many blocks to check at startup (default: 288, 0 = all)

 -checklevel=<n> How thorough the block verification is (0-4, default: 3)

 -txindex Maintain a full transaction index (default: 0)

 -loadblock=<file> Imports blocks from external blk000??.dat file

 -reindex Rebuild block chain index from current blk000??.dat files

 -par=<n> Set the number of script verification threads (up to 16, 0 = auto, <0 = leave that
many cores free, default: 0)

Block creation options:

 -blockminsize=<n> Set minimum block size in bytes (default: 0)

 -blockmaxsize=<n> Set maximum block size in bytes (default: 250000)

 -blockprioritysize=<n> Set maximum size of high-priority/low-fee transactions in bytes (default: 27000)

SSL options: (see the Litecoin Wiki for SSL setup instructions)

 -rpcssl Use OpenSSL (https) for JSON-RPC connections

 -rpcsslcertificatechainfile=<file.cert> Server certificate file (default: server.cert)

 -rpcsslprivatekeyfile=<file.pem> Server private key (default: server.pem)

 -rpcsslciphers=<ciphers> Acceptable ciphers (default:
TLSv1+HIGH:!SSLv2:!aNULL:!eNULL:!AH:!3DES:@STRENGTH)
steven@steven-M275:~/.litecoin$ litecoind help

addmultisigaddress <nrequired> <'["key","key"]'> [account]

addnode <node> <add|remove|onetry>

backupwallet <destination>

createmultisig <nrequired> <'["key","key"]'>

createrawtransaction [{"txid":txid,"vout":n},...] {address:amount,...}

decoderawtransaction <hex string>

dumpprivkey <litecoinaddress>

encryptwallet <passphrase>

getaccount <litecoinaddress>

getaccountaddress <account>

getaddednodeinfo <dns> [node]

getaddressesbyaccount <account>

getbalance [account] [minconf=1]

getbestblockhash

getblock <hash> [verbose=true]

getblockcount

getblockhash <index>

getblocktemplate [params]

getconnectioncount

getdifficulty

getgenerate

gethashespersec

getinfo

getmininginfo

getnetworkhashps [blocks] [height]

getnewaddress [account]

getpeerinfo

getrawmempool

getrawtransaction <txid> [verbose=0]

getreceivedbyaccount <account> [minconf=1]

getreceivedbyaddress <litecoinaddress> [minconf=1]

gettransaction <txid>

gettxout <txid> <n> [includemempool=true]

gettxoutsetinfo

getwork [data]

getworkex [data, coinbase]

help [command]

importprivkey <litecoinprivkey> [label] [rescan=true]

keypoolrefill

listaccounts [minconf=1]

listaddressgroupings

listlockunspent

listreceivedbyaccount [minconf=1] [includeempty=false]

listreceivedbyaddress [minconf=1] [includeempty=false]

listsinceblock [blockhash] [target-confirmations]

listtransactions [account] [count=10] [from=0]

listunspent [minconf=1] [maxconf=9999999] ["address",...]

lockunspent unlock? [array-of-Objects]

move <fromaccount> <toaccount> <amount> [minconf=1] [comment]

sendfrom <fromaccount> <tolitecoinaddress> <amount> [minconf=1] [comment] [comment-to]

sendmany <fromaccount> {address:amount,...} [minconf=1] [comment]

sendrawtransaction <hex string>

sendtoaddress <litecoinaddress> <amount> [comment] [comment-to]

setaccount <litecoinaddress> <account>

setgenerate <generate> [genproclimit]

setmininput <amount>

settxfee <amount>

signmessage <litecoinaddress> <message>

signrawtransaction <hex string> [{"txid":txid,"vout":n,"scriptPubKey":hex,"redeemScript":hex},...]
[<privatekey1>,...] [sighashtype="ALL"]

stop

submitblock <hex data> [optional-params-obj]

validateaddress <litecoinaddress>

verifychain [check level] [num blocks]

verifymessage <litecoinaddress> <signature> <message>

To stop and start the daemon: coindaemon stop; coindaemon -daemon

The complete script: step_2_coin_daemon_and_client.sh
#!/bin/bash -

#title :dogon_--_mpos_automation.sh

#description :Step 01 -- Install the coin daemon and client

#author :SJmariogolf

#date :20140401

#version :0.0-1

#notes :

#bash_version :4.2.45(1)-release

#==

H=`hostname -i`

COIN='litecoin'

GITREPO="http://github.com/${COIN}-project/${COIN}.git"

QTPRO="bitcoin-qt.pro"

runyesorno(){

if ["${1}"] ; then

 yesorno="n"

 read -p "Inform: Would you like to run this step? [${2}/${1}] Enter y/n (n)? "
yesorno

 case "$yesorno" in

 y*|Y*) ${1};;

 n*|N*) echo "Skipped";;

 esac

fi

return 0

}

sub_make_coin_conf(){

mkdir -p $HOME/.${COIN}

MyCUser=${COIN}rpc

MyCPasswd=`uuidgen -r`

cat << EOF > ${HOME}/.${COIN}/${COIN}.conf

server=1

rpcuser=$MyCUser

rpcpassword=$MyCPasswd

rpcallowip=127.0.0.1

EOF

return 0

}

#-- make the mpos directory

runyesorno "mkdir -p $HOME/mpos" "Make the $HOME/mpos directory."

runyesorno "cd $HOME/mpos" "Change directory to $HOME/mpos."

runyesorno "git clone ${GITREPO}" "Download ${COIN}."

runyesorno "cd $HOME/mpos/${COIN}" "Change directory to $HOME/mpos/${COIN}."

runyesorno "qmake ${QTPRO}" "Run qmake for the client."

runyesorno "make" "Compile."

runyesorno "sudo cp ${COIN}-qt /usr/bin" "Copy the client to /usr/bin."

runyesorno "cd $HOME/mpos/${COIN}/src" "Change directory into the daemon source."

runyesorno "make -f makefile.unix USE_UPNP=-" "Make the daemon process."

runyesorno "sudo cp ${COIN}d /usr/bin" "Copy the daemon to /usr/bin."

runyesorno "cd $HOME/mpos" "Change directory to $HOME/mpos."

runyesorno "sub_make_coin_conf" "Make the coin conf file."

runyesorno "${COIN}d -daemon" "Start the daemon."

Chapter 4 taking a test drive with CPU Miner
At this juncture you can proceed to install a mining client or proceed on with the installation. However it takes

some time for the coin daemon to download its block chain and to normalize, so this is a good time to install a
mining client like cpuminer. The simplest way to install a cpuminer client miner is to use the Knary automation
freely available from github at git clone https://github.com/sjmariogolf/knary.git.

https://github.com/sjmariogolf/knary.git

To make use of the Knary mining setup tool you can follow these instructions, otherwise to manually install
cpuminer skip to the end of this chapter.
Automated Installation procedure
Change directory to HOME, or otherwise the directory within which to install Knary.
Install the Knary suite using one of the available methods as is depicted below. YOU MUST be on an active

network with access to the Internet.
git clone https://github.com/sjmariogolf/knary.git
Change into the Knary directory...
cd knary/

Execute the main script...
./knary_execution.sh

Prior to moving forward the application MUST install the “dialog” package. The dialog package is used by Knary
as the CUI (Command User Interface,) presenting screens similar in nature to any Linux installation.
 ./knary_execution.sh

Knary::, Sat Mar 01 2014 15:02:28 ,determine-os,16,root,Inform: LITTLE Endian\!

Knary::, Sat Mar 01 2014 15:02:28 ,determine-os,32,root,Inform: [Linux steven-Studio-1440
2.6.32-431.el6.i686 #1 SMP Fri Nov 22 00:26:36 UTC 2013 i686 i686 i386 GNU/Linux] I am a
RedHat or Clone.

dialog-1.1-9.20080819.1.el6.i686

Ok to proceed...

dialog-1.1-9.20080819.1.el6.i686

Disclaimer
This book and software is covered under a very open source license and is part of the GPL (Gnu public License)

and as such, it is FREE of liens, liabilities and reprisals. It is OPEN SOURCE. You may change it as you see fit. Re
distribution of the software however must include the name Knary and the Authors Name may NOT be removed
from the redistributed code. The programs included within are free and open source; the exact distribution terms for
each additional program are described in the individual files within their respective */copyright.
Knary comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
The disclaimer page

This page will be displayed once per Knary session execution.
The MAIN MENU

This is the main navigation menu.

1. 1.QUIT Return or Exit the application.
2. 2.CPU-MINING Navigate to the CPU Mining sub menu.

3. 3.GPU-MINING Navigate to the GPU Mining sub menu.
4. 4.ASICS-MINING Navigate to the ASICs Mining sub menu.
5. 5.BITCOIN Navigate to the BITCOIN sub menu.
6. 6.LITECOIN Navigate to the LITECOIN sub menu.
7. 7.STRATUM Navigate to the STRATUM sub menu.
8. 8.P2POOL Navigate to the P2POOL sub menu.
9. 9.MISC Navigate to the Miscellaneous sub menu.

Choose CPU-MINING to navigate to the CPU Mining sub menu.
Use the <Up/Down> arrow keys to highlight the desired line. Use the <Tab> key to move between <Ok> and

<Cancel>.
Select CPU-MINING, and <Ok>.

Viewing the Sub Menu for CPU Mining. From this menu both bfgminer, and cpuminer installation and
configuration can commence.
To INSTALL cpuminer, select CPU-INSTALL, and <Ok>.

Choose an installation path
Your actual installation path will depend on the user identification HOME environment variable. For instance if

your name is steven, this directory might me relative to /home/steven/exec. Each installation Knary performs creates
subordinate directories under this path. It is a good idea to leave this installation path as is. Not necessarily as it is
shown below, rather YOUR home directory/knary/exec. All executable files will be placed into their own sub
directories under exec. For cpuminer this will be HOME/knary/exec/cpuminer. Within this cpuminer sub directory
you will find the executable and configuration files specific to cpuminer.

The installation defaults to wherever you're starting path is + exec/.
The resulting software will be placed into directories BELOW the exec/ as say for example exec/cpuminer. Later in

this section we will be creating our own cpuminer configuration files. These files will also be placed into the
cpuminer sub directory for current and later use.
<Create> to continue. <Rename> to “change” the path to install, or otherwise <Cancel>.
Install prerequisite packages
The installer can choose whether or not to install certain prerequisite, packages, etc. This is a function of re

usability. To un-select, or select use the <Up/Down> arrow keys and the <Space> bar.

These have been determined to be the prerequisite packages necessary to boost the Operating System from “BARE
BONES” to where it needs to be to install and operate the Mining Software. Depending on your expertise … Install

or rather Not Install as you see fit.
<OK> continues <Cancel> returns to the previous menu.
Monitoring the prerequisite updates and installs

If all goes well with an “Active Internet” the OS will be updated, the prerequisite packages will be installed, and the
software for mining will be downloaded and installed. When software is installed (for example) cpuminer in it’s
distinct directory name (cpuminer-2.3.2) Knary will always link a symbolic (cpuminer) for navigation ease.
[root@steven-Studio-1440 exec]# ls -la

drwxr-xr-x. 5 root root 4096 Mar 1 15:51 .

drwxr-xr-x. 13 root root 4096 Mar 1 15:43 ..

lrwxrwxrwx. 1 root root 31 Feb 28 10:36 cpuminer -> /root/knary/exec/cpuminer-2.3.2

drwxr-xr-x. 4 1000 1000 4096 Mar 1 15:36 cpuminer-2.3.2

drwxrwxr-x. 6 1000 1000 4096 Feb 28 20:20 jansson-2.4

[root@steven-Studio-1440 exec]# pwd

/root/knary/exec

[root@steven-Studio-1440 exec]#

Testing

Testing starts cpuminer with defaults which simply insures a connection and proper installation. This screen depicts
proper installation and execution.
The test command used to invoke the cpuminer is as follows:
./minerd –url=http:freedom.wemineltc.com:3339 --userpass=sjmariogolf.1:peeb &

This command submits to the background a Test process, then when the enter key is pressed, the process is
Terminated.
For the complete syntax refer to the help offered by the author of cpuminer.
./minerd –help

This concludes the Automated Installation.
Manual Installation procedure
The manual installation process is a pretty straight forward procedure. We start by downloading cpuminer and

insuring we have all of the necessary prerequisite packages installed which we should have by now.
To build cpuminer from source code we will download its source code from its repository:
#!/bin/bash -

#title :dogon_--_mpos_automation.sh

#description :Step 03 -- Compile cpuminer

#author :SJmariogolf

#date :20140401

#version :0.0-1

#notes :

#bash_version :4.2.45(1)-release

#==

#-- make sure we have the prereqs

 sudo aptitude install git automake pkg-config gcc make

MINEREL="cpuminer-2.3.2"

SUBject="cpuminer"

myinstalloc=${HOME}/mpos

CFLAGS="-O3"

cd ${myinstalloc}

#-- wget the source code, it is the best way

wget http://sourceforge.net/projects/cpuminer/files/pooler-${MINEREL}.tar.gz

tar vxzf pooler-${MINEREL}.tar.gz

ln -s ${myinstalloc}/${MINEREL} ${myinstalloc}/${SUBject}

compile it ourselves

cd ${myinstalloc}/${SUBject}

./configure CFLAGS="${CFLAGS}"

make clean

make

sudo make install

sudo ldconfig
Launch minerd program:

By default it mines using scrypt algorithm:

./minerd -o http://127.0.0.1:19333 -u rpcuser -p rpcpasswd

The rpc getwork user and password exist within the coindaemon.conf file under your $HOME/.litecoin directory, in
our case this is the litecoin.conf. Within this conf file there is an rpcuser and an rpcpassword. For now, these will be
used for testing suing the getwork ports of 9332.

Example:
cat ~/.litecoin/litecoin.conf

server=1

rpcuser=litecoinrpc

rpcpassword=0f2ab171-35de-4SP00f3d-0-9b582244b7dd

rpcallowip=127.0.0.1

./minerd -o 127.0.0.1:9332 -u litecoinrpc -p 0f2ab171-35de-4SP00f3d-0-9b582244b7dd

[2014-04-02 12:20:46] 1 miner threads started, using 'scrypt' algorithm.

[2014-04-02 12:20:49] thread 0: 4096 hashes, 1.37 khash/s

[2014-04-02 12:20:54] thread 0: 6856 hashes, 1.40 khash/s

...

Chapter 5 divide and conquer the Stratum Proxy
Enter Stratum

Stratum is an overlay network on the top of coin daemon P2P protocol, creating simplified facade for lightweight
clients and hiding unnecessary complexity of decentralized protocol. However there’s much bigger potential in this
overlay network than just providing simplified API for accessing blockchain stored on Stratum servers. For
utilization of such potential, we definitely need some robust protocol providing enough flexibility for various type of
clients and their purposes.

In the previous chapter we established a mining client cpuminer. We also mined with this client solo, processing the
9332 TCP port. Using this approach it is unlikely that we will ever reach the target minimum network hash required
for any given blockchain, conversely what we require is a proxy. The proxy is just that. It is a proxy between us and
the network, varying the difficulty to be accepted into the “mining pool,” so to speak. The variable difficulty
presented by the proxy varies the network difficulty allowing a low enough difficulty that we are actually able to
participate.

Having this process automated and scripted gives it the appearance of being a simple process. I assure you that it is
not as simple and straight forward as it seems. For this reason I would like to pay homage to the many individuals
and many more, countless hours spent developing this wonderful application suite we are delving into here now. So
let us install the Stratum proxy.

As we are currently working with Litecoin we will download the litecoin scrypt code as well as the stratum core
and proxy. Prior to using github.com, we have to insure we have all of the necessary prerequisite packages. By this

point, we should be good to go, however it is best to include such prerequisite coding.

Install the prerequisites and update.
sudo apt-get install python-twisted python-mysqldb python-dev python-setuptools
python-memcache python-simplejson python-pylibmc

sudo /usr/bin/easy_install -U distribute

Now download the python scrypt library, the stratum core, and the stratum mining proxy into your $HOME/mpos
directory. A note here, is that it is good to work out of a single directory like mpos. This consolidates the sub
directories and files within one “folder.” The following code with download the necessary files into their proper sub
directories.
cd $HOME/mpos

git clone https://github.com/Tydus/litecoin_scrypt.git

git clone https://github.com/ahmedbodi/stratum-mining.git

git clone https://github.com/ahmedbodi/stratum.git

The resulting sub directory structure should resemble something akin to the structure below.
cpuminer cpuminer-2.3.2 litecoin litecoin_scrypt pooler-cpuminer-2.3.2.tar.gz stratum

stratum-mining

Now continue with the initialization, setup and on to configuration.
cd $HOME/mpos/stratum-mining

git submodule init

git submodule update

cd $HOME/mpos/stratum-mining/externals/litecoin_scrypt

sudo python setup.py install

cd $HOME/mpos/stratum-mining/externals/stratum

sudo python setup.py install

Next configure the Stratum proxy by adjusting the $HOME/stratum-mining/config/config.py file. There is not a lot
of information out there on this file. It really is kind of a guessing game, and learn by trial and error. However, by
reading this book, your already one up because a lot of the leg work has already been done. A working configuration
file in its entirety is below. There are a few parameters that require explanation.

First and foremost is the CENTRAL_WALLET. This is your address, and is the address of this installation of the
litecoin daemon. Unless you replaced the wallet.dat, this is your address. We find the wallet address and validate it
using these two commands: litecoind getaccountaddress "", and litecoind validateaddress. Make sure the isvalid is
true, and the ismine is true. Otherwise you'll not be mining into your wallet. Maybe someone else's, but certainly not

yours.
 CENTRAL_WALLET = 'This is YOUR wallet address'

Next is the TRUSTED_USER and TRUSTED_PASSWORD. These values we derive directly form the
$HOME/.litecoin/litecoin.conf file. Make sure to place all values inside of single quotes.
LITECOIN_TRUSTED_USER = 'litecoinrpc'

LITECOIN_TRUSTED_PASSWORD = 'ed9e9c60-b7d1-408c-8200-sp00f3d18ad5'

This entire file after modifying the above parameters is at best a good starting point for the config.py file within the
stratum-mining/conf directory. Additionally at the bottom of this file you may want to replace the email addresses
with your email address. So copy this file and place it as the config.py file within the
$HOME/mpos/stratum-mining/conf directory. Copy only the lines in currier font. A holistic version of the config.py
exists at the end of this chapter. With the minor changes indicated above, it is ready for deployment into a test
network.

The entire config.py file start ...
'''

This is example configuration for Stratum server.

Please rename it to config.py and fill correct values.

This is already setup with sane values for solomining.

You NEED to set the parameters in BASIC SETTINGS

'''

******************** BASIC SETTINGS ***************

These are the MUST BE SET parameters!

LITECOIN_ALGO = 'scrypt'

LITECOIN_Reward = 'POW'

LITECOIN_TX = 'no'

CENTRAL_WALLET = 'LXwArgiagu9Sp00f3d4uaR7g4be7UZcyk' # local bitcoin address where money goes

LITECOIN_TRUSTED_HOST = 'localhost'

LITECOIN_TRUSTED_PORT = 9332

LITECOIN_TRUSTED_USER = 'litecoinrpc'

LITECOIN_TRUSTED_PASSWORD = 'ed9e9c60-sp00f-4u2c-8200-7e3b83818ad5'

******************** BASIC SETTINGS ***************

Backup Litecoind connections (consider having at least 1 backup)

You can have up to 99

#LITECOIN_TRUSTED_HOST_1 = 'localhost'

#LITECOIN_TRUSTED_PORT_1 = 8332

#LITECOIN_TRUSTED_USER_1 = 'user'

#LITECOIN_TRUSTED_PASSWORD_1 = 'somepassword'

#LITECOIN_TRUSTED_HOST_2 = 'localhost'

#LITECOIN_TRUSTED_PORT_2 = 8332

#LITECOIN_TRUSTED_USER_2 = 'user'

#LITECOIN_TRUSTED_PASSWORD_2 = 'somepassword'

******************** GENERAL SETTINGS ***************

Enable some verbose debug (logging requests and responses).

DEBUG = False

Destination for application logs, files rotated once per day.

LOGDIR = 'log/'

Main application log file.

LOGFILE = "stratum.log" # eg. 'stratum.log'

Possible values: DEBUG, INFO, WARNING, ERROR, CRITICAL

LOGLEVEL = 'INFO'

Logging Rotation can be enabled with the following settings

It if not enabled here, you can set up logrotate to rotate the files.

For built in log rotation set LOG_ROTATION = True and configure the variables

LOG_ROTATION = True

LOG_SIZE = 10485760 # Rotate every 10M

LOG_RETENTION = 10 # Keep 10 Logs

How many threads use for synchronous methods (services).

30 is enough for small installation, for real usage

it should be slightly more, say 100-300.

THREAD_POOL_SIZE = 300

Disable the example service

ENABLE_EXAMPLE_SERVICE = False

GW_ENABLE = False

******************** TRANSPORTS *********************

Hostname or external IP to expose

HOSTNAME = 'steven-Studio-1440'

Port used for Socket transport. Use 'None' for disabling the transport.

LISTEN_SOCKET_TRANSPORT = 3333

Port used for HTTP Poll transport. Use 'None' for disabling the transport

LISTEN_HTTP_TRANSPORT = 3334

Port used for HTTPS Poll transport

LISTEN_HTTPS_TRANSPORT = None

Port used for WebSocket transport, 'None' for disabling WS

LISTEN_WS_TRANSPORT = None

Port used for secure WebSocket, 'None' for disabling WSS

LISTEN_WSS_TRANSPORT = None

Salt used when hashing passwords

PASSWORD_SALT = '087c2894-db34-4ae7-a090-be566a926b2c'

******************** Database *********************

MySQL

DATABASE_DRIVER = 'mysql'

DATABASE_EXTEND = False

DB_MYSQL_HOST = 'localhost'

DB_MYSQL_DBNAME = 'mpos'

DB_MYSQL_USER = 'root'

DB_MYSQL_PASS = '6a46d66p'

******************** Adv. DB Settings *********************

Don't change these unless you know what you are doing

DB_LOADER_CHECKTIME = 15 # How often we check to see if we should run the loader

DB_LOADER_REC_MIN = 1 # Min Records before the bulk loader fires

DB_LOADER_REC_MAX = 50 # Max Records the bulk loader will commit at a time

DB_LOADER_FORCE_TIME = 300 # How often the cache should be flushed into the DB regardless of size.

DB_STATS_AVG_TIME = 300 # When using the DATABASE_EXTEND option, average speed over X sec

 # Note: this is also how often it updates

DB_USERCACHE_TIME = 600 # How long the usercache is good for before we refresh

******************** Pool Settings *********************

User Auth Options

USERS_AUTOADD = False # Automatically add users to db when they connect.

 # This basically disables User Auth for the pool.

USERS_CHECK_PASSWORD = False # Check the workers password? (Many pools don't)

Transaction Settings

COINBASE_EXTRAS = '/stratumPool/' # Extra Descriptive String to incorporate in solved blocks

ALLOW_NONLOCAL_WALLET = True # Allow valid, but NON-Local wallet's

Litecoind communication polling settings (In Seconds)

PREVHASH_REFRESH_INTERVAL = 5 # How often to check for new Blocks

 # If using the blocknotify script (recommended) set = to MERKLE_REFRESH_INTERVAL

 # (No reason to poll if we're getting pushed notifications)

MERKLE_REFRESH_INTERVAL = 60 # How often check memorypool

 # This effectively resets the template and incorporates new transactions.

 # This should be "slow"

INSTANCE_ID = 31 # Used for extranonce and needs to be 0-31

******************** Pool Difficulty Settings *********************

Again, Don't change unless you know what this is for.

Pool Target (Base Difficulty)

POOL_TARGET = 1 # Pool-wide difficulty target int >= 1

VDIFF_TARGET = 30 # Target time per share (i.e. try to get 1 share per this many seconds)

VDIFF_RETARGET = 300 # Check to see if we should retarget this often

******************** Pool Difficulty Settings *********************

VDIFF_X2_TYPE = True # powers of 2 e.g. 2,4,8,16,32,64,128,256,512,1024

VDIFF_FLOAT = True # Use float difficulty

Pool Target (Base Difficulty)

POOL_TARGET = 32 # Pool-wide difficulty target int >= 1

Variable Difficulty Enable

VARIABLE_DIFF = True # Master variable difficulty enable

Variable diff tuning variables

#VARDIFF will start at the POOL_TARGET. It can go as low as the VDIFF_MIN and as high as min(VDIFF_MAX or
Litecoin's difficulty)

USE_LITECOIN_DIFF = False # Set the maximum difficulty to the litecoin difficulty.

DIFF_UPDATE_FREQUENCY = 86400 # Update the litecoin difficulty once a day for the VARDIFF maximum

VDIFF_MIN_TARGET = 16 # Minimum Target difficulty

VDIFF_MAX_TARGET = 1024 # Maximum Target difficulty

VDIFF_TARGET_TIME = 15 # Target time per share (i.e. try to get 1 share per this many seconds)

VDIFF_RETARGET_TIME = 120 # Check to see if we should retarget this often

VDIFF_VARIANCE_PERCENT = 30 # Allow average time to very this % from target without retarget

******************** Admin settings *********************

Use scripts/generateAdminHash.sh <password> to generate the hash

for calculating SHA256 of your preferred password

ADMIN_PASSWORD_SHA256 = '7a08095e5c4c9ae158314a1a00Sp00f3d98433dSp00fe3db9db38e365b0' # SHA256 of the password

******************** E-Mail Notification Settings *********************

NOTIFY_EMAIL_TO = 'youremail@gmail.com' # Where to send Start/Found block notifications

NOTIFY_EMAIL_TO_DEADMINER = '' # Where to send dead miner notifications

NOTIFY_EMAIL_FROM = 'root@localhost' # Sender address

NOTIFY_EMAIL_SERVER = 'localhost' # E-Mail Sender

NOTIFY_EMAIL_USERNAME = 'youremail@gmail.com' # E-Mail server SMTP Logon

NOTIFY_EMAIL_PASSWORD = 'youremail@gmail.com'

NOTIFY_EMAIL_USETLS = True

The entire config.py file end ...

We are not ready to start the Stratum yet, but it is installed and configured. In a later section we will be bringing all
of the applications up rather simultaneously. For now it is on to the MPOS application suite, Apache/PHP, and
MySQL.

The installation script:
#!/bin/bash -

#title :dogon_--_mpos_automation.sh

#description :Step 04 -- The Stratum Proxy

#author :SJmariogolf

#date :20140401

#version :0.0-1

#notes :

#bash_version :4.2.45(1)-release

#==

#-- make sure we have the prereqs

sub_prerequisites(){

sudo apt-get install python-twisted python-mysqldb python-dev python-setuptools
python-memcache python-simplejson python-pylibmc

sudo /usr/bin/easy_install -U distribute

return 0

}

runyesorno(){

if ["${1}"] ; then

 yesorno="n"

 read -p "Inform: Would you like to run this step? [${2}/${1}] Enter y/n (n)? "
yesorno

 case "$yesorno" in

 y*|Y*) ${1};;

 n*|N*) echo "Skipped";;

 esac

fi

return 0

}

sub_install_stratum(){

cd $HOME/mpos/stratum-mining

git submodule init

git submodule update

cd $HOME/mpos/stratum-mining/externals/litecoin_scrypt

sudo python setup.py install

cd $HOME/mpos/stratum-mining/externals/stratum

sudo python setup.py install

return 0

}

runyesorno "mkdir -p $HOME/mpos" "Make the $HOME/mpos directory."

runyesorno "cd $HOME/mpos" "Change directory to $HOME/mpos."

runyesorno "sub_prerequisites" "Insure we have the prerequisites."

runyesorno "git clone https://github.com/Tydus/litecoin_scrypt.git" "Obtain the litecoin
scrypt."

runyesorno "git clone https://github.com/ahmedbodi/stratum-mining.git" "Obtain the
stratum mining proxy."

runyesorno "git clone https://github.com/ahmedbodi/stratum.git" "Obtain the stratum
core."

runyesorno "sub_install_stratum" "Install the Stratum proxy."

Chapter 6 the initial MPOS installation using http
Enter MPOS

From the github MPOS site: MPOS is a web based Mining Portal for various crypto currencies. It was created by

TheSerapher and has hence grown quite large. Recently it was migrated into a Github Organization to make
development easier. It's a community driven open source project. Support can be requested on IRC at
https://webchat.freenode.net/?channels=#mpos.

 MPOS is a web based application comprised mainly of PHP. http://www.php.net/. Combined with, and tuned to the
Stratum proxy it offers you a mining portal akin, of not identical to, those pooled we based crypto-currency mining
portals we should be all to familiar with. MPOS utilizes MySQL, and Apache 2, and as such, these two sub systems
are integral, and must be installed and configured prior to the MPOS launch. This chapter is devoted to the MPOS
installation, while further chapters devote themselves entirely to the configuration, execution, and security
considerations of the MPOS, PHP, and the Apache components.

In this chapter we basically are going to download MPOS and stage it inside out own home directory. In a later
chapter we put I all together for http, then further, we will secure it with https. It is always best to install out of a sub
directory, so we navigate to our $HOME/mpos directory and execute the following steps in order.

Insure we have the latest prerequisites as we should at this point.
sudo apt-get install uuid-runtime memcached php5-memcached php5-mysqlnd php5-curl
php5-json libapache2-mod-php5

Change directory into the $HOME/mpos, and use the git tool to download MPOS.
cd $HOME/mpos

git clone git://github.com/MPOS/php-mpos.git MPOS

Change directory into the MPOS sub directory and obtain the latest code.
cd $HOME/mpos/MPOS

git checkout master

Change the ownership of the files Apache is required write permission to.
APACHE_GROUP='www-data'

sudo chown -R ${APACHE_GROUP} $HOME/mpos/MPOS/public/templates/compile
$HOME/mpos/MPOS/public/templates/cache $HOME/mpos/MPOS/logs

Copy the global configuration distribution file to the global configuration file.
cp $HOME/mpos/MPOS/public/include/config/global.inc.dist.php
$HOME/mpos/MPOS/public/include/config/global.inc.php

Seed the random SALT variables with proper salted seeds.
SALT=`uuidgen`

SALTY=`uuidgen`

sed -i "s/PLEASEMAKEMESOMETHINGRANDOM/${SALT}/g"
$HOME/mpos/MPOS/public/include/config/global.inc.dist.php

sed -i "s/THISSHOULDALSOBERRAANNDDOOM/${SALTY}/g"
$HOME/mpos/MPOS/public/include/config/global.inc.dist.php

https://github.com/TheSerapher
https://webchat.freenode.net/?channels#mpos
http://www.php.net/

grep "SALT" $HOME/mpos/MPOS/public/include/config/global.inc.dist.php

Patch the python web socket transport.
 sudo sed -i "s/from autobahn.websocket import WebSocketServerProtocol/from
autobahn.twisted.websocket import WebSocketServerProtocol/"
/usr/local/lib/python2.7/dist-packages/stratum-0.2.13-py2.7.egg/stratum/websocket_transpor
t.py

grep "from autobahn.twisted.websocket"
/usr/local/lib/python2.7/dist-packages/stratum-0.2.13-py2.7.egg/stratum/websocket_transpor
t.py

Initially configure the MPOS global configuration file.
sed -i "s/'username'] = 'testnet'/'username'] = '${RPCUSER}'/"
$HOME/mpos/MPOS/public/include/config/global.inc.php

sed -i "s/'password'] = 'testnet'/'password'] = '${RPCPASSWORD}'/"
$HOME/mpos/MPOS/public/include/config/global.inc.php

sed -i "s/'host'] = 'localhost:19334'/'host'] = '${RPCLISTEN}'/"
$HOME/mpos/MPOS/public/include/config/global.inc.php

cp $HOME/mpos/MPOS/public/include/config/global.inc.php .

We have now successfully downloaded MPOS, performed some rudimentary configuration, and patched a python
bug that would have otherwise bitten us. We are now ready to proceed into MySQL, Apache, and Send mail. For
send mail we will use a local MTA and google as a transport. This is for ease of setup and it is a very good
introduction to using a mail transport relay. So let us proceed to the next chapter. See you there!

The entire script.
#!/bin/bash -

#title :dogon_--_mpos_automation.sh

#description :Step 04 -- MPOS Installation

#author :SJmariogolf

#date :20140401

#version :0.0-1

#notes :

#bash_version :4.2.45(1)-release

#==

APACHE_GROUP="www-data"

COIN="litecoin"

RPCUSER=`grep rpcuser $HOME/.${COIN}/${COIN}.conf | cut -d'=' -f2`

RPCPASSWORD=`grep rpcpassword $HOME/.${COIN}/${COIN}.conf | cut -d'=' -f2`

RPCLISTEN="localhost:9332"

#-- make sure we have the prereqs

sub_prerequisites(){

sudo apt-get install uuid-runtime memcached php5-memcached php5-mysqlnd php5-curl
php5-json libapache2-mod-php5

return 0

}

sub_restart_apache(){

sudo /etc/init.d/apache2 restart

return 0

}

runyesorno(){

if ["${1}"] ; then

 yesorno="n"

 read -p "Inform: Would you like to run this step? [${2}/${1}] Enter y/n (n)? "
yesorno

 case "$yesorno" in

 y*|Y*) ${1};;

 n*|N*) echo "Skipped";;

 esac

fi

return 0

}

sub_change_salt(){

SALT=`uuidgen`

SALTY=`uuidgen`

sed -i "s/PLEASEMAKEMESOMETHINGRANDOM/${SALT}/g"
$HOME/mpos/MPOS/public/include/config/global.inc.dist.php

sed -i "s/THISSHOULDALSOBERRAANNDDOOM/${SALTY}/g"
$HOME/mpos/MPOS/public/include/config/global.inc.dist.php

grep "SALT" $HOME/mpos/MPOS/public/include/config/global.inc.dist.php

return 0

}

sub_fix_websocket_transport(){

if [-f
/usr/local/lib/python2.7/dist-packages/stratum-0.2.13-py2.7.egg/stratum/websocket_transpor
t.py];then

 sudo sed -i "s/from autobahn.websocket import WebSocketServerProtocol/from
autobahn.twisted.websocket import WebSocketServerProtocol/"
/usr/local/lib/python2.7/dist-packages/stratum-0.2.13-py2.7.egg/stratum/websocket_transpor
t.py

 grep "from autobahn.twisted.websocket"
/usr/local/lib/python2.7/dist-packages/stratum-0.2.13-py2.7.egg/stratum/websocket_transpor
t.py

fi

return 0

}

sub_configure_mpos(){

sed -i "s/'username'] = 'testnet'/'username'] = '${RPCUSER}'/"
$HOME/mpos/MPOS/public/include/config/global.inc.php

sed -i "s/'password'] = 'testnet'/'password'] = '${RPCPASSWORD}'/"

$HOME/mpos/MPOS/public/include/config/global.inc.php

sed -i "s/'host'] = 'localhost:19334'/'host'] = '${RPCLISTEN}'/"
$HOME/mpos/MPOS/public/include/config/global.inc.php

cp $HOME/mpos/MPOS/public/include/config/global.inc.php .

return 0

}

runyesorno "mkdir -p $HOME/mpos" "Make the $HOME/mpos directory."

runyesorno "cd $HOME/mpos" "Change directory to $HOME/mpos."

runyesorno "sub_prerequisites" "Insure we have the prerequisites."

runyesorno "git clone git://github.com/MPOS/php-mpos.git MPOS" "download the MPOS
source."

runyesorno "cd $HOME/mpos/MPOS" "Change directory to $HOME/mpos/MPOS."

runyesorno "git checkout master" "Obtain the master branch."

runyesorno "sudo chown -R ${APACHE_GROUP} $HOME/mpos/MPOS/public/templates/compile
$HOME/mpos/MPOS/public/templates/cache logs" "Change ownership for Apache 2."

runyesorno "cp $HOME/mpos/MPOS/public/include/config/global.inc.dist.php
$HOME/mpos/MPOS/public/include/config/global.inc.php" "Copy the default global
configuration."

runyesorno "sub_change_salt" "Change the random salt."

runyesorno "sub_fix_websocket_transport" "Fix the web socket transport."

runyesorno "sub_configure_mpos" "Initial configuration."

Chapter 7 the initial MySQL installation and configuration
Enter MySQL

The MySQL database has become the world's most popular open source database because of its consistent fast
performance, high reliability and ease of use. MySQL is used on every continent – yes, even in Antarctica! – by
individuals, Web developers, as well as many of the world's largest and fastest-growing organizations such as

industry leaders Yahoo!, Alcatel-Lucent, Google, Nokia, YouTube and others to save time and money powering their
high-volume websites, business-critical systems, and packaged software.

As most products do, MySQL comes "ready-to-work" out of the box. Usually, security is not a major consideration
when installing this kind of product. Often, the most important issue is to get it up and running as quickly as possible
so that the organization can benefit. This document is intended as a quick security manual to help you bring an
installed MySQL database server into conformity with best security practices.

While we are here we might as well conform to some best practices. We are after all scripting this installation which
should make the whole ordeal somewhat simpler. MPOS out of the box installs as the MySQL root user and assigns
the default database name on mpos. This seems to me like a very likely source for those Internet bad guys out there
to hack. So we will change things up a bit.

Make a backup of the current my.cnf for preservation.
sudo cp /etc/mysql/my.cnf /etc/mysql/my.cnf.`date +%B%d%Y`

The configuration line “bind-address = 127.0.0.1” disables the initiation of networking during MySQL startup.
Please note that a local connection can still be established to the MySQL server. Look for the bind-address to be set
as localhost only.
grep bind-address /etc/mysql/my.cnf | grep 127.0.0.1;if [$? = 0];then echo Passed.;
else echo Failed.; fi

The next change is to disable the use of the "LOAD DATA LOCAL INFILE" command, which will help to prevent
unauthorized reading from local files. This is especially important when new SQL injection vulnerabilities in PHP
applications are found.
sudo sed -i '/skip-external-locking/ilocal-infile=0' /etc/mysql/my.cnf

The default administrator username on the MySQL server is "root". Hackers often attempt to gain access to its
permissions. To make this task harder, provide it with a long, complex mlitecoinnumeric password. If we change
root to something else, then we have to remember two things. What is my root password, and what is the name of
the root account. There is much controversy, and it seems to lean toward sticking with root, and a complex
password. A good way to generate a complex password is by using uuidgen. Let us grab the fourth and fifth octet of
the uuidgen and use that as our root password. We will also store it locally as myroot as a safeguard measure. Of
course we would want to secure any and all documents that refer to, or contain any password. We will be altering the
root password to something akin to this mlitecoin-numeric string: 97c2-97f4e89fb7c5. There is a pretty good
product out there for storing passwords securely entitled password safe. But for now please keep this password
locally someplace safe and somewhere you can retrieve it.
cd $HOME/mpos

MyRoot=`uuidgen | cut -d'-' -f4,5`

echo${MyRoot} > myroot

mysqladmin -u root -p password ${MyRoot}

Drop any unwanted users.
mysql -u root -p -e "use mysql;DELETE FROM user WHERE user=\"\";"

mysql -u root -p -e "FLUSH PRIVILEGES;"

Turn off the show databases functionality.
sudo sed -i '/skip-external-locking/iskip-show-database' /etc/mysql/my.cnf

During the installation procedures, there is a lot of sensitive information that can assist an intruder to assault a
database. This information is stored in the server’s history and can be very helpful if something goes wrong during
the installation. By analyzing the history files, administrators can figure out what has gone wrong and probably fix
things up. However, these files are not needed after installation is complete.
cat /dev/null > ~/.mysql_history

Now we restart the MySQL daemon using its start and stop script.
/etc/init.d/mysql restart.

If for any reason it fails to start, messages will reside in /var/log/syslog. We are now fairly secure, and ready to
proceed with the MPOS MySQL setup. The default database name for MPOS is mpos. It may be a good idea to call
this database something other than mpos. We however will know it as the mpos database. So instead of creating the
mpos database as mpos, let us consider naming the database mlitecoin since this is our mlitecoin installation.
My account is steven. This account name is located in an environment variable LOGNAME. This is the account, in

my opinion that we should use to create the database and table structure. We need to create steven as a MySQL user.
Note that this will NOT be your root password. We will also give steven the same password as the root user. We can
change this in a later chapter. For now it saves us some confusion.

#-- Note that 97c2-97f4e89fb7c5 is NOT your root. This is an example.

cd $HOME/mpos/MPOS

#-- Create the database previously known as mpos (now mlitecoin).

mysql -u root -p'97c2-97f4e89fb7c5' -e "CREATE DATABASE mlitecoin;"

#-- Create the new user steven

mysql -u root -p'97c2-97f4e89fb7c5' -e "CREATE USER '$LOGNAME'@'localhost' IDENTIFIED BY
'97c2-97f4e89fb7c5';"

#-- Grant the permission for steven and the mpos database an tables.

mysql -u root -p'97c2-97f4e89fb7c5' mlitecoin -e "GRANT ALL PRIVILEGES ON mlitecoin.* TO
'$LOGNAME'@'localhost'; FLUSH PRIVILEGES;"

#-- Note that steven is now allowed privileges similar to root for this new database.

#-- Import the base MPOS structure using our new user id.

mysql -p mlitecoin < sql/000_base_structure.sql

Finally to complete the MySQL step we must change the global MPOS configuration file to include the database

details.
sed -i "s/user'] = 'someuser'/user'] = '$LOGNAME'/g"
$HOME/mpos/MPOS/public/include/config/global.inc.php

sed -i "s/pass'] = 'somepass'/pass'] = '97c2-97f4e89fb7c5'/g"
$HOME/mpos/MPOS/public/include/config/global.inc.php

sed -i "s/name'] = 'mpos'/name'] = 'mlitecoin'/g"
$HOME/mpos/MPOS/public/include/config/global.inc.php

grep db $HOME/mpos/MPOS/public/include/config/global.inc.php

The entire script.
#!/bin/bash -

#title :dogon_--_mpos_automation.sh

#description :Step 06 -- prime the MySQL database

#author :SJmariogolf

#date :20140401

#version :0.0-1

#notes :

#bash_version :4.2.45(1)-release

#==

MPOS_DB="mlitecoin"

#-- make sure we have the prereqs

sub_prerequisites(){

sudo apt-get install build-essential libboost-all-dev libcurl4-openssl-dev libdb5.1-dev
libdb5.1++-dev mysql-server

return 0

}

runyesorno(){

if ["${1}"] ; then

 yesorno="n"

 read -p "Inform: Would you like to run this step? [${2}/${1}] Enter y/n (n)? "
yesorno

 case "$yesorno" in

 y*|Y*) ${1};;

 n*|N*) echo "Skipped";;

 esac

fi

return 0

}

sub_change_mysql_root(){

cd $HOME/mpos

if [-f myroot];then

 cp myroot myroot.`date +%B%d%Y`

fi

MyRoot=`uuidgen | cut -d'-' -f4,5`

echo ${MyRoot} > myroot

mysqladmin -u root -p password ${MyRoot}

return 0

}

sub_drop_unwanted_users(){

MYROOT=`cat $HOME/mpos/myroot`

MYROOT="'$MYROOT"

MYROOT="$MYROOT'"

cat <<EOF>drop_unwanted.sh

mysql -v -u root -p$MYROOT -e "use mysql;DELETE FROM user WHERE user=\"\";"

mysql -v -u root -p$MYROOT -e "FLUSH PRIVILEGES;"

EOF

sh drop_unwanted.sh

return 0

}

sub_create_mpos_database(){

cd $HOME/mpos/MPOS

if [-f "$HOME/mpos/myroot"];then

 MYROOT=`cat $HOME/mpos/myroot`

 MYROOT="'$MYROOT"

 MYROOT="$MYROOT'"

 cat <<EOF>create_mpos_database.sh

 cd $HOME/mpos/MPOS

 #-- Create the database previously known as mpos (now $MPOS_DB).

 mysql -v -u root -p$MYROOT -e "CREATE DATABASE $MPOS_DB;"

 #-- Create the new user from $LOGNAME

 mysql -v -u root -p$MYROOT -e "CREATE USER '$LOGNAME'@'localhost' IDENTIFIED BY
$MYROOT;"

 #-- Grant the permission for from $LOGNAME and the mpos database an tables.

 mysql -v -u root -p$MYROOT $MPOS_DB -e "GRANT ALL PRIVILEGES ON $MPOS_DB.* TO
'$LOGNAME'@'localhost'; FLUSH PRIVILEGES;"

 #-- Note that from $LOGNAME is now allowed privileges similar to root for this new
database.

 #-- Import the base MPOS structure using our new user id.

 mysql -v -p$MYROOT $MPOS_DB < sql/000_base_structure.sql

EOF

 sh create_mpos_database.sh

else

 echo "Warn: Cannot determine new mysql root password from myroot."

 mysql -v -p $MPOS_DB < sql/000_base_structure.sql

fi

return 0

}

sub_configure_mpos(){

sed -i "s/user'] = 'someuser'/user'] = '$LOGNAME'/g"
$HOME/mpos/MPOS/public/include/config/global.inc.php

sed -i "s/pass'] = 'somepass'/pass'] = $MYROOT/g"
$HOME/mpos/MPOS/public/include/config/global.inc.php

MPOS_DB="'$MPOS_DB"

MPOS_DB="$MPOS_DB'"

sed -i "s/name'] = 'mpos'/name'] = $MPOS_DB/g"
$HOME/mpos/MPOS/public/include/config/global.inc.php

grep db $HOME/mpos/MPOS/public/include/config/global.inc.php

cp $HOME/mpos/MPOS/public/include/config/global.inc.php .

return 0

}

sub_skip_local_infile(){

cat <<EOF>mysql.temp.sh

sudo sed -i '/skip-external-locking/ilocal-infile=0' /etc/mysql/my.cnf

EOF

sudo sh mysql.temp.sh

return 0

}

sub_skip_show_database(){

cat <<EOF>mysql.temp.sh

sudo sed -i '/skip-external-locking/iskip-show-database' /etc/mysql/my.cnf

EOF

sudo sh mysql.temp.sh

return 0

}

runyesorno "mkdir -p $HOME/mpos" "Make the $HOME/mpos directory."

runyesorno "cd $HOME/mpos" "Change directory to $HOME/mpos."

runyesorno "sub_prerequisites" "Insure we have the prerequisites."

runyesorno "sudo cp /etc/mysql/my.cnf /etc/mysql/my.cnf.`date +%B%d%Y`" "Backup the mysql
config."

runyesorno "cd $HOME/mpos/MPOS" "Change directory to $HOME/mpos/MPOS."

runyesorno "sub_change_mysql_root" "Change the mysql root password."

runyesorno "sub_skip_local_infile" "Turn off local infiles."

runyesorno "sub_drop_unwanted_users" "Drop any unwanted user from mysql."

runyesorno "sub_skip_show_database" "Turn off show databases."

runyesorno "sub_create_mpos_database" "Create the MPOS database."

runyesorno "/etc/init.d/mysql restart" "Restart the mysql daemon."

runyesorno "sub_configure_mpos" "Configure MPOS."

runyesorno "cat /dev/null > $HOME/.mysql_history" "Clear mysql history."

Chapter 8 mail server send mail setup
Enter postfix

We will be setting up postfix as our mail transport agent, and forwarding the smtp to our local agent who will then
relay much like the swiftmailer options within the MPOS configuration file. We will first have to install the postfix
package and interact with it in a brief manner. The idea is to use postfix as a local agent that will relay to a send mail
agent which is external, such as, in this example, gmail. Any number of options exist, however this is quite simple
and removes us from much of the overhead of handling email, encoding, delivery, etc.

We start by downloading postfix.
sudo apt-get install postfix mailutils libsasl2-2 ca-certificates libsasl2-modules

Now we interact with the installation...Choose Internet site:

This is the server and domain that I am currently installing on. Your domain can basically be anything you choose.
The domain name should be available, but this is completely up to you. An example could be hashmaster.org. The
installation configures an initial main configuration file for the postfix application. We will be making adjustments
to this file, so really the name is not so important at this point in the install as it can be changed as desirable.

Proper output is show below...
Adding system user `postfix' (UID 117) ...

Adding new user `postfix' (UID 117) with group `postfix' ...

Not creating home directory `/var/spool/postfix'.

Creating /etc/postfix/dynamicmaps.cf

Adding tcp map entry to /etc/postfix/dynamicmaps.cf

Adding sqlite map entry to /etc/postfix/dynamicmaps.cf

Adding group `postdrop' (GID 124) ...

Done.

setting myhostname: steven-M275.home

setting alias maps

setting alias database

setting myorigin

setting destinations: steven-M275.home, localhost.home, , localhost

setting relayhost:

setting mynetworks: 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128

setting mailbox_command

setting mailbox_size_limit: 0

setting recipient_delimiter: +

setting inet_interfaces: all

Postfix is now set up with a default configuration. If you need to make

changes, edit

/etc/postfix/main.cf (and others) as needed. To view Postfix configuration

values, see postconf(1).

After modifying main.cf, be sure to run '/etc/init.d/postfix reload'.

Running newaliases

[ok] Stopping Postfix Mail Transport Agent: postfix.

[ok] Starting Postfix Mail Transport Agent: postfix.

(Reading database ... 127134 files and directories currently installed.)

Removing exim4-base ...

Processing triggers for man-db ...

Selecting previously unselected package guile-1.8-libs.

(Reading database ... 127065 files and directories currently installed.)

Unpacking guile-1.8-libs (from .../guile-1.8-libs_1.8.8+1-8_i386.deb) ...

Selecting previously unselected package libntlm0.

Unpacking libntlm0 (from .../libntlm0_1.2-1_i386.deb) ...

Selecting previously unselected package libgsasl7.

Unpacking libgsasl7 (from .../libgsasl7_1.8.0-2_i386.deb) ...

Selecting previously unselected package mailutils-common.

Unpacking mailutils-common (from .../mailutils-common_1%3a2.99.97-3_all.deb) ...

Selecting previously unselected package libmailutils4.

Unpacking libmailutils4 (from .../libmailutils4_1%3a2.99.97-3_i386.deb) ...

Selecting previously unselected package mailutils.

Unpacking mailutils (from .../mailutils_1%3a2.99.97-3_i386.deb) ...

Processing triggers for man-db ...

Setting up guile-1.8-libs (1.8.8+1-8) ...

Setting up libntlm0 (1.2-1) ...

Setting up libgsasl7 (1.8.0-2) ...

Setting up mailutils-common (1:2.99.97-3) ...

Setting up libmailutils4 (1:2.99.97-3) ...

Setting up mailutils (1:2.99.97-3) ...

update-alternatives: using /usr/bin/frm.mailutils to provide /usr/bin/frm (frm) in auto mode

update-alternatives: using /usr/bin/from.mailutils to provide /usr/bin/from (from) in auto mode

update-alternatives: using /usr/bin/messages.mailutils to provide /usr/bin/messages (messages) in auto mode

update-alternatives: using /usr/bin/movemail.mailutils to provide /usr/bin/movemail (movemail) in auto mode

update-alternatives: using /usr/bin/readmsg.mailutils to provide /usr/bin/readmsg (readmsg) in auto mode

update-alternatives: using /usr/bin/dotlock.mailutils to provide /usr/bin/dotlock (dotlock) in auto mode

Add the forwarding configuration to the postfix main.cf.
sudo chmod a+w /etc/postfix/main.cf

#-- Comment out the old relay

sudo sed -i "s/^relayhost =/#relayhost =/g" /etc/postfix/main.cf

sed -i "s/^mailbox_command = procmail/#mailbox_command = procmail/g" /etc/postfix/main.cf

cat <<EOF>>/etc/postfix/main.cf

relayhost = [smtp.gmail.com]:587

smtp_sasl_auth_enable = yes

smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd

smtp_sasl_security_options = noanonymous

smtp_tls_CAfile = /etc/postfix/cacert.pem

smtp_use_tls = yes

EOF

sudo chmod a-w /etc/postfix/main.cf

Now we have to have a GMAIL account. This is easily accomplished online. We MUST place our credentials into
the postfix sasl_passwd file within the /etc/postfix directory using sudo.

[smtp.gmail.com]:587 yourusername@gmail.com:yourpassword

While I imagine this to be fairly simple, it does however merit some explanation. This is the email username of
your GMAIL account that YOU have setup for this site. It can be any available GMAIL account, however, the
password is necessary as this is a TLS delivery. These files within the postfix directory are owned by root, and are
devoid of write permission, so this is a fairly safe configuration. Now having said that, it is likely a good idea to
create a NEW GMAIL account to be used specifically for this server. Maybe hashmaster? If it is available?
MYUSER=”YourGMAILUserID”

MYPASSWD=”YourGMAILPassword”

sudo chmod a+w /etc/postfix/

sudo echo “[smtp.gmail.com]:587 $MYUSER@gmail.com:$MYPASSWD” >
/etc/postfix/sasl_passwd

sudo chmod 400 /etc/postfix/sasl_passwd

sudo postmap /etc/postfix/sasl_passwd

#-- Place a valid premium server cert into postfix. This file can be chosen.

cat /etc/ssl/certs/Thawte_Premium_Server_CA.pem | sudo tee -a /etc/postfix/cacert.pem

mailto:yourusername@gmail.com

Next we will reload postfix to see it it functions with our changes in effect.
sudo /etc/init.d/postfix reload

[ok] Reloading Postfix configuration...done.

And finally, let us test a SMTP delivery.
echo "Test mail from postfix" | mail -s "Test Postfix" YourGMAILUserID@gmail.com

Due to the sensitive nature of email delivery I thought it best not to place this simple code into a script. Rather, it is
better to execute it via the command line. All applicable commands are organized in currier 11 font. Any output
highlighted in currier 9 font with a green color is simply the desired output and is placed herein as a reference. I
assume it it possible to use alternating email relays, such as Yahoo's Zimbra, or another similar service, however this
has not been tested.

Within the /var/log directory output messages can be perused within the mail.log, and syslog files using sudo.

The entire script.
#!/bin/bash -

#title :dogon_--_mpos_automation.sh

#description :Step 07 -- postfix configuration

#author :SJmariogolf

#date :20140401

#version :0.0-1

#notes :

#bash_version :4.2.45(1)-release

#==

#-- These MUST be changed

MYGMAILUSER="steven@gmail.com"

MYGMAILPASSWORD="sp00f3d"

#-- make sure we have the prereqs

sub_prerequisites(){

sudo apt-get install postfix mailutils libsasl2-2 ca-certificates libsasl2-modules

return 0

}

runyesorno(){

if ["${1}"] ; then

 yesorno="n"

 read -p "Inform: Would you like to run this step? [${2}/${1}] Enter y/n (n)? "
yesorno

 case "$yesorno" in

 y*|Y*) ${1};;

 n*|N*) echo "Skipped";;

 esac

fi

return 0

}

sub_forwarding_postfix(){

sudo chmod a+w /etc/postfix/main.cf

cat <<EOF>>/etc/postfix/main.cf

#-- `date +%B%d%Y`

relayhost = [smtp.gmail.com]:587

smtp_sasl_auth_enable = yes

smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd

smtp_sasl_security_options = noanonymous

smtp_tls_CAfile = /etc/postfix/cacert.pem

smtp_use_tls = yes

EOF

sudo chmod a-w /etc/postfix/main.cf

cat /etc/ssl/certs/Thawte_Premium_Server_CA.pem | sudo tee -a /etc/postfix/cacert.pem

cat >>sasl_passwd<<EOF

[smtp.gmail.com]:587 $MYGMAILUSER:$MYGMAILPASSWORD

EOF

sudo cp sasl_passwd /etc/postfix/

sudo postmap /etc/postfix/sasl_passwd

return 0

}

runyesorno "mkdir -p $HOME/mpos" "Make the $HOME/mpos directory."

runyesorno "cd $HOME/mpos" "Change directory to $HOME/mpos."

runyesorno "sub_prerequisites" "Insure we have the prerequisites."

runyesorno "sudo cp /etc/postfix/main.cf /etc/postfix/main.cf.`date +%B%d%Y`" "Backup the
main.cf config."

runyesorno "sub_forwarding_postfix" "Change the postfix main for forwarding."

runyesorno "sudo /etc/init.d/postfix restart" "Restart the postfix daemon."

Chapter 9 testing with Apache HTTP
Enter MPOS HTTP

Prior to moving into a secure https environment, we can test our application using port 80. This is the http interface
of Apache. In a later chapter we will be converting this over to https. We need to copy recursively the MPOS
directory with the same user permissions we have already set, to /var/www/ which is the Apache 2 document root.

 Change directory to $HOME/mpos, and recursively copy the MPOS subdirectory to the Apache document root.
cd $HOME/mpos

sudo cp -rp MPOS /var/www

Next we will restart the apache process.
sudo /etc/init.d/apache2 restart

Prior to navigating to the application using a web browser, there is a couple of items we can use to check out our
PHP environment, and also take a look at the current security concerns. By creating a simple phpinfo.php script
within the document root, we can navigate to our server by IP address, or 127.0.0.01, and invoke this phpinfo.php.
cd $HOME/mpos

cat >phpinfo.php<<EOF

<?php

// Show all information, defaults to INFO_ALL

phpinfo();

?>

EOF

sudo cp phpinfo.php /var/www

Now open a web browser and navigate to 127.0.0.1/phpinfo.php and examine the available PHP information
presented to you, as for example.

Additionally there is a package for PHP to download and verify the system from a security perspective. Please

download and check out the security warnings and errors triggered by phpsecinfo and fix those before attempting to
run MPOS: http://phpsec.org/projects/phpsecinfo/. This is a simple gzipped file that can be directly extracted inside
of the /var/www directory.
/var/www$ sudo unzip phpsecinfo.zip

These files should currently exist within your /var/www directory. Open the browser and navigate to your server IP
address or localhost 127.0.0.1/phpsecinfo-20070406.
index.html MPOS phpinfo.php phpsecinfo-20070406 phpsecinfo.zip

Following the link for More information will yield a postulated solution as is shown above.

It is now time for the first look at the actual application. Open a browser and navigate to the IP address, or
127.0.0.1/MPOS/public.

I feel it is important to point out a possible work around if you are unable to confirm via email confirmations for
any particular reason. You can temporarily disable the feature by changing the default from a 1 to a 0 inside
admin_settings.inc.php MPOS/public/include/config directory. Itg is a good idea to re-enable this feature prior to
considering production.
$aSettings['system'][] = array(

 'display' => 'Disable e-mail confirmations', 'type' => 'select',

 'options' => array(0 => 'No', 1 => 'Yes'),

 'default' => 0,

 'name' => 'accounts_confirm_email_disabled', 'value' =>
$setting->getValue('accounts_confirm_email_disabled'),

 'tooltip' => 'Should users supply a valid e-mail address upon registration. Requires them to confirm the
address before accounts are activated.'

);

Chapter 10 building the Apache SSL HTTPs Server

http://phpsec.org/projects/phpsecinfo/

Enter Apache HTTPs

Apache 2 with SSL encryption is a pretty strong Secure Sockets Layer interface. In this chapter we migrate from the
TCP Port 80 HTTP to the TCP Port 443 HTTPs, and incorporate a realm of secure transport far and above that of
plain text, and non encrypted data transfer. We will be generating self signed certs for use within this chapter. At the
end of this chapter some notes directly from the Apache SSL fact are included as reference. SSL will encrypt the
transmission to and from the web site and obfuscate personal information such as email addresses, passwords and
the like, making this a very important, and rather mandatory contribution.

 Change directory to $HOME/mpos directory prior to continuing this setup.

Generate a private key. The pass phrase can be anything you desire.
openssl genrsa -des3 -out server.key 1024

Inform: Would you like to run this step? [Generate a Private Key/openssl genrsa -des3 -out server.key 1024]
Enter y/n (n)? y

Generating RSA private key, 1024 bit long modulus

.............................++++++

......................++++++

e is 65537 (0x10001)

Enter pass phrase for server.key:

Verifying - Enter pass phrase for server.key:

Generate a certificate signing request, CSR.
openssl req -new -key server.key -out server.csr

Inform: Would you like to run this step? [Generate a CSR Certificate Signing Request/openssl req -new -key
server.key -out server.csr] Enter y/n (n)? y

Enter pass phrase for server.key:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:VA

Locality Name (eg, city) []:Richmond

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:steven-M275.home

Email Address []:stevensp00f3d@gmail.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:sjmariogolf

An optional company name []:sjmariogolf

Remove the pass phrase from the key.
cp server.key server.key.org; openssl rsa -in server.key.org -out server.key

Generate the self signed certificate.
openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Inform: Would you like to run this step? [Generating a Self-Signed Certificate/openssl x509 -req -days 365 -in
server.csr -signkey server.key -out server.crt] Enter y/n (n)? y

Signature ok

subject=/C=US/ST=VA/L=Richmond/O=Internet Widgits Pty
Ltd/CN=steven-M275.home/emailAddress=stevensp00f3d@gmail.com

Copy the files into the Apache directory.
sudo mkdir -p /etc/apache2/ssl

sudo cp server.key /etc/apache2/ssl/server.key

sudo cp server.crt /etc/apache2/ssl/server.crt

Configure Apache with the key and cert by adding the new server cert and key into the default-ssl file within the
/etc/apache2/sites-available/default-ssl file.
cat >apache_ssl_patch<<EOF
42,43c42,44
< SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem
< SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

> SSLEngine on
> SSLCertificateFile /etc/apache2/ssl/server.crt
> SSLCertificateKeyFile /etc/apache2/ssl/server.key
EOF

sudo patch -i apache_ssl_patch /etc/apache2/sites-available/default-ssl

Next in order is to change the document root within the default-ssl file from /var/www to /var/www-ssl.
sudo sed -i 's/www/www-ssl/' /etc/apache2/sites-available/default-ssl

sudo rm /etc/apache2/sites-enabled/000-default

sudo ln -s /etc/apache2/sites-available/default-ssl
/etc/apache2/sites-enabled/000-default

We then substitute the port 443 for the old port 80 within the ports configuration. We also comment out the first
occurrence of the listen.
sudo sed -i 's/80/443/g' /etc/apache2/ports.conf

sudo sed '0,/Listen 443/s/Listen 443/#Listen 443/' ports.conf

Finally we restart the apache 2 process.
sudo /etc/init.d/apache2 stop

sudo /etc/init.d/apache2 start

Depending on the installation, the apa che error log can be located using a command similar to this.
 locate error | grep apa

The error log is normally entitled apache error log, or apache ssl error log, and can generally can be located here.
/var/log/apache2/error.log . At this juncture the https://127.0.0.1, or by IP address should be available. It is normal to
see a Firefox warning for an “untrusted” self-signed certificate. There are any number of certificate signing sites that
will offer non self-signed certificates for a nominal fee. The good news is that we are now a secure transport for web
traffic to and from our site.

To complete the initial hardening of Apache, You must manually edit the /etc/apache2/sites-available/default-ssl
configuration file and lock down the document root directories including the MPOS directory itself as depicted. You
can simply replace the block that is within the file with the contents below as an example.
 DocumentRoot /var/www-ssl

 <Directory />

 Options None

 AllowOverride None

 order deny,allow

 </Directory>

 <Directory /var/www-ssl/MPOS/public>

 Options Indexes FollowSymLinks

 Order deny,allow

 </Directory>

 <Directory /var/www/>

 Options Indexes FollowSymLinks MultiViews

 AllowOverride None

 Order deny,allow

 deny from all

https://127.0.0.1/

 </Directory>

 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

 <Directory "/usr/lib/cgi-bin">

 AllowOverride None

 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch

 Order allow,deny

 deny from all

 </Directory>

The following notation is directly from the Apache SSL FAQ, and is placed here solely as a SSL reference.
How do I create a self-signed SSL Certificate for testing purposes?

1. 1.Make sure OpenSSL is installed and in your PATH.
2. 2.Run the following command, to create server.key and server.crt files:

$ openssl req -new -x509 -nodes -out server.crt -keyout server.key

These can be used as follows in your httpd.conf file:
 SSLCertificateFile /path/to/this/server.crt
 SSLCertificateKeyFile /path/to/this/server.key
3. 3.It is important that you are aware that this server.key does not have any passphrase. To add a passphrase to the key, you should run the
following command, and enter & verify the passphrase as requested.
$ openssl rsa -des3 -in server.key -out server.key.new

$ mv server.key.new server.key
Please backup the server.key file, and the passphrase you entered, in a secure location.

How do I create a real SSL Certificate?

Here is a step-by-step description:

1. 1.Make sure OpenSSL is installed and in your PATH.
2. 2.Create a RSA private key for your Apache server (will be Triple-DES encrypted and PEM formatted):

$ openssl genrsa -des3 -out server.key 1024

Please backup this server.key file and the pass-phrase you entered in a secure location. You can see the details of this RSA private key by using the
command:

$ openssl rsa -noout -text -in server.key

If necessary, you can also create a decrypted PEM version (not recommended) of this RSA private key with:

$ openssl rsa -in server.key -out server.key.unsecure
3. 3.Create a Certificate Signing Request (CSR) with the server RSA private key (output will be PEM formatted):

$ openssl req -new -key server.key -out server.csr

Make sure you enter the FQDN ("Fully Qualified Domain Name") of the server when OpenSSL prompts you for the "CommonName", i.e. when you
generate a CSR for a website which will be later accessed via https://www.foo.dom/, enter "www.foo.dom" here. You can see the details of this CSR by
using

$ openssl req -noout -text -in server.csr
4. 4.You now have to send this Certificate Signing Request (CSR) to a Certifying Authority (CA) to be signed. Once the CSR has been signed,
you will have a real Certificate, which can be used by Apache. You can have a CSR signed by a commercial CA, or you can create your own CA to sign
it.

Commercial CAs usually ask you to post the CSR into a web form, pay for the signing, and then send a signed Certificate, which you can store in a
server.crt file. For more information about commercial CAs see the following locations:
1. 1.Verisign

http://digitalid.verisign.com/server/apacheNotice.htm
2. 2.Thawte

http://www.thawte.com/
3. 3.CertiSign Certificadora Digital Ltda.

http://www.certisign.com.br
4. 4.IKS GmbH

http://www.iks-jena.de/leistungen/ca/
5. 5.Uptime Commerce Ltd.

http://www.uptimecommerce.com
6. 6.BelSign NV/SA

http://www.belsign.be

http://digitalid.verisign.com/server/apacheNotice.htm
http://www.thawte.com/
http://www.certisign.com.br/
http://www.iks-jena.de/leistungen/ca/
http://www.uptimecommerce.com/
http://www.belsign.be/

For details on how to create your own CA, and use this to sign a CSR, see below.

Once your CSR has been signed, you can see the details of the Certificate as follows:

$ openssl x509 -noout -text -in server.crt
5. 5.You should now have two files: server.key and server.crt. These can be used as follows in your httpd.conf file:
 SSLCertificateFile /path/to/this/server.crt
 SSLCertificateKeyFile /path/to/this/server.key
The server.csr file is no longer needed.

How do I create and use my own Certificate Authority (CA)?

The short answer is to use the CA.sh or CA.pl script provided by OpenSSL. Unless you have a good reason not to, you should use these for
preference. If you cannot, you can create a self-signed Certificate as follows:

1. 1.Create a RSA private key for your server (will be Triple-DES encrypted and PEM formatted):

$ openssl genrsa -des3 -out server.key 1024

Please backup this host.key file and the pass-phrase you entered in a secure location. You can see the details of this RSA private key by using the
command:

$ openssl rsa -noout -text -in server.key

If necessary, you can also create a decrypted PEM version (not recommended) of this RSA private key with:

$ openssl rsa -in server.key -out server.key.unsecure
2. 2.Create a self-signed Certificate (X509 structure) with the RSA key you just created (output will be PEM formatted):

$ openssl req -new -x509 -nodes -sha1 -days 365 -key server.key -out server.crt

This signs the server CSR and results in a server.crt file.

You can see the details of this Certificate using:

http://httpd.apache.org/docs/2.2/ssl/ssl_faq.html#ownca

$ openssl x509 -noout -text -in server.crt

Chapter 11 putting it All Together with Litecoin
Enter the MPOS Application Suite

This chapter is where we put it all together, so to speak and introduce the MPOS application with Litecoin. In the
chapters that follow, Dogecoin, then Infinitecoin ad eMark are configured as the mining crypto-currency, and by
example, should be sufficient for any coin. I chose Dogecoin and Infinitecoin for specific reasons. Dogecoin is a
very popular coin, and Infinitecoin, well, it is rather difficult indeed to find any information at all on Infinitecoin.
Most information states that it cannot even be used with a Stratum. So, for a nice challenge, I chose Infinitecoin.

In actuality, simply copying recursively, preserving the ownership of the MPOS files, it is a basic “cp -rp MPOS”
file copy from the working directory to the /var/www, or /var/www-ssl, Apache receiving directory. There are a
couple of items up front though worth mentioning. As with most things we try to accomplish, we seldom encounter
them devoid of problems. With this in mind, this may be a good place re-elaborate the Apache, and Postfix error
logs. These logs exist in the /var/log directory as apache/error.log, and mail.log respectively. These logs are our
friends, as they contain dialog, and often fixes to the problems we encounter. I'd like this opportunity to point out a
couple of problems I had in the beginning. One problem is the date is not set within the php.ini file, and as such
errors are encountered in several places within the application leaving a blank white screen. To locate the php.ini,
issue a command line “locate php.ini”, there is generally two of these files found. The actual php.ini file read by
PHP can be found using a simple php script phpinfo discussed in a previous chapter, however the fix is to edit the
php.ini file and enter the time and time zone, as for example below, making certain it is a valid Time Zone. Valid
time zones can be found with simple Google searches, like “php time zone.”
[Date]

; Defines the default timezone used by the date functions

; http://php.net/date.timezone

date.timezone = America/New_York

Another common problem is permissions on very certain files where Apache requires write privileges. This can
easily be rectified using the chown below:
cd /var/www, or /var/www-ssl

sudo chown -R www-data public/templates/compile public/templates/cache logs

With this information at hand we are ready to copy the MPOS files into our /var/www-ssl MPOS target directory.
cd $HOME/mpos

sudo cp -rp MPOS /var/www-ssl

cd /var/www-ssl

sudo chown -R www-data public/templates/compile public/templates/cache logs

And we are now ready to access the MPOS Application. I have always found that the first user I add into the system
fails to send an email. This creates a problem whereby we have to do some configuration in our application as the
admin, but we cannot mine, because we cannot receive the email. This is a minor inconvenience, and is easily
worked around, and besides, we have the mysql access, and can change the database if and when it is required. The
general idea is to add in your admin account, or add an account and then use mysql to make this account an admin,
then perform some minor configuration within the GUI that enables the sendmail functionality. Once this is
accomplished it's “we are in business” time. So let's look at the application.

To launch the MPOS application, open your browser and navigate to the IP address, or 127.0.0.1 using for example,
https://127.0.0.1/MPOS/public. The main entry screen should appear. If not, then we need to check the Apache
error.log. The resulting page should resemble a normal mining web site complete with guest, sign in, and sign up as
is depicted.

The application is fairly straight forward in its design, and will not take long to get a handle on. It is important

though to remember the global configuration file within the /var/www-ssl/MPOS/public/include/config directory.
This is where the database, and the rpcuser, and other pertinent global configuration data is derived, making this a
fairly important file to remember. Here we must create an admin user. The admin user is an email address configured
within the global configuration file previously mentioned. Using this admin user we can perform some post
configuration necessary for the interface presentation, the coin type and mining denomination, email addresses and
the like. Along the left hand side of the screen you will notice as admin, and ADMIN PANEL section. It is the
Settings within this panel that we must traverse as shown.

The email confirmations tab is under Systems. Setting this to Yes will disable email confirmations prior to

continuing. It is a good practice to disable this prior to production, then re-enable it once any “kinks” are worked out
of the mail delivery functionality.

It is quite simply a matter of clicking through the sections along the top of the page, and completing the information

such as a valid email address, or a pool name. After the configuration is saved, the email functionality should work
without a problem. This application should be considered no different than a public site whereby we have to
subscribe, then log in, then create our workers.

The Stratum

The apposing mechanism to the web interface is the Stratum. Before we delve to deeply into the application we

https://127.0.0.1/MPOS/public

MUST properly configure and start up the Stratum. The MPOS application requires both the Web interface and the
Stratum. Both of these elements work together, hopefully, harmoniously, thus this section will also detail the
Stratum. In later Chapters we will see more of the application, and how to alter the coin type, and even the interface
itself. But prior to moving on, we are required to enable a proper Stratum, and hopefully by the end of this Chapter
we will have the Web interface, and the Stratum proxy up and running, and communicating with each other in
harmony.

As we previously discussed, the Stratum is an overlay network on the top of coin daemon P2P protocol, creating
simplified facade for lightweight clients and hiding unnecessary complexity of decentralized protocol. The Stratum
is configured to interface with the TRUSTED rpc port of the con base daemon. In Litecoin this TCP port is 9332.
When the Stratum is started it creates a resource pool, or a proxy between the coin daemon and the stratum+tcp
listen TCP port, which defaults to 3333. So when the stratum is started by default we will establish a TCP listen
locally as stratum+tcp://127.0.0.1:3333. This port is configurable within the Stratum's conf/config.py configuration
file.

The Stratum software should be installed and configured at this juncture, but we might as well point out the
installation here, and reiterate some of the ore important configuration items. To install the Stratum we follow these
steps for Litecoin, or any other SCRYPT based coin. For SHA256d based coins we install the normal slush0 Stratum
as I will point out.

download the python scrypt library, the stratum core, and the stratum mining proxy into your $HOME/mpos
directory. A note here, is that it is good to work out of a single directory like mpos. This consolidates the sub
directories and files within one “folder.” The following code with download the necessary files into their proper sub
directories.
For SCRYPT based coins.
cd $HOME/mpos

git clone https://github.com/Tydus/litecoin_scrypt.git

git clone https://github.com/ahmedbodi/stratum-mining.git

git clone https://github.com/ahmedbodi/stratum.git

sudo easy_install -U distribute

Now continue with the initialization, setup and on to configuration.
cd $HOME/mpos/stratum-mining

git submodule init

git submodule update

cd $HOME/mpos/stratum-mining/externals/litecoin_scrypt

sudo python setup.py install

cd $HOME/mpos/stratum-mining/externals/stratum

sudo python setup.py install

For SHA256d based coins.
git clone https://github.com/slush0/stratum.git

git clone https://github.com/generalfault/stratum-mining.git

sudo apt-get install python-dev

sudo apt-get install python-setuptools

sudo apt-get install python-crypto

sudo easy_install -U distribute

sudo easy_install stratum

I may suggest, as I do, to rename the stratum-mining directories as stratum-mining-scrypt, then
stratum-mining-sha256d, or even stratum-mining-dogecoin, and stratum-mining-bitcoin, etc. for an easy way to
remember. Now the syntax of the config.py depends on the Stratum. For the Litecoin stratum, the KEYWORDS
within the config.py are prefixed COINDAEMON, for other installations, it may very well be LITECOIN, or
BITCOIN, however the contents of the config.py are fairly well consistent. Having said that, while starting the
stratum mining proxy using the twistd -ny launcher.tac command Error messages will inform you as to whether, or
not you've got the right prefix configured within your config.py. It is an easy global change from BITCOIN to
COINDAEMON using the vi command syntax: “:1,$s/BITCOIN/COINDAEMON/g”. This is a fairly redundant task
when switching up coinage.

So now we will discuss some of the more important configurable key value pairs within the config.py file starting
with the CENTRAL WALLET. This is an important item so I do speak to it rather over and over. The central wallet
is normally the default coin address within your installation. Although it can be some other address, it MUST be
within the wallet on this server, or no remuneration.

To glean the default address use the coindaemon command getaccountaddress “”. Place this address, until we know
better, into the config.py as below substituting your actual address as indicated.
CENTRAL_WALLET = 'Sup3rC@ll@fr@j@l1sticExpeAll1d0t1ius' # local bitcoin address where
money goes

Next is the RPC. These entries govern the rpc communication to the coindaemon. If you do not know the rpc port,
Google can easily help you out. For Litecoin it is 9332. Use the Linux command “cat ~/.litecoin/litecoin.conf” to
examine the contents of the litecoin.conf. These will be your entries for RPC.
COINDAEMON_TRUSTED_HOST = 'localhost'

COINDAEMON_TRUSTED_PORT = 9332

COINDAEMON_TRUSTED_USER = 'litecoinrpc'

COINDAEMON_TRUSTED_PASSWORD = 'edSp00f3d-408c-8200-Sp00f3dad5'

The prefix of the key value pairs totally depends on the Stratum. Under all of the coins I have implemented I have

ONLY used LITECOIN, COINDAEMON, and BITCOIN. Perhaps if we create ONE config.py with all key values
replicated for all three keys? Just a thought.

For MPOS there is a DB section that requires our attention for the MySQL user, Database, and DB Password. For
this example, the user can be root, or as we have established, your account. The database will then be mlitecoin, and
the password will be set accordingly as is indicated.
******************** Database *********************

MySQL

DATABASE_DRIVER = 'mysql'

DATABASE_EXTEND = False

DB_MYSQL_HOST = 'localhost'

DB_MYSQL_DBNAME = 'mlitecoin'

DB_MYSQL_USER = 'steven'

DB_MYSQL_PASS = 'b0e8-Sp00f3dfd'

DB_MYSQL_PORT = 3306

This is sufficiently enough configuration to enable us to progress to starting the Stratum. To start the Stratum, we
change directory to stratum-mining. Insure we have configured the config.py file, and then start the Stratum daemon
process using the command illustrated.
cd stratum-mining

twistd -ny launcher.tac

Note, if the coindaemon process is downloading coins, the Stratum will sleep 30 seconds and try and reconnect. It
will perform this action until the coindaemon has successfully downloaded all block chains and the data within is
“normalized.” With a new coin, this process from the coin installation to normalization can take up to 2 days. It is a
good idea to install the coindaemon ahead of time, and let the data normalize. You can run the Bitcoin, and Litecoin,
and Dogecoin daemons all on the same server, as they each utilize different RPC ports, and will not generally affect
one another. They simply will compete for system resources as they normalize their respective block chains.

 When the Stratum is up and operational, messages similar in nature to these below will serve as an indicator.
Additionally, the MPOS web interface will now be able to communicate with the Stratum, and any screen error
messages pertaining to “cannot communicate with stratum...” will disappear.
2014-04-09 10:09:35,029 INFO block_updater # Checking for new block.

2014-04-09 10:09:40,029 INFO block_updater # Checking for new block.

2014-04-09 10:09:45,029 INFO block_updater # Checking for new block.

2014-04-09 10:09:50,029 INFO block_updater # Checking for new block.

2014-04-09 10:09:55,029 INFO block_updater # Checking for new block.

2014-04-09 10:10:00,029 INFO block_updater # Checking for new block.

2014-04-09 10:10:05,029 INFO block_updater # Checking for new block.

2014-04-09 10:10:05,038 INFO block_updater # Merkle update! Prevhash:
5526d49bc87a5460912e21883d761e570379939437b0eb0a45b187eed80e2193

2014-04-09 10:10:05,051 INFO template_registry # New template for
5526d49bc87a5460912e21883d761e570379939437b0eb0a45b187eed80e2193

2014-04-09 10:10:05,052 INFO subscription # BROADCASTED to 3 connections in 0.000 sec

2014-04-09 10:10:05,053 INFO template_registry # Update finished, 0.003 sec, 3 txes

2014-04-09 10:10:10,041 INFO block_updater # Checking for new block.

2014-04-09 10:10:15,041 INFO block_updater # Checking for new block.

2014-04-09 10:10:15,066 INFO BasicShareLimiter # Checking Retarget for sjmariogolf55.p1
(2) avg. 22 target 30+-15

2014-04-09 10:10:15,067 INFO interfaces #
000000007a6d85c316dc9be33c8ea8ce41d187e56e716d9f950e8d269122f06f (2) valid
sjmariogolf55.p1

2014-04-09 10:10:20,041 INFO block_updater # Checking for new block.

2014-04-09 10:10:25,041 INFO block_updater # Checking for new block.

2014-04-09 10:10:26,166 INFO interfaces # 0000000001efbc9f98538ef44173b979cafde7

 At this juncture we are able to mine normally using cpuminer, cgminer with GPU, etc. just as though we were
pointing to a stratum+tcp out on the internet. We use the exact same syntax, substituting the URL from an Internet
site to our own IP address, or in this case as localhost:
./cgminer -o stratum+tcp://127.0.0.1:3333 -O yourworker:yourpassword

Navigating back to the MPOS web GUI, we should now be able to see active workers on our new Mining site.

It may be a good time at this juncture to use the admin interface and surf the new site, altering the site name,
perhaps setting the message of the day, and to investigate what we can alter on the interface using the admin panel
and the available configuration items. I suggest you play with the interface learning as much about it as is possible
by trial and error. Additionally, this may be a good place to take a tar backup. This should be a good base line
starting point for the site, and a backup may do us well in the future. I cannot hurt. For backups I use what works,
and that is tar zcvf somefilename.tar.gz $HOME/mpos, then secure copy this backup off the server. As well the
coindaemon can be backed up, or simply stopped, the scp -rp $HOME/.coindaemon from this server to another
server. There exists hundreds of comments and articles on proper backup. Far too many to mention here, however
tons of information is available to guide you in the ways of tar, and scp however it is really quite simple as for
example...if I want to scp the entire litecoin structure replicating it on another server...I may issue these commands

from 192.168.1.2.
litecoind stop

cd $HOME

scp -rp .litecoin 192.168.1.3:/home/steven

To backup the mpos directory using tar...
cd $HOME

mkdir backup

tar zcvf backup/mpos.`date +%B%d%Y`.tar.gz mpos

I think I have done my best to walk with you through this first MPOS and stratum interchange, however it is rarely
without problems. For this reason I am including an Appendix detailing some of the problems encountered, and the
postulated, or actual fixes. Everything is easy once it is understood, and perhaps performed a few dozen times. I am
sure this is the case for the heart surgeon as well after their 100th bypass. What I am saying here is that this is not a
simple process, and it will take some iterations, and perhaps changes, but nothing, as they say is worthy if not for a
struggle. Consider the experience gained by performing these tasks, and the resulting personal gains achieved by
accomplishing them. And with these tools at your side, I may note, that you can make a pretty darn good living
utilizing them.

Next on the agenda is to “switch up” the coindaemon from Litecoin to Dogecoin. This example can be used for any
coin. Keep in mind though, the Stratum and the MPOS application will have a few configuration changes when we
switch, but I think you will be surprised at how easy it is to accomplish.

Chapter 12 converting over to Dogecoin
Enter Dogecoin and the MPOS Application Suite

Installing any coindaemon is basically following the same exact, or very similar procedures as all daemons are
derived form the same source base. To install any coin, first identify the source for that coin using Google and say
for instance: “github dogecoin.” Navigate to the github site and copy the URL for cloning the source. As for
example: https://github.com/dogecoin/dogecoin.git. These instructions may be beneath your level of extertise, and
for that I do apologize, however to install most any coin follow these basic instructions.

Change directory to $HOME/mpos and git clone the source. Then change directory into the coin/src directory, and
make -f makefile.unix. Now copy the resulting coindaemon “d” executable to /usr/bin using sudo. Create the

https://github.com/dogecoin/dogecoin.git

coindaemon.conf file within the $HOME/.coindaemon directory, and start the daemon.

As in the example directly posted from the dogecoin github readme file.

sudo apt-get install build-essential \

 libssl-dev \

 libdb5.1++-dev \

 libboost-all-dev \

 libqrencode-dev \

 libminiupnpc-dev

git clone https://github.com/dogecoin/dogecoin.git

cd src/

make -f makefile.unix USE_UPNP=1 USE_IPV6=1 USE_QRCODE=1

Sample dogecoin.conf file.
rpcuser=doge

rpcpassword=wow

rpcallowip=192.168.1.*

addnode=67.205.20.10

addnode=146.185.181.114

addnode=95.85.29.144

addnode=78.46.57.132

addnode=188.165.19.28

addnode=162.243.113.110

rpcport=22555

server=1

daemon=1

Now start the daemon with dogecoind -daemon, and wait 12 to 24 hours for the blockchain to normalize. The
Dogecoin daemon has a new rpc port indicated above as 22555. Likely it will have a new rpcpassword, and
definitely a new rpcuser. These values will be directly changed in both of the configuration files for MPOS, and
Stratum. Additionally we will want to create a new database, possibly named mdogecoin, and import the sql from
MPOS into this new database. The new database name will also be change in both the MPOS configuration, and the
config.py. Very few changes are necessary within the global configuration for the MPOS, however they should be
fairly well explained below. Let us now take this step by step.

Step one is to install the coin daemon. The steps above adequately describe how to accomplish this, and are
transferable to most any coin daemon. The trick is to install these daemons prior to moving forward with MPOS, or

the Stratum. The coindaemons you install is completely up to you. Once your coin blockchains are “normalized,”
the process occupy very little system resources. However, saying that, some of the coin daemons still utilize the
gen=1 flag in the coindaemon.conf file. Some coindaemon processes actually incorporate their own internal mining
mechanisms, and by setting the gen=1 flag into the conf file the daemon will actually mine for coins. This may
result in some rather intensive cpu and memory usage, and is generally not recommended. However it is rather fun
to experiment with.

Step two is to create a new database for this coin. In this example it is the Dogecoin, so the resulting database will
be mdogecoin. This presents a logical separation from Litecoin to Dogecoin knowing that this will require us to re
enter the admins, users, and workers.
cd $HOME/mpos/MPOS

mysql -u root -p -e 'CREATE DATABSE mdogecoin;'

sudo mysql -p mdogecoin < sql/000_base_structure.sql

Step three is to edit the config.py. It would, in my opinion behoove us copy recursively the stratum-proxy directory
into another directory, namely stratum-proxy-dogecoin. Here we would edit the config.py sections for the wallet,
rpc, and database accordingly. The RPC Port for dogecoin is 22555.
******************** BASIC SETTINGS ***************

These are the MUST BE SET parameters!

CENTRAL_WALLET = 'P3psiexc33dsCok3andIsYumy4u85sp00f3dwif' # local coin address where
money goes

COINDAEMON_TRUSTED_HOST = 'localhost'

COINDAEMON_TRUSTED_PORT = 22555

COINDAEMON_TRUSTED_USER = 'dogecoinrpc'

COINDAEMON_TRUSTED_PASSWORD = 'esp00f3d-b7d1-408c-8200-sp00f3d8ad5'

This time we are using the stratum from ahmedbodi, since this is a SCRYPT coin as per the instructions indicated
below which calls for a COINDAEMON key value in the config.py.
cd $HOME/mpos

git clone https://github.com/Tydus/litecoin_scrypt.git

git clone https://github.com/ahmedbodi/stratum-mining.git

git clone https://github.com/ahmedbodi/stratum.git

cd stratum-mining

git submodule init

git submodule update

https://github.com/ahmedbodi/stratum.git

cd externals/litecoin_scrypt

sudo python setup.py install

cd $HOME/mpos

cd stratum-mining/externals/stratum

sudo python setup.py install

In actuality, there exists any number of incarnations to the Stratum on the github site. Basically they are the same,
or similar in nature.

Do not forget to alter the database portion if the config.py to alter the database name from mlitecoin to mdogecoin,
and we are done with the Stratum.

Step 4 is to alter the global.inc.php within the /var/www-ssl/MPOS/public/include/config directory. Changing a few
basic contructs.

The coin algorithm will stay as scrypt as Dogecoin is a SCRYPT algo.

/**

 * Coin Algorithm

 * Algorithm used by this coin, sha256d or scrypt

 * https://github.com/MPOS/php-mpos/wiki/Config-Setup#wiki-algorithm

 **/

$config['algorithm'] = 'scrypt';

The database name will change to mdogecoin.
/**

 * Database configuration

 * MySQL database configuration

 * https://github.com/MPOS/php-mpos/wiki/Config-Setup#wiki-database-configuration

 **/

$config['db']['host'] = 'localhost';

$config['db']['user'] = 'steven';

$config['db']['pass'] = 'sp00f3d';

$config['db']['port'] = 3306;

$config['db']['name'] = 'mdogecoin';

The wallet and RPC information will certainly change in accordance with YOUR particular
$HOME/.dogecoin/dogecoin.conf file contents.
/**

 * Local wallet RPC

 * RPC configuration for your daemon/wallet

 * https://github.com/MPOS/php-mpos/wiki/Config-Setup#wiki-local-wallet-rpc

 **/

$config['wallet']['type'] = 'http';

$config['wallet']['host'] = 'localhost:22555';

$config['wallet']['username'] = 'dogecoinrpc';

$config['wallet']['password'] = 'Sp00f3d-b7d1-408c-8200-Sp00f3d18ad5';

Change the ticker API interface.
/**

 * Ticker API

 * Fetch exchange rates via an API

 * https://github.com/MPOS/php-mpos/wiki/Config-Setup#wiki-ticker-api

 **/

$config['price']['enabled'] = true;

$config['price']['url'] = 'https://www.allcoin.com';

$config['price']['target'] = '/trade/doge_btc';

$config['price']['currency'] = 'USD';

And change the currency.
/**

 * Currency

 * Shorthand name for the currency

 * https://github.com/MPOS/php-mpos/wiki/Config-Setup#wiki-currency

 */

$config['currency'] = 'DGC';

Now you can once again start the Stratum, and access the MPOS application using your web browser. As indicated.

Your email address is still the administrator, so go ahead and sign up, then log in to MPOS using this address. You
will have to perform the same configuration settings similarly to Litecoin, however this time it is Dogecoin. Use the
ADMIN PANEL interface to customize the web site as you see fit. This experience only adds to the overall
experience and education vital for running a production site.

 Next create your workers, and mine...

I prefer to use cgminer as the miner for scrypt using a similar cgminer shell script and cgminer.conf file as shown
below.

The shell script...
#!/bin/sh

export DISPLAY=:0

export GPU_MAX_ALLOC_PERCENT=100

export GPU_USE_SYNC_OBJECTS=1

./cgminer -c cgminer.conf.local

The cgminer.conf file...
{

"pools" : [

 {

 "url" : "stratum+tcp://192.168.1.16:3333",

 "user" : "sjmariogolf.d1",

 "pass" : "peeb"

 }

]

,

"balance" : true,

"intensity" : "9,9",

"thread-concurrency" : "0,0",

"temp-cutoff" : "90,90",

"temp-overheat" : "85,85",

"temp-target" : "68,68",

"api-listen" : true,

"api-mcast-port" : "4028",

"api-port" : "4028",

"auto-fan" : true,

"no-pool-disable" : true,

"no-submit-stale" : true,

"queue" : "0",

"scrypt" : true,

"kernel-path" : "/usr/local/bin",

"api-allow" : "W:127.0.0.1"

}

Within the Stratum's conf/config.py, there is a configuration variable that determines the Listen port for the coin. As
in the example below this can be most any port you desire. Stick with 4 digit port combinations like 3333, 4444,
5555, 6666, and so on, to begin with for an easier time in remembering them. The MPOS global include file and the
Stratum's Listen port must be set to the same number.
config.py

Port used for Socket transport. Use 'None' for disabling the transport.

LISTEN_SOCKET_TRANSPORT = 7777

global.inc.php

/**

 * Getting Started Config

 * Shown to users in the 'Getting Started' section

 * https://github.com/MPOS/php-mpos/wiki/Config-Setup#wiki-getting-started

 **/

$config['gettingstarted']['coinname'] = 'dogecoin';

$config['gettingstarted']['coinurl'] = '127.0.0.1';

$config['gettingstarted']['stratumurl'] = '127.0.0.1';

$config['gettingstarted']['stratumport'] = '7777';

And we are mining.

Chapter 13 infinitecoin possibilities
Enter the MPOS and infinitecoin

I was searching alternate scrypt coins when I located infinitecoin. It is trading actively and at or around the same
price as Dogecoin. I had no idea when a block is solved that it pays out at 1,200 coins. That was a pleasant surprise.
The infinitecoin seems to be a fairly easily mined coin, and is a good choice for mining, and the rewards associated
with solving blocks. You can download and compile basically any coin daemon and client. They are basically all
reworks of the Bitcoin source base. The rpc information changes, and as a result, the MPOS configuration and
stratum config.py must be changed according to the rpc port, name and password. It is good practice to copy
recursively the stratum-mining into, say for example, stratum-mining-infinitecoin, for the infinitecoin. Additionally

to create a new database within MySQL, for example infinite. Now having said that, the coindaemon.conf file
determines the listen rpc port for the daemon. You can choose any 4 digit listen port. The same applies for the
stratum listen port. It is simply a matter of getting them all on your rpc, and stratum listen. Thus as many coins as
you desire, within the limits of your hardware, can be serviceable on your system or systems. I do hope this is clear,
because it is a lot of fun to explore new coins this way. Let's go over it in detail here using the infinitecoin as the
example. Then whether scrypt or sha256d, pow or pos, or pow+pos, they are all basically the same and are clones of
one another,and setup is a “miner,” pardon the pun, thing. Having said that, there is no time like the present to go
over this in excruciating detail which will serve to reinforce the required information necessary to retain the breadth,
than depth herein. Iteration, and reiteration are often keys to absorbing the vast array of informational constructs of
any large system, and it is a known fact that it requires “on average,” seven times of performing anything, before it
is understood.

Shall we play a game...

Step one is to download the infinitecoin daemon and compile it locally. To accomplish this task is fairly redundant
and very straight forward by this point, however lets proceed. Download the source code via the git command and
github.
cd $HOME/mpos

git clone https://github.com/infinitecoin/infinitecoin.git

cd infinitecoin/src

make -f makefile.unix

sudo cp infinitecoind /usr/bin

infinitecoind

Step two is to edit the $HOME/.infinitcoin/infinitecoin.conf configuration file for our rpc user and password and
subsequent addnodes and listen port.
mkdir -p $HOME/.infinitecoin

cd $HOME/.infinitecoin

cat <<EOF > infinitecoin.conf

rpcuser=infinitecoinrpc

rpcpassword=esp00f3d-b7d1-408c-8200-sp00f3dad5

rpcallowip=192.168.1.*

addnode=5.249.152.159:9321

rpcport=9322

server=1

daemon=1

EOF

Step three is to start the infinitecoin daemon process and normalize the block count. This process will generally

https://github.com/infinitecoin/infinitecoin.git

take between 6 hours, but may take up to 3 days. Google “infinitecoin block count” for an accurate, “normalized,”
block count.
infinitecoind getinfo

{

 "version" : 1080700,

 "protocolversion" : 69002,

 "walletversion" : 60000,

 "balance" : 13512.00000000,

 "blocks" : 836064,

 "connections" : 10,

 "proxy" : "",

 "difficulty" : 0.55975982,

 "testnet" : false,

 "keypoololdest" : 1397084575,

 "keypoolsize" : 101,

 "paytxfee" : 10.00000000,

 "mininput" : 0.01000000,

 "errors" : "Mandatory Update to v1.8.7"

}

Step four is to create our new database for the infinitecoin and the MPOS application.
cd $HOME/mpos/MPOS

mysql -v -u root -p infinite < sql/000_base_structure.sql

Step five is the prepare the stratum as a scrypt based proxy for the infinitecoin daemon listen specifying our own
listen port for the stratum+tcp://.

As a general rule of thumb, I personally copy recursively preserving the file permissions os an existing scrypt based
stratum directory naming this new directory stratum-mining-infinitecoind. Then proceed to make the “few”
necessary changes to the copied conf/config.py file. There are five sections that require mandatory changes;

● •The CENTRAL_WALLET, obtain this information using the coindaemond getaccountaddress “” daemon
command.
● •The TRUSTED_USER and TRUSTED_PASSWORD. These are derived directly from the
$HOME/.infinitecoin.conf configuration file.
● •The ALGO which in this case is “scrypt”.
● •The LISTEN_SOCKET_TRANSPORT, which happens to be externalized into the resulting proxy listen port
for the stratum+tcp:// on this server for this coin. Any 4 digits will suffice, and this is completely at your discretion.
Example: 7777.

● •The DB_MYSQL_DBNAME which in this case should match the database we created. The database user
and password are know values at this juncture and likely will not change. However if root is not the MySQL user, a
table GRANT will be necessary for the selected user, which happens to be detailed in the MySQL chapter of this
book.

As they say with “Grey Poupon,” but of course, this is your stratum, and it is the bridge and the gateway to the
daemon process and consequently the interface between the miner software and the MPOS application. You are free
to adjust the values within to your liking. Values like for instance, the variable difference, or the difference starting
point. It is completely configurable, and adjusting the values is a fun and interesting way to test varying rig
configurations.

Step six isto add block notificaton into the stratum. This is a good time to introduce a new concept into the stratum,
the block notification. Within the stratum directory there exists a scripts directory, and within this directory there is
one, a SHA encryption script specifically for generating the hashed ADMIN_PASSWORD, and two, the
blocknotify.sh itself. What we are going to establish here is to add a new process that will synchronize the stratum
and coindaemon processes when a block is found, eliminating needless processing time otherwise spent on mining
previously solved blocks. We will one..., generate a new hashed password for our stratum, then two..., place this
hashed value within our config.py file, then three..., add in a new “blocknotify” key, value attribute into our
coindaemon.conf file. The steps to accomplish this are exemplified here using the infinitecoin stratum scripts.
cd $HOME/mpos/stratum-mining-infinitecoin/scripts #-- directory (or your stratum
directory for this coin.)

uuidgen >@dmin

chmod a-rw @dmin

./generateAdminHash.sh `sudo cat @dmin`

Now add the resulting hashed string to the stratum's conf/config.py file as per the example below substituting your
hashed response.
ADMIN

ADMIN_PASSWORD_SHA256 = '295d6bsp00f3de406fb5ddEXAMPLE00f3dcf1fe5eebf'

Next edit the $HOME/.infinitecoin/infinitecoin.conf file adding the key, value attribute for the blocknotify. The
password is the un-hashed ADMIN password as is otherwise, “hashed” within the config.py. Substitute your fully
qualified path, and port for the stratum listen port externalized for this coin.
blocknotify=/home/steven/mpos/stratum-mining-infinitecoin/scripts/blocknotify.sh
--password sp00f3d5-b392-6fdsp00f3d --port 5555

To summarize the block notify, it is two additional steps, as, generating the hashed secret password, and store this
hashed value into our config.py file, then add a new attribute into the coindaemons coindaemon.conf file using the
“un-hased” password and stratum listen port.

As a “rule of thumb,” and personal preference you can use the nohup command to launch your stratum. Using
nohup will break the connection to your shell and will pass control to the kernel. The stratum will continue to

execute, regardless. However, without automation, like cron, the stratum will require a restart if the server is
rebooted.

To start the stratum, we navigate to the stratum's directory and use the twistd -ny launcher.tac, or the twistd -y
launcher.tac command for interactive, and or non interactive start of the stratum daemon process. Prefixing the
stratum start command with “nohup sudo twi...” nohups the daemon, breaking the processes ties to your shell
allowing it to execute even after you disconnect.

 nohup twistd -y launcher.tac &

 Both the nohup.out, and the log/stratum.log files are now at your disposal. It may be a good idea to first run the
stratum normally, with the “-ny” flags and output to the screen, then when bug free, nohup the process. So go ahead
and start the stratum process now.

Step seven is to perform the relatively few MPOS configuration steps to convert the application from the previous
coin to infinitecoin. As a rule of thumb it may be a good idea to copy the global.inc.php into a saved version named
by the previous coin. For example, within the /var/www-ssl/MPOS/public/include/config directory, copy the
global.inc.php file to global.inc.php.dogecoin. Then using sudo edit the global.inc.php. These are the few changes
necessary.

One fairly simple way of demonstrating the differences in the configuration is to perform a diff command. The
output is below, and an explanation follows.
diff global.inc.php.infinite global.inc.php.doge

48c48

< $config['db']['name'] = 'infinite';

> $config['db']['name'] = 'mpos';

56,57c56,57

< $config['wallet']['host'] = 'localhost:9322';

< $config['wallet']['username'] = 'infinitecoinrpc';

> $config['wallet']['host'] = 'localhost:22555';

> $config['wallet']['username'] = 'dogecoinrpc';

65c65

< $config['gettingstarted']['coinname'] = 'infinitecoin';

> $config['gettingstarted']['coinname'] = 'dogecoin';

68c68

< $config['gettingstarted']['stratumport'] = '5555';

> $config['gettingstarted']['stratumport'] = '4444';

114c114

< $config['currency'] = 'IFC';

Line 48 is the database. This is where we change from doge to infinite. Lines 56 and 57 are changed in accordance
to your coin listen port, and rpc username and password. Line 65 is the coinname which moves from dogecoin to
infinitecoin. Line 68 is the stratum listen port and finally line 114 is the three character, call letter name of the new
coin which in this case is IFC. And that's it.

So now we are working with a brand new database, infinite thus we have to sign up again, and go through the few
administrative settings following the previous coin. For all coins we have a new database, so this is necessary.
Generally speaking, we create the administrators sign in, then sign in as the administrator and make the necessary
settings changes. So let us take a look.

Create the websites titles, messge of the day, slogan, etc. above, then adjust the blockchain information as indicated

below.

Next we adjust the email address in the Systems tab and save the configuration, and it's pretty much a wrap.

Implement the cron tasks once on the server. There is a separate chapter for implementing these cron tasks, however
simple, they are a crucial, and very necessary component of the mining web site as they update our block
information, and disseminate coinage, as well as maintain the integrity of the system through regular maintenance
processes. Thus as they say, the cron tasks are one of the most often forgotten vital components.

So now it is a matter of creating your workers, then mining with these workers using the
stratum+tcp://ipaddress:listenport of the stratum. This simply works. If it fails, then it generally a minor adjustment
in either the coin daemons configuration file, for example, a missing rpcallow parameter, or a user error, lol. There
are very many resources via Google ready and waiting for answers to questions relating to user error. Don't take that
the wrong way though, user error is a good tool for learning, and is all part of the normal cycle. So have fun and no
worries.

The easiest way to test the “system” end to end is by using a cpuminer. Look for the (yay!!!). If you receive a
(boo!!!) this always indicates a problem, and is likely the wrong ALGO. For example, your stratum is sha256d and
your mining SCRYPT, or vs.

Look for your results as:
~/knary/exec/cpuminer$./minerd -a scrypt -o stratum+tcp://192.168.1.6:5555 -O
sjmariogolf55.d1:peeb

[2014-04-14 13:35:43] 2 miner threads started, using 'scrypt' algorithm.

[2014-04-14 13:35:43] Binding thread 0 to cpu 0

[2014-04-14 13:35:43] Starting Stratum on stratum+tcp://192.168.1.6:5555

[2014-04-14 13:35:43] Binding thread 1 to cpu 1

[2014-04-14 13:35:43] Stratum detected new block

[2014-04-14 13:35:45] thread 1: 4096 hashes, 3.08 khash/s

[2014-04-14 13:35:45] thread 0: 4096 hashes, 3.00 khash/s

[2014-04-14 13:35:51] thread 0: 17648 hashes, 2.90 khash/s

[2014-04-14 13:35:59] accepted: 1/1 (100.00%), 5.98 khash/s (yay!!!)

This concludes the chapter, however, below for you reference and consideration is a working stratum config.py.

A working config.py for infinitecoin.
'''

This is example configuration for Stratum server.

Please rename it to config.py and fill correct values.

This is already setup with sane values for solomining.

You NEED to set the parameters in BASIC SETTINGS

'''

CENTRAL_WALLET = 'iHueKW12mybabydonth@venosh0esjQSAfFm' # local coin address where money goes

COINDAEMON_TRUSTED_HOST = 'localhost'

COINDAEMON_TRUSTED_PORT = 9322

COINDAEMON_TRUSTED_USER = 'infinitecoinrpc'

COINDAEMON_TRUSTED_PASSWORD = 'edcp00f3d60-b7d1-408c-8200-7e3sp00f3dad5'

COINDAEMON_ALGO = 'scrypt'

COINDAEMON_Reward = 'POS'

COINDAEMON_TX = 'no'

STRATUM_MINING_PROCESS_NAME= 'infinite-stratum-mining'

DEBUG = False

LOGDIR = 'log/'

LOGFILE = None # eg. 'stratum.log'

LOGLEVEL = 'DEBUG'

LOG_ROTATION = True

LOG_SIZE = 10485760 # Rotate every 10M

LOG_RETENTION = 10 # Keep 10 Logs

THREAD_POOL_SIZE = 300

HOSTNAME = 'localhost'

ENABLE_EXAMPLE_SERVICE = False

LISTEN_SOCKET_TRANSPORT = 5555

LISTEN_HTTP_TRANSPORT = None

LISTEN_HTTPS_TRANSPORT = None

LISTEN_WS_TRANSPORT = None

LISTEN_WSS_TRANSPORT = None

PASSWORD_SALT = '1fa84e38-4230-4b06-91f6-0f6937a782f6'

DATABASE_DRIVER = 'mysql' # Options: none, sqlite, postgresql or mysql

DATABASE_EXTEND = False # SQLite and PGSQL Only!

DB_SQLITE_FILE = 'pooldb.sqlite'

DB_PGSQL_HOST = 'localhost'

DB_PGSQL_DBNAME = 'pooldb'

DB_PGSQL_USER = 'pooldb'

DB_PGSQL_PASS = '**empty**'

DB_PGSQL_SCHEMA = 'public'

DB_MYSQL_HOST = 'localhost'

DB_MYSQL_DBNAME = 'infinite'

DB_MYSQL_USER = 'root'

DB_MYSQL_PASS = 'yourpassword'

DB_MYSQL_PORT = 3306 # Default port for MySQL

DB_LOADER_CHECKTIME = 15 # How often we check to see if we should run the loader

DB_LOADER_REC_MIN = 10 # Min Records before the bulk loader fires

DB_LOADER_REC_MAX = 50 # Max Records the bulk loader will commit at a time

DB_LOADER_FORCE_TIME = 300 # How often the cache should be flushed into the DB regardless of size.

DB_STATS_AVG_TIME = 300 # When using the DATABASE_EXTEND option, average speed over X sec

 # Note: this is also how often it updates

DB_USERCACHE_TIME = 600 # How long the usercache is good for before we refresh

USERS_AUTOADD = False # Automatically add users to db when they connect.

 # This basically disables User Auth for the pool.

USERS_CHECK_PASSWORD = False # Check the workers password? (Many pools don't)

COINBASE_EXTRAS = '/stratumPool/' # Extra Descriptive String to incorporate in solved blocks

ALLOW_NONLOCAL_WALLET = False # Allow valid, but NON-Local wallet's

PREVHASH_REFRESH_INTERVAL = 5 # How often to check for new Blocks

 # If using the blocknotify script (recommended) set = to
MERKLE_REFRESH_INTERVAL

 # (No reason to poll if we're getting pushed notifications)

MERKLE_REFRESH_INTERVAL = 60 # How often check memorypool

 # This effectively resets the template and incorporates new transactions.

 # This should be "slow"

INSTANCE_ID = 31 # Used for extranonce and needs to be 0-31

VDIFF_X2_TYPE = True # powers of 2 e.g. 2,4,8,16,32,64,128,256,512,1024

VDIFF_FLOAT = False # Use float difficulty

POOL_TARGET = 16 # Pool-wide difficulty target int >= 1

VARIABLE_DIFF = True # Master variable difficulty enable

USE_COINDAEMON_DIFF = False # Set the maximum difficulty to the coin difficulty.

DIFF_UPDATE_FREQUENCY = 28800 # Update the coin difficulty once a day for the VARDIFF maximum

VDIFF_MIN_TARGET = 16 # Minimum Target difficulty

VDIFF_MAX_TARGET = 1024 # Maximum Target difficulty

VDIFF_TARGET_TIME = 15 # Target time per share (i.e. try to get 1 share per this many seconds)

VDIFF_RETARGET_TIME = 120 # Check to see if we should retarget this often

VDIFF_VARIANCE_PERCENT = 30 # Allow average time to very this % from target without retarget

ALLOW_EXTERNAL_DIFFICULTY = False

SOLUTION_BLOCK_HASH = True # If enabled, enter the block hash. If false enter the scrypt/sha hash into the
shares table

BLOCK_CHECK_SCRYPT_HASH = False

ENABLE_WORKER_BANNING = True # enable/disable temporary worker banning

WORKER_CACHE_TIME = 600 # How long the worker stats cache is good before we check and refresh

WORKER_BAN_TIME = 300 # How long we temporarily ban worker

INVALID_SHARES_PERCENT = 50 # Allow average invalid shares vary this % before we ban

NOTIFY_EMAIL_TO = '' # Where to send Start/Found block notifications

NOTIFY_EMAIL_TO_DEADMINER = '' # Where to send dead miner notifications

NOTIFY_EMAIL_FROM = 'root@localhost' # Sender address

NOTIFY_EMAIL_SERVER = 'localhost' # E-Mail Sender

NOTIFY_EMAIL_USERNAME = '' # E-Mail server SMTP Logon

NOTIFY_EMAIL_PASSWORD = ''

NOTIFY_EMAIL_USETLS = True

MEMCACHE_HOST = "localhost" # hostname or IP that runs memcached

MEMCACHE_PORT = 11211 # Port

MEMCACHE_TIMEOUT = 900 # Key timeout

MEMCACHE_PREFIX = "infinitestratum_" # Prefix for keys

Chapter 14 going international with the eMark
Enter European currency

DEM? Why not? Currently the European global currency is about 1.3 times the USD. Why not play with it? The
exact same process is followed in the previous chapter verbatim substituting emark for infinitecoin. We must
download the source daemon and compile it. We then start the daemon, and configure our
$HOME/.eMark/eMark.conf daemon configuration file. We create the emark database, and import the MPOS sql

into our new database. Etc.
cd $HOME/mpos

git clone https://github.com/emarkproject/DEM.git

#-- compile it, then copy it to /usr/bin, then start it up

For your reference, below is an example eMark conf file. The rpcport default, I think is 6666, um..., nah, I think I'll
go with 8925, as I like to reserve whole numbers for stratum listens. However, this is up to you.
gen=0

server=1

rpcuser=eMarkrpc

rpcpassword=edsp00f3d-b7d1-408c-8200-sp00f3d818ad5

rpcallowip=192.168.1.*

rpcconnect=127.0.0.1

rpcport=8925

addnode=85.84.67.125:5556

addnode=79.245.176.193:5556

addnode=192.241.136.114:5556

addnode=87.205.203.132:5556

addnode=92.43.97.9:5556

addnode=135.23.75.58:5556

addnode=108.30.68.204:5556

Now, eMark is a sha256d pow+pos currency, thus the stratum to copy or to download is pretty much the same,
normal stratum we have been using, except for the COINDAEMON_ALGO = 'sha256d' . Of course the same rules
apply here as are discussed in the previous chapter. We must use eMarkd getaccountaddress “”, and apply this wallet
to our config.py. We must change the database name, and the listen port. All that applies in detail in the previous
chapter can now quickly be applied to this coin, or for that matter any coin.

Testing can be accomplished in much the same manner as scrypt, using cpuminer, however, -a sha256d is passed as
the algorithm as apposed to scrypt.

For additional content, consider that you have a back end mining device like the Block Erupter cube that requires a
Getwork proxy between it and the stratum. This task can easily be accomplished by installing a
stratum-mining-proxy.py in between the back end device and your stratum listen.

The slush0 stratum mining proxy is extremely easy to install as an intermediary software gateway, or proxy for
those requiring the Getwork protocol, such as the BE Cube.

https://github.com/slush0/stratum-mining-proxy

Example slush0 startup:

https://github.com/emarkproject/DEM.git
https://github.com/slush0/stratum-mining-proxy

#-- This will start up an 8332 getwork listen and transport

./mining_proxy.py -q -o 192.168.1.4 --port 7777 --custom-user sjmariogolf55.d2
--custom-password peeb

The same MPOS configuration items are applicable as was discussed in detail within the last chapter. We copy the
global.inc.php into a saved file as infinitecoin, then make the same changes as described, now for eMark. Complete
the new registration, minor configuration changes, workers, etc.

The mine DEM.
~/knary/exec/cpuminer$./minerd -a sha256d -o stratum+tcp://192.168.1.4:7777 -O
sjmariogolf55.d1:peeb

[2014-04-14 14:31:06] 2 miner threads started, using 'sha256d' algorithm.

[2014-04-14 14:31:06] Binding thread 1 to cpu 1

[2014-04-14 14:31:06] Starting Stratum on stratum+tcp://192.168.1.4:7777

[2014-04-14 14:31:06] Binding thread 0 to cpu 0

[2014-04-14 14:31:06] Stratum detected new block

[2014-04-14 14:31:08] thread 1: 2097152 hashes, 2664 khash/s

This concludes this chapter, however below is a config.py that can be used with the eMark coin.

The eMark config.py.
'''

This is example configuration for Stratum server.

Please rename it to config.py and fill correct values.

This is already setup with sane values for solomining.

You NEED to set the parameters in BASIC SETTINGS

'''

CENTRAL_WALLET = 'Nc@tchm31func@nc@use1mf@stXcYUmmy8B' # local coin address where money goes

COINDAEMON_TRUSTED_HOST = 'localhost'

COINDAEMON_TRUSTED_PORT = 8925

COINDAEMON_TRUSTED_USER = 'eMarkrpc'

COINDAEMON_TRUSTED_PASSWORD = 'esp00f3d0-b7d1-408c-8200-sp00f3d18ad5'

COINDAEMON_ALGO = 'sha256d'

COINDAEMON_Reward = 'POS'

COINDAEMON_TX = 'yes'

STRATUM_MINING_PROCESS_NAME= 'emark-stratum-mining'

DEBUG = False

LOGDIR = 'log/'

LOGFILE = None # eg. 'stratum.log'

LOGLEVEL = 'DEBUG'

LOG_ROTATION = True

LOG_SIZE = 10485760 # Rotate every 10M

LOG_RETENTION = 10 # Keep 10 Logs

THREAD_POOL_SIZE = 300

HOSTNAME = 'localhost'

ENABLE_EXAMPLE_SERVICE = False

LISTEN_SOCKET_TRANSPORT = 7777

LISTEN_HTTP_TRANSPORT = None

LISTEN_HTTPS_TRANSPORT = None

LISTEN_WS_TRANSPORT = None

LISTEN_WSS_TRANSPORT = None

PASSWORD_SALT = '77088357-ce0e-4e7b-8574-2bbfdbab4ca'

DATABASE_DRIVER = 'mysql' # Options: none, sqlite, postgresql or mysql

DATABASE_EXTEND = False # SQLite and PGSQL Only!

DB_SQLITE_FILE = 'pooldb.sqlite'

DB_PGSQL_HOST = 'localhost'

DB_PGSQL_DBNAME = 'pooldb'

DB_PGSQL_USER = 'pooldb'

DB_PGSQL_PASS = '**empty**'

DB_PGSQL_SCHEMA = 'public'

DB_MYSQL_HOST = 'localhost'

DB_MYSQL_DBNAME = 'emark'

DB_MYSQL_USER = 'root'

DB_MYSQL_PASS = 'yourpassword'

DB_MYSQL_PORT = 3306 # Default port for MySQL

DB_LOADER_CHECKTIME = 15 # How often we check to see if we should run the loader

DB_LOADER_REC_MIN = 10 # Min Records before the bulk loader fires

DB_LOADER_REC_MAX = 50 # Max Records the bulk loader will commit at a time

DB_LOADER_FORCE_TIME = 300 # How often the cache should be flushed into the DB regardless of size.

DB_STATS_AVG_TIME = 300 # When using the DATABASE_EXTEND option, average speed over X sec

 # Note: this is also how often it updates

DB_USERCACHE_TIME = 600 # How long the usercache is good for before we refresh

USERS_AUTOADD = False # Automatically add users to db when they connect.

 # This basically disables User Auth for the pool.

USERS_CHECK_PASSWORD = False # Check the workers password? (Many pools don't)

COINBASE_EXTRAS = '/stratumPool/' # Extra Descriptive String to incorporate in solved blocks

ALLOW_NONLOCAL_WALLET = False # Allow valid, but NON-Local wallet's

PREVHASH_REFRESH_INTERVAL = 30 # How often to check for new Blocks

 # If using the blocknotify script (recommended) set = to

MERKLE_REFRESH_INTERVAL

 # (No reason to poll if we're getting pushed notifications)

MERKLE_REFRESH_INTERVAL = 60 # How often check memorypool

 # This effectively resets the template and incorporates new
transactions.

 # This should be "slow"

INSTANCE_ID = 31 # Used for extra-nonce and needs to be 0-31

VDIFF_X2_TYPE = True # powers of 2 e.g. 2,4,8,16,32,64,128,256,512,1024

VDIFF_FLOAT = False # Use float difficulty

POOL_TARGET = 20 # Pool-wide difficulty target int >= 1

VARIABLE_DIFF = True # Master variable difficulty enable

USE_COINDAEMON_DIFF = True # Set the maximum difficulty to the coin difficulty.

DIFF_UPDATE_FREQUENCY = 3600 # Update the coin difficulty once a day for the VARDIFF maximum

VDIFF_MIN_TARGET = 2 # Minimum Target difficulty

VDIFF_MAX_TARGET = 2048 # Maximum Target difficulty

VDIFF_TARGET_TIME = 15 # Target time per share (i.e. try to get 1 share per this many seconds)

VDIFF_RETARGET_TIME = 60 # Check to see if we should retarget this often

VDIFF_VARIANCE_PERCENT = 10 # Allow average time to very this % from target without retarget

ALLOW_EXTERNAL_DIFFICULTY = True

SOLUTION_BLOCK_HASH = True # If enabled, enter the block hash. If false enter the scrypt/sha hash into
the shares table

BLOCK_CHECK_SCRYPT_HASH = False

ENABLE_WORKER_BANNING = True # enable/disable temporary worker banning

WORKER_CACHE_TIME = 600 # How long the worker stats cache is good before we check and refresh

WORKER_BAN_TIME = 300 # How long we temporarily ban worker

INVALID_SHARES_PERCENT = 50 # Allow average invalid shares vary this % before we ban

NOTIFY_EMAIL_TO = '' # Where to send Start/Found block notifications

NOTIFY_EMAIL_TO_DEADMINER = '' # Where to send dead miner notifications

NOTIFY_EMAIL_FROM = 'root@localhost' # Sender address

NOTIFY_EMAIL_SERVER = 'localhost' # E-Mail Sender

NOTIFY_EMAIL_USERNAME = '' # E-Mail server SMTP Logon

NOTIFY_EMAIL_PASSWORD = ''

NOTIFY_EMAIL_USETLS = True

MEMCACHE_HOST = "localhost" # hostname or IP that runs memcached

MEMCACHE_PORT = 11211 # Port

MEMCACHE_TIMEOUT = 900 # Key timeout

MEMCACHE_PREFIX = "emarkstratum_" # Prefix for keys

● •.Finding new blocks created by the pool
● •.Updating block confirmations in the pool
● •.Counting round boundaries
● •.Processing user round/share payouts and debit transactions (manual and automatic)
● •.Processing worker notifications
● •.Updating statistical data used by the frontend
● •.Cleanup of archived shares
● •.Other smaller tasks that needs to be handled by the backend

Logging

All crons have logging to console disabled. Instead, a logfile is created for each cron under the cronjobs/logs
directory in MPOS. If you are having issues with crons (you can see their status on the Admin Panel -> Monitoring
page) this is the best place to check for additional information. If you wish to enabled debug mode, modify
shared.inc.php and replace KLogger::INFO with KLogger::DEBUG. Ensure to disable this option again when you
are done, logfile will grow rather large with it enabled!

Log Rotation

A logrotate example file is included in the repository at cronjobs/etc/logrotate.conf and can be triggered with the
cronjobs/logrotate.sh script. It will cycle the files at a daily interval keeping up to 7 days as an archive.

Cronjobs

A brief description of all the cronjobs included in this project, sorted alphabetically.

archive_cleanup.php

Scans the shares_archive table for old shares that can be deleted according to the configuration. You can modify the
cleanup behavior in the global config.

payouts.php

Runs all scheduled payouts setup or initiated by users. Each user will be processed independently so even if a user
has setup a wrong LTC address (even though MPOS will try to ensure it's valid), other users are not affected by that.
Disabling this payout via Admin Panel will allow for some maintenance work without payouts being processed.

blockupdate.php

Checks our RPC service for updated confirmation records for our found blocks and transfers them to the DB.
Without this, no transactions would be confirmed and converted to confirmed credits.

findblock.php

As the name suggest, it will look into the RPC service for newly found blocks and add them to the database. Once
all blocks are found, it will check each blocks upstream accepted share and calculate the round shares. No further
processing is done, but this information will be used by the payout crons later.

notifications.php

As the name suggestes, notifications related to backend jobs like IDLE workers will be sent with this cronjob. It

will also ensure that notifications are reset once a worker becomes active again so new notifications can be send out.
You can globally disable notifications but each user also has the ability to setup their notifications. Globally disabled
notifications override all user setting.

pplns_payout.php & proportional_payout.php & pps_payout.php

These crons, depending on which one is enabled in the global configuration, will handle payouts to users. PPLNS
and Prop both are round based while PPS will payout per share. Round ends are still processed for statistical
purposes. Only unaccounted new blocks with a valid share ID will be processed!

statistics.php

Updates various cache keys in memcache to allow the frontend to respond fast to requests. Most notably it is
checking for all users shares and increments them each run so this information is available to the frontend without
checking the database.

tickerupdate.php

Runs API calls against external sites. Since we can't cross-call APIs due to XSS protection in browsers, this cron
will check them instead. Results are added to the database and made available to the frontend.

tables_cleanup.php

Runs a few maintenance tasks to keep your tables clear.

Setup

Instead of running a single cronjob manually it is recommended to use a split automatic setup to ensure some crons
are always running at set intervals, specifically our statistics.php. For long rounds or coins with a lot of shares, it is a
requirement to run the statistics cron as often as possible to ensure a responsive site after a round ends.

run-statistics.sh

This cron will ONLY update the statistics cache. You can add it to your crontab at a minutely interval.

run-payout.sh

Manages the round ends, finding blocks and everything related to internal and external payouts. Can run as often as
you need, for PPS pools it is recommend once per 30 minutes to one hour. This keeps the amount of transactions
created as low as possible, enabling faster payout for users.

run-maintenance.sh

Clears up your tables, sends IDLE worker notifications and updates the coin price and uptime robot status. Can be
run as often as needed, but once every minute should be fine.

Sample configuration

This is a sample configuration for a pool. It will disable mailing events through cron and ensure that we are not
running into cron-conflicts between multiple MPOS instances by adding the subfolder parameter -d. Other coins can
be called the same way by adding other subfolders where to store the PID files (usually /tmp/<FOLDER>/*.pid). To
make your own MPOS configuration run your crontab by calling crontab -e and pasting the cronjob data you create

here at the end of the created file. Once your file is created and saved, you can view your crontab by calling it with
the crontab -l command.

Example crontab:
Edit this file to introduce tasks to be run by cron.

MAILTO=""

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/www-ssl/MPOS/cronjobs/run-statistics.sh -d
DGC

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/www-ssl/MPOS/cronjobs/run-payout.sh -d DGC

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/www-ssl/MPOS/cronjobs/run-maintenance.sh
-d DGC

Chapter 16 it's all about the Defense
Enter the MPOS Application Suite

Distributed denial-of-service attacks have posed an increasingly severe problem for cryptocurrency exchanges and
mining pools in recent weeks. Last month, several major pools in the mining community suffered debilitating DDoS
attacks that resulted in significant delays, lost mining time and frustration for miners.

In extreme cases, as explained by TeamDoge administrator Forrest Fuqua, some pools received ransom messages
from hackers demanding payoffs in exchange for pulling back their attacks.Fuqua said that security flaws in the
Mining Portal Open Source (MPOS) pool software commonly used throughout the community have made it all too
easy for cyber attackers to disrupt mining activities and extract ransoms from pools.

“Dogepool.pw actually got their database hacked at one point, due to the fact of insecurities in the main pool
software that everybody owns. Even the biggest mining pool for Litecoin uses it as their backend. It’s everywhere in
their templates – they’re using the exact same framework. So some of these security exploits affect us all.”

First and foremost we must protect our site just as the walls protected us in past generations, thus it is true today,
metaphorically speaking.

A minimal, and pretty good DoS protection can be found here.
https://github.com/MPOS/php-mpos/wiki/Basic-DoS-Protection.

With excerpts from the MPOS wiki. Security is an Onion. There is more to pool security than a 1 page bullet-point
list and there is no magical program to keep you from getting hacked, this is just a primer.

http://www.generateit.net/cron-job/
https://teamdoge.com/
http://www.coindesk.com/malware-mines-bitcoins-until-ransom-paid/
https://github.com/MPOS/php-mpos/wiki/Basic-DoS-Protection

Pre-Installation

● •.Get onto your production box, setup ssh keys.
● •.Update and install all the dependencies, mail etc.
● •.Complile ypur own PHP.
● •.Compile your own Apache.
● •.Make sure apache/php/mysql/$mailserver are playing nice together.
● •.Run phpsecinfo.
● •.Make sure display_errors is Off in your php.ini.
● •.Make sure your session.save_path is NOT web accessible in your php.ini.
● •.And if you're not running it yet and reading along, run phpsecinfo.

Apache / MySQL / PHP

● •.Lock down the Apache document root to only MPOS.
● •.If you have an SSL cert, make sure you have installed it correctly. Use a valid cert.
● •.Enable [cookies][secure] in global config and [strict__https_only] in security config .
● •.Your MySQL user should not be root, setup a new user with permissions you set.
● •.Log everything you can.

MPOS

● •.Turning on [twofactor] will protect your users from themselves.
● •.Get an SSL cert and take the extra 10 minutes, it's worth it.
● •.Make sure your [cookie] settings are correct.
● •.Memcache should be enabled unless you absolutely cannot use it (I don't believe you).
● •.Strict mode will stop a few types of attacks, so use it.
● •.If you're paranoid use strict__verify_server and set the strict__bind_'s to your server info.
● •.Remove unnecessary software; Your production box doesn't need phpmyadmin.
● •.Download and run phpsecinfo.
● •.Clear your bash history.
● •.Clear your MySQL history.

Some additional fixes we may consider include:

● •If a IP locks more than 2 accounts, it gets banned.
● •Using geoip database to block suspicious IPs from countrys like the Philippines and so on, probably does not
help much because of TOR.
● •Added Re-Captcha's to sign-ups and logins.
● •IP Banning in Stratum much faster than the defaults, I'm banning already after 5 seconds of sending
"nonsense" - which works quite well.
● •DDoS protection such as Blacklotus and Cloudflare.
● •Virtual F5 BigIP on a separate front end. Funnel all traffic through this F5 LB, taking advantage of their built
in DDOS, FW, encryption/decryption capabilities.

http://phpsec.org/projects/phpsecinfo
http://phpsec.org/projects/phpsecinfo
http://phpsec.org/projects/phpsecinfo

● •Google Authenticator for all logins/payouts/adress changes/everything.

Chapter 17 summary and closing remarks
Enter the end

There is a lot of information within the chapters of this book, however, I must say that there is countless more
words that need to be expressed as this is just an introduction, really to the amount of available content surrounding
this singular topic. It is quite overwhelming, at best, and rather daunting at times, but I assure you there are people
all around the world doing this successfully and profiting. If there is a singular topic that promotes itself above all
others, it has to be security . We live in an ever changing, and volatile world. To quote your mom by saying “it's
dangerous out there,” is an underestimate of just how dangerous it really is. There really are bad people that would
love to steal everything from you, so I put security top amongst the most important topics covered.

As was quoted, “security is like an onion,” and well, it is. Unfortunately while this book provides the basic, and
somewhat more than basic security tips, be it known that security is a great field to be in because it is always
changing. Please consider security when designing anything, especially if it is a web based mining site.

If I were to convey to you all of the information you will require to be a successful Internet entrepreneur, well in the
first place, I simply could not. Secondly, it would take a lifetime to both write and to read. What I can provide, I
think I have, in a succinct, and repeatable manner.

Good luck and God speed. Until we speak again.

Thanks

Steven

Appendix A Sometimes the Proof is in the pudding

Statistics of one 24 hour run at or below 100 KH/s.

Solo mining with the getwork protocol just quite simply does not seem to do the job. One would literally spend
months mining to the getwork port of a coin daemon and never see even one accepted share, let alone to ever have
hopes of solving a block. For the sake of this book I ran one test of a simple mining server guaged at 100 KH/s. Yes
I know this is small potatoes, however as a baseline it will do nicely. After a single day run here are the actual
statistics for your perusal. No I did not solve a block but I did manage to find run over 800 blocks and greater than
200,000 shares of which over 9,000 were mined. This is encouragement at its very finest. A single Litecoin block
solution is worth 50 coins.
 [2014-03-31 15:02:23] Started at [2014-03-30 00:01:09]

 [2014-03-31 15:02:23] Pool: stratum+tcp://192.168.1.16:3333

 [2014-03-31 15:02:23] Runtime: 24 hrs : 1 mins : 13 secs

 [2014-03-31 15:02:23] Average hashrate: 98.3 Kilohash/s

 [2014-03-31 15:02:23] Solved blocks: 0

 [2014-03-31 15:02:23] Best share difficulty: 981K

 [2014-03-31 15:02:23] Share submissions: 9167

 [2014-03-31 15:02:23] Accepted shares: 9127

 [2014-03-31 15:02:23] Rejected shares: 40

 [2014-03-31 15:02:23] Accepted difficulty shares: 209222

 [2014-03-31 15:02:23] Rejected difficulty shares: 953

 [2014-03-31 15:02:23] Reject ratio: 0.4%

 [2014-03-31 15:02:23] Hardware errors: 0

 [2014-03-31 15:02:23] Utility (accepted shares / min): 3.90/min

 [2014-03-31 15:02:23] Work Utility (diff1 shares solved / min): 88.69/min

 [2014-03-31 15:02:23] Stale submissions discarded due to new blocks: 0

 [2014-03-31 15:02:23] Unable to get work from server occasions: 4

 [2014-03-31 15:02:23] Work items generated locally: 11354

 [2014-03-31 15:02:23] Submitting work remotely delay occasions: 0

 [2014-03-31 15:02:23] New blocks detected on network: 886

 [2014-03-31 15:02:23] Summary of per device statistics:

 [2014-03-31 15:02:23] GPU0 | (5s):97.42K (avg):98.30Kh/s | A:209222 R:953
HW:0 WU:88.7/m

 [2014-03-31 15:02:23]

Statistics of one 24 hour run infinitecoin at or below 500 KH/s.

This next example is the infinitecoin. I was pleasantly surprised to find out that the infinitecoin block solution pays
1,200 coins per block found. This is a very easy coin to mine, yet has about the same potential return as the
Dogecoin. Below is a chart from MPOS showing expected normal PPLNS, (say from a normal Internet mining site,)
and the actual return. The actual return is staggeringly higher than the expected.

These are actual return statistics from a little over 24 hours of mining below 500 KH/s.

 infinitecoind getinfo

{

 "version" : 1080700,

 "protocolversion" : 69002,

 "walletversion" : 60000,

 "balance" : 9216.00000000,

 "blocks" : 834169,

 "connections" : 12,

 "proxy" : "",

 "difficulty" : 0.29057961,

 "testnet" : false,

 "keypoololdest" : 1397084575,

 "keypoolsize" : 101,

 "paytxfee" : 10.00000000,

 "mininput" : 0.01000000,

 "errors" : ""

}

Statistics of one 24+ hour run sha256d eMark at or below 30 MH/s.

After 12 hours of mining the DEM eMark international coin, I awoke to another pleasant surprise. A block found.
The eMark is a POS + POS and confirmed 50 coins directly into my wallet. I'd rather it pay 1,200 like infinitecoin,
but let's be real, and I'll take it considering this coin is based on the Eur o, currently trading higher that the USD. It's
not yet Bitcoin, but maybe it will be somday, who knows. This setup uses ½ of a BE cube and a
stratum-mining-proxy supplying the Getwork 8332 port pointing to the Stratum servicing MPOS.

