
DUNE Software Framework Requirements Taskforce Report
Annotated for Non-DUNE Review

Executive Summary

This taskforce report was commissioned by the DUNE computing consortium. The scope of the
report was to provide an enumeration of the needs of the DUNE experiment, as driven by its
physics mission, in regards to a software framework for data processing and analysis.

The taskforce was composed of representatives from the different physics missions of DUNE,
scientists with extensive experience with large scale data processing and analysis from outside
of DUNE and technical experts in software framework design, including the current conveners1

of the HSF frameworks working group.2

In this report we have included additional annotations regarding the underlying rationale or
driving principles that have lead to the information that is presented here. Annotations are
provided as textual callouts to distinguish them from the report findings and requirements.

This is an example of an annotation providing additional information.

Task force members

Co-chairs - Andrew Norman (FNAL) and Paul Laycock (BNL)

DUNE members - David Adams (BNL), Adam Aurisano (U. Cinc), Chris Backhouse (UCL), Mary
Bishai (BNL), Claire David (York), Tom Junk (FNAL), Tom LeCompte (ANL), Chris Marshall
(LBL), Brett Viren (BNL)

Advisors - Brian Bockelman (Madison), Chris Jones (FNAL), Kyle Knoepfel (FNAL), Liz
Sexton-Kennedy (FNAL), Vakho Tsulaia (LBL), Peter Van Gemmeren (ANL)

General framework requirements

For ease of reference, this executive summary lists the enumerated framework requirements
defined by the Software Framework Requirements Task Force, more info on the task force can
be found here:
https://wiki.dunescience.org/wiki/Software_Framework_Requirements_Task_Force

Brave readers are encouraged to read the full document to understand the context and nuances
of each of the requirements, the wording here is the same as the full text. While there may be
overlap, the complete set of requirements as derived from various considerations is presented

2 High Energy Physics Software Foundation
1 Included scientists from Atlas, CMS, Belle II, NOvA, MicroBooNE, CDF and D0

https://wiki.dunescience.org/wiki/Software_Framework_Requirements_Task_Force


and no attempt at reducing this list is made here, rather that is left to framework designers when
drawing up specifications. Considerations on “Utilities” and “Desired Features” are also
presented at the end of the document to capture useful discussions and provide additional
context.

We list in the following the formal requirements determined by the taskforce.
(1) The framework must separate data and algorithms.

(2) The framework must separate the persistent data representation from the
in-memory representation seen by algorithms.

Configuration requirements

(3) The framework should provide a Turing complete configuration language as a
foundational component so that it can ensure coherence of its configuration.

(4) The framework should provide a suitable API so that algorithm writers can
ensure their required parameters are self-describing and validatable.

(5) The framework configuration system needs to have a robust persistency and
versioning system that makes it easy to document and reproduce previous
results. It must be possible to create, tag, check-sum, store and compare
configurations. This configuration management system should be external to the
framework or data files so that configurations can reliably be reused and audited.

Strong versioning and persistency are required to be provided at the
framework level, so that the framework can track the versioning of
data products, perform needed bookkeeping, and strongly enforce
version consistency between algorithms and data. In addition
versioning is required to be provided for the configurations that are
used at runtime within the framework, so that any given data is fully
reproducible. Moreover the neutrino community has a culture of
embedding this information into their data so that the conditions
under which a given set of data was produced can be determined from
the persisted objects themselves. This becomes important in neutrino
analyses which often deal with many “systematically” varied or
derived versions of data and having the data be self describing is
essential for the automation of the analysis tools.



(6) The resulting state of the configured framework and its components should be
deterministic and precisely reproducible given a set of environmental conditions
which include the available hardware, operating system, input data, etc.

It is recognized that in future heterogeneous computing environments,
that results of algorithms may differ based upon the underlying
platforms and architectures that they were run on, either due to the
machine precision of the computational environment (i.e. reduced
precision GPUs, which have significant computational speed benefits)
or the concurrency [width] that they are run under. This is very
different from previous generations of computation which were
effectively homogeneous, taking place on the x86 architecture. We
therefore require that the framework be aware of the platform and
conditions under which is running, and that it bookkeep the data
accordingly, so that differences between platforms can be enumerated
and accounted for.

(7) The ensemble of the framework+environmental conditions must give
reproducible results.

(8) It is desirable that it should be possible to only configure those framework
components required for a particular data processing use case.

(9) It must be possible to derive the input data requirements for any algorithm, in
order to define the sequence of all algorithms needed for a particular use case.

Concurrency and Multithreading

(10) It is (therefore) desirable that the framework should help facilitate the use of
multi-threaded data processing and facilitate access to co-processors in an
efficient manner.

The framework needs to be able to operate in both a multi-threaded
environment and in a co-processor offload environment. More
specifically it needs to provide facilities for either enforcing
safety under multi-threaded concurrency, or for tagging/forcing
regions into a safe serial operations mode. Similarly for offloading
of computations to co-processors, the framework must either manage
and enforce the data/memory coherency, or allow for the imposing of
locks on data regions and co-processor states, and adjust execution
flow accordingly. More generally we have NOT required in this



specific requirement that the framework maintain coherency between
non-local execution ranks of computations (i.e. if the framework were
to utilize an MPI like execution model, each rank is required to
maintain coherence but data exchange and reduction is not explicitly
something that the framework would handle, rather we would rely on
the MPI memory model to provide this coherence)

(11) It is highly desirable that it be possible to write algorithmic code
independently of the framework.

(12) It is highly desirable that the framework be sufficiently modular in design to
allow re-use of framework services and functionality both within and outside of
the framework context, as far as that is possible.

(13) The framework must be able to schedule thread-safe and non-thread-safe
work appropriately.

It is recognized that not all algorithms or data processing
techniques are capable of being done in a thread safe manner. As a
result, we need the ability to pass information to the framework to
give it hints regarding scheduling. In particular we need the
ability to tell the framework that a given code block is only safe
for execution in a serial environment, or that a given block is safe
for parallel execution up to some level. This can then be translated
down into the actual scheduling algorithms which the framework uses.

Reproducibility and provenance

(14) The framework must provide a full provenance chain for any and all data
products which must include enough information to reproduce identically every
persistent data product. By definition, the chain will also need to include
sufficient information to reproduce the transient data passed between algorithm
modules, even though the product is not persisted in the final output.

(15) The framework must provide full provenance information and all of the
metadata required to ensure reproducibility.

We assume in DUNE, as was done for previous neutrino experiments,
that the event data model includes meta information which allows for
the data to be fully self describing. This means that each data



product carries with it a provenance chain which is tracked and
propagated by the framework. In particular the I/O layers of the
framework are expected to read and write this information in a manner
that is transparent to the users and their algorithms. In prior
frameworks, and this is an implementation detail, an SQLite database
was embedded directly into the output files that the framework wrote.
This database contained metadata and other related provenance
information. The advantage of these self describing files approach
are that they then do not require external information (e.g. a
metadata database) to be available at runtime. It also prevents the
loss of “data identity” when individuals copy files around and
potentially change their names (i.e. the files know who they actually
are and retain that identity even if someone manually renames them)
and allows for easier extraction and aggregation of data from files
(i.e. skimming) without loss of identity since the meta information
can be carried at the event level. It is important to note that this
is a viable strategy in part because of the large native event sizes
of neutrino data, which then yield data to metadata ratios that are
very favorable.

Random numbers, machine learning and conditions

(16) It is highly desirable that the framework broker access to random number
generators and seeds in order to guarantee reproducibility.

(17) The framework should give special attention to machine learning inference in
the design, both to allow simple exchanges of inference backends and to record
the provenance of those backends and all necessary versioning information.

Machine learning inference is called out here as an example of an
external calculation which is called out to by the framework. The
framework must be aware that a portion of its scheduling is making an
external call, which may have restrictions that it then consequently
needs to impose back on the execution flow and data model. Moreover,
the framework needs to be able to bookkeep the provenance of these
styles of external calls to services which may have versioning
information or configuration information that needs to be embedded
back into the data. As a concrete example, it can be envisioned that
the experiment has trained and configured two significantly different
forms of neutrino interaction classification. The frame, at run
time, is configured to call out to one of these and then the results
are written to the data. Alternatively the configuration could have



pointed to the other classification setup, and those results written.
It is important for the framework to be able to track this, even
though it is an external computation.

(18) The framework must provide a conditions service that is a single point of
access to conditions data.

(19) The configuration of the framework conditions service should ideally be via
one configuration parameter (a global tag).

(20) It must be possible to override a subset of global tag configured conditions
for testing purposes.

Data and I/O layer

(21) The framework must support reading and writing different persistent data
formats.

(22) The framework I/O functionality must be backward compatible across
versions.

(23) A mechanism for user-defined schema evolution of data products needs to
be provided.

(24) The framework must provide a mechanism to register/associate and to
run/apply custom serialization/deserialization and compression/decompression
algorithms to data on write/read of that data from a persistable form.

The nature of the liquid argon TPC data, makes it very amenable to
specific types of compression in some forms, and to other compression
methods in other forms. When this is combined with the very large
nature of specific data products, it makes it advantageous to be able
to specify how individual data products are treated when they are
being written or restored from a data store. This should not be
thought of as a traditional “data format converter”, but rather as an
association of an algorithm that is applied to the data during its
store/restore operations. In particular, for data that is being
read, the algorithm for its deserialization and decompression needs
to be embedded with the data so that the framework can perform the
operations without intervention or manual configuration. We are



trying to avoid situations where the data becomes unreadable because
the end user of the data does not have (or can not determine) how a
given data product was stored. This should be thought of as
auto-magical read/write of data.

(25) The framework should support compression on output data in a manner that
is transparent to users and is configurable. It must be possible to disable the
automatic compression of output data or provide compression transforms that
are effectively identity transforms.

(26) The framework should allow a configurable maximum output file size and
provide appropriate file-handling functionality.

We have made an assumption that the framework is responsible for
driving the I/O layer but retains control over the I/O layer. This
is different from some past frameworks which delegated complete
control to the I/O layer for reads/write. We believe that we need to
have the framework retain control due to our parallelism/concurrency
requirements, and our needs to interact with multiple I/O layers
simultaneously.

Memory management

(27) The framework must be able to operate on subsets of a trigger record.
Specifically, it must be possible to break trigger records down into smaller
chunks (e.g. one APA) and be able to stitch those chunks back together. For
supernovae, it must also be possible to reuse a fraction (nominally 100 us) of the
previous chunk (nominally 5ms) of data to allow stitching in time.

This requirement should be interpreted as the framework being able to
natively subset its primary data atom into a collection of new
secondary data atoms which represent the same information, but can be
processed or iterated on by the framework’s “event loop” and then
reconstituted back into the primary data atom either for subsequent
processing or for recording by the I/O layers. The second part of
this requirement, is that data from an adjacent data atom
(specifically the time windows in a supernovae readout) be able to be
stitched together with the current data atom to provide “edge effect”
coverage in these types of extended time readouts (this applies to
more than just supernovae detection). This is both an artifact of
how the spatial/temporal degeneracies work in the TPC detector and



the need to have contiguous time window coverage for the physical
process of interest (i.e. the supernova). One effect of this
requirement is that individual data atoms are not truly independent
of each other in the event loop of a framework. Rather there is a
weak form of hysteresis that needs to be accounted for, although it
is thought that his can be mapped logically into a data overlay
problem.

(28) Data products should not occupy memory beyond their useful lifetimes.

(29) The framework must manage memory of data products in the Data Store.

(30) The framework needs to support skimming/slimming/thinning for data
reduction.

(31) The framework needs to be able to read and write several parallel data
streams (including friend trees). Labelling of data objects across streams should
be intuitive and not error prone. Provenance information should support
correlating related data objects across streams.

This requirement arises from a number of different problems specific
to the LArTPC data sizes and analysis techniques. In general, at the
analysis level there is a desire to not carry around the full readout
data (wire waveforms and derived hits) for the majority of the
analysis. However in the late stages of the analysis there is a
need/desire to reintroduce the full information content of the
neutrino interaction candidate for operations like classification, or
even mundane tasks like data visualization and display. As a result,
the neutrino community needs a way to divide up the data objects that
are part of a single event, subset them, and then later reassociate
them back together. The framework needs to have the ability to deal
with this, and provide the needed linkage and accounting facilities
so that the provenance chain, normalizations, exposures and other
information that are required to ensure that the final events records
are coherent, are maintained. Essentially the framework needs to be
able to split an input stream in a one-to-many operation, and then be
able to perform the inversion of that operation as a many-to-one
mapping.

(32) The framework needs to allow experiment code to mix simulation and
(overlay) data.



Physics analysis

(33) It must be possible to define arbitrary units of execution that are independent
of trigger records. It must be possible to correlate these units to trigger records
for exposure accounting, and experiment conditions.

(34) The framework should make minimal assumptions about the data model (e.g.
event-by-event or particle-candidate-based).

This does not mean that we are abandoning an event data model or an
event loop. Rather it means that we don’t make an assumption about
what the base data atom is. In neutrino physics we often need to
make contextual switches between what the unit of interest is, where
examples are the subsetting of extended accelerator spills structures
into smaller time windows, or the subsetting of time windows into
disconnected regions of concentrated activity, or the subsetting of
activity regions into shower and particle track trajectories and
objects. We need our framework to be able to operate over these
units in a native manner, instead of having everything below the
highest organizational unit be looped over manually by a user module.

(35) Analysis must be able to use particle-candidate-based control flow, without
any constraints arising from event-based control flow.

This is an outgrowth of the need to switch data atom context.
Specifically this applies mainly to the exposure accounting that is
needed when down shifting between different contexts. This can be
complicated, but it is an essential concept in neutrino analyses.

(36) The framework must support partial reading of the persistent data and must
not require reading an entire trigger record unless required (i.e. it must not force
the entire trigger record to be read).

(37) Calibration, reconstruction, and selection algorithms must be
framework-agnostic, i.e. able to run transparently in any official DUNE framework
where equivalent requisite data products exist.

This is a bit odd. Basically we have collaborators who don’t want to
use the official DUNE framework, so they want it in writing that our
framework will allow for them to not use our framework.



(38) The framework should be easily portable and capable of running on local
resources.

We specifically did not specify a programming language or packaging
system in the requirements. We are looking for a framework that is
portable between architectures and environments. In particular we
are NOT assuming that the framework is strictly tied to an x86
architecture, rather we assume that the framework and associated
build system will be able to support running on the future equivalent
of today’s single node x86 platforms as well as more exotic platforms
as will be present in the DoE’s leadership computing facilities.
This means that we also need the framework to be supportable across
different flavors of GPU or other accelerators.

While this may seem like a stretch compared to what was done for the
LHC or previous generations of neutrino analysis, we believe that the
direction of the high performance computing landscape and the
associated tools, compilers, and performance tuned library suites
will make it possible to support this operational requirement.

(39) The same code developed and tested on local resources must scale to large
resources. This should include HPC resources as far as possible.

The scale of resources we wish to support running on varies from
based on the specific workflow in question. For DUNE it is important
to remember that event data can be subsetted or partitioned easily on
an APA (Anode Plane Assembly) by APA basis, and the large side of the
data makes this division highly favorable both in terms of memory
footprints and computational scaling. This gives a very natural 169
way parallelism, where for many of the algorithms there are then
further divisions of that data that make sense.

When we talk about our scaling needs, we then consider that our
framework needs to support a) Running on a single physical node with
an N-way parallelism based on the core and memory configuration of
the hardware (i.e. we don’t know what the machines will look like in
2026+ but if there is a machine with X cores, we want the framework
to be able to support running on at least some of those in an
efficient way). b) Running on a collection of nodes colocated on a
common network fabric, each running one or more ranks of a
computation (e.g. we would map each of 169 APA based divisions of the



data to 169 separate ranks in the computation which would be spread
over 169+1 separate nodes. This would allow each node to process one
APA of data with a rank 0 handling reduction operations and allowing
for further exploitation of parallelism on the individual nodes to
support specific algorithm’s needs.).

On today’s machines we have successfully used this model with O(1-4k)
concurrent colocated physical nodes, each with 40-68 cores per node.
This has allowed us to run computations with in excess of 300k
concurrent ranks per computation. While DUNE will not need quite
this level of parallelism for our reconstruction or simulation
workflows, we already explicitly do this for our fitting workflows,
so we would want to be able to scale at or beyond this level in the
future.

Our general goal for the DUNE framework and workflows is to be able
to support running on machines with a million computational ranks
plus offloads to dedicated accelerators.

(40) Analysis files must record their parent framework files, but no event-by-event
provenance is required. The full provenance information need not be retained in
analysis files as this could easily become larger than the data itself.

Our model in neutrino physics has always been to provide a full
provenance chain which is reconstructable from a single data file.
The way our analysis chains work, it is often more important to know
“how” a number was derived than what the number is. This is mainly
because of the way that we treat systematic variations of the data,
and the way that we need to do our exposure counting on a spill by
spill basis.

(41) The framework must have native support for exposure accounting (POT and
live-time), so as to make errors of this sort difficult.

Our exposure counting is difficult due to the unobserved nature of
the neutrino flux and the “live nature” of the detectors. As a
result we need to have ways of accounting for our real exposure spill
by spill, and adjusting it appropriately when we are forced to cut a
spill. At the same time we often have a problem of “double counting”
if we get data with more than one interaction during a spill (as
happens with the near detectors) which needs to be handled properly
when doing cross section measurements.



There is also the issue of “spill matched Monte Carlo” which we use
to do our flux estimates. This means that the analysis techniques do
not lend themselves to “averaged” exposures as are often used in
external luminosity style databases.

(42) The framework should provide some means of cross-referencing (labelling)
multiple input streams to correlate them in order to facilitate evaluation of
systematic uncertainties.

This is a need of our methods for computing systematics. In an ideal
system, we would compute a given value as its “nominal” (i.e. the
nominal incident neutrino energy) and then we would have the same
value computed simultaneously under some set of variations. This
allows us to then do side-by-side comparisons of the

(43) The framework should be able to work with both ND and FD data on an equal
footing, and within the same job.



DUNE Software Framework Requirements Taskforce Report
Full Report

Document Scope

Many experiments use data processing frameworks to process their data in a reliable
way and to provide a structure for many authors to contribute algorithmic code. The
main aim of this document is to define the physics-based requirements of the
software framework that DUNE will use to process data, herein referred to as “the
framework”. Requirements are highlighted in bold italic for the executive reader and
are enumerated in parentheses. The primary use cases considered relate to simulation
and reconstruction of DUNE data in production runs using DUNE’s distributed
computing resources. Substantial and unique algorithmic functionality exists in
established code and providing support for their continued exploitation is critical.

In the classic implementation, the framework is an executable program that loops
over events and executes physics code that resides in modules (called algorithms in
Gaudi) that are scheduled by that framework. The code in these modules is provided
the means to read and write data from the current event and has access to other
information (e.g. conditions data) via services. Services, tools and modules are all
configurable and dynamically loaded. In the model envisioned here, most of the
framework code resides in supporting services and the term “framework” refers to those
services and the supporting libraries as well as the framework executable(s).

Schematic of the Gaudi/Athena framework components and states. Physics code
resides in modules in (proto)DUNE, which are called Algorithms in Gaudi/Athena.



Late-stage processing, referred to here as “analysis”, could in principle use the
same framework and that may be very advantageous, or even necessary, in certain use
cases. Unlike production runs, analysis is characterised by rapid R&D cycles and an
expectation of fast turnaround, often using ad hoc data and metadata. Therefore
general framework design is an important topic considered here as it can easily,
although unintentionally, effectively exclude the analysis use case by making rapid R&D
very difficult. These design considerations are discussed with the aim of providing
guidance for the final design, while the final design choices must be taken by the
framework design team. The design of the framework will impose constraints on
developers and these will need to be accepted by the developer community and
documented with the framework. To the extent that is possible, it is highly desirable that
the same services and tools can be configured and accessed inside and outside the
framework executable. This has the implication that much of the functionality
traditionally provided by the framework executable (scheduling, reading and writing of
event data) be accessible outside of the framework context.

Heterogeneous computing and concurrency in general already plays an
important role in scientific computing, promising greater speed and efficiency so long as
we can utilise the disparate resources well. Again, general design considerations are
presented here to provide guidance for the framework design. Technical design choices
of e.g. whether developers should have direct access to concurrency tools like TBB, or
whether they should be brokered by the framework is left to the framework design team.

An important use case not considered in this document is the use of the data
processing framework in the online environment, particularly for a high-level trigger
(HLT) which will present its own unique requirements (e.g. early termination of a trigger
chain, forced accept, etc.). The most striking feature of the HLT usage pattern is the
need to process a subset of data, usually corresponding to some region of interest.
This pattern arises naturally in the use cases considered here.

General framework requirements

Frameworks typically use state transitions similar to those used in data acquisition and
run control, including configuration, initialization, execution (where algorithmic code is
typically run) and finalization. These state transitions are used by the framework to
guarantee that all framework components have their work scheduled coherently. The
components of a framework depend on the particular design but key requirements are

(1) the framework must separate data and algorithms



(2) the framework must separate the persistent data representation from the
in-memory representation seen by algorithms.

For ease of reference, the “Data Store” is defined as the framework’s repository for
storing data in memory beyond the lifetime of particular algorithms. Both “trigger
record” and “event” are used to refer to the data belonging to one trigger record. More
detail on these broad requirements follow in later sections.

The framework needs to perform many different data processing steps with potentially
very many different variations. As the code base will be rather large, targeted
(re)compilation for particular purposes is not desirable, especially if e.g. only a handful
of parameters for one algorithm need to be changed. Instead, the components of the
framework are configured to perform a particular task in a particular way, e.g.
performing signal processing on raw input data.

Configuration requirements

Configuration is distinct from initialization of the framework objects; configuration
happens first. Given that RAII is an important concept for multi-threaded design, it is
best to have a fully configured framework instance in the initialization phase. Given the
abundance of variations that make up HEP workflows a robust and easily
programmable configuration system is a foundational component of all modern
frameworks. Some use a strictly declarative language and some use a Turing complete
language. The former must be augmented with scripts that write the declarations in a
Turing complete language (usually it is part of the workflow management system, WMS)
because it turns out that control flow is a requirement. Given this, there is a
requirement that:

(3) the framework should provide a Turing complete configuration language as a
foundational component so that it can ensure coherence of its configuration.

The WMS needs to be able to supply framework configuration parameters such as input
file(s) or random number seeds to each framework application instance, which it should
do using the framework’s configuration language. To minimise errors, these parameters
should be self-describing and validatable, and so:



(4) the framework should provide a suitable API so that algorithm writers can
ensure their required parameters are self-describing and validatable.

The framework should provide the concept of parameter sets that are nestable. The set
of all parameter sets that define a framework application instance should be identifiable,
referred to here as a FrameworkConfigID. Tracking that identity is one of the
ingredients necessary to ensure scientific reproducibility. However some parameters do
not (and should not) change the algorithmic results, such as a debug print flag.
Independent of the state of such a flag it should be possible to define equivalence
between FrameworkConfigIDs.

(5) The framework configuration system needs to have a robust persistency and
versioning system that makes it easy to document and reproduce previous
results. It must be possible to create, tag, check-sum, store and compare
configurations. This configuration management system should be external to the
framework or data files so that configurations can reliably be reused and audited.

Further fundamental requirements related to the framework configuration to guarantee
reproducibility are:

(6) The resulting state of the configured framework and its components should be
deterministic and precisely reproducible given a set of environmental conditions
which include the available hardware, operating system, input data, etc.

(7) the ensemble of the framework+environmental conditions must give
reproducible results.

Following on from the discussion of supporting fast analysis R&D:

(8) it is desirable that it should be possible to only configure those framework
components required for a particular data processing use case.

This generates a further requirement that

(9) it must be possible to derive the input data requirements for any algorithm, in
order to define the sequence of all algorithms needed for a particular use case.



Concurrency and Multithreading

The arrival of concurrency and heterogeneous architectures has added a further level of
complication for framework designers and developers alike. Much of the existing
code-base still relies heavily on serial programming for CPU architectures, meanwhile
the co-processor market is evolving rapidly resulting in a diverse hardware landscape.
Both multi-threading and co-processors present challenges for both frameworks and
developers.

(10) It is therefore desirable that the framework should help facilitate the use of
multi-threaded data processing and facilitate access to co-processors in an
efficient manner.

For developers, highly modular code must be encouraged, allowing evolution or
replacement of sub-algorithms that lend themselves to particular approaches. It is
assumed that algorithmic code will be organized in “algorithm modules” and this term is
used in this document. The codebase will therefore likely contain several alternatives
for (sub)algorithms, the choice of which would depend on the available hardware. The
framework will need to run in heterogeneous and potentially dynamic environments
where the availability and type of co-processors may be known late. While the design
of this technically challenging aspect is left to framework developers, it is worth pointing
out the added challenge of developing algorithms for diverse hardware if the framework
does not easily allow it. Therefore:

(11) it is highly desirable that it be possible to write algorithmic code
independently of the framework.

This also helps keep the gap between analysis and production code as low as possible.
Furthermore,

(12) it is highly desirable that the framework be sufficiently modular in design to
allow re-use of framework services and functionality both within and outside of
the framework context, as far as that is possible.

Multi-threading presents additional, well-documented challenges, particularly given that
many important libraries are not thread-safe. Summarising briefly: algorithmic code,
including sub-algorithms, should be thread-safe and must declare their compatibility to
the framework.



(13) The framework must be able to schedule thread-safe and non-thread-safe
work appropriately.

Thread-safety implicitly includes a general requirement on developers that algorithms
and their sub-algorithms do not store state information in a thread-unsafe manner.
Further, data exchange should be done in controlled ways to ensure thread-safety, e.g.
via some service which manages transient data - again the implementation of this
challenging aspect is left to the framework designers.

Reproducibility and provenance

The reproducibility of physics results and the knowledge of how physics results were
obtained is essential to DUNE and to the neutrino community as a whole. It must be
possible both to replicate physics results using identical input data, or to repeat an
analysis using a different set of input data with an identical sequence of identically
configured algorithms. Therefore,

(14) the framework must provide a full provenance chain for any and all data
products which must include enough information to reproduce identically every
persistent data product. By definition, the chain will also need to include
sufficient information to reproduce the transient data passed between algorithm
modules, even though the product is not persisted in the final output.

The need for transient data products is driven by the large event sizes that can be
encountered in the DUNE data, and whose transformation may be required, but for
storage considerations are not written out.

The use of highly parallel and heterogeneous computing environments leads to
additional provenance requirements regarding the execution ordering and computing
architectures on which the algorithms were executed. The need for this information
arises because of the possibility of different computing architectures producing different
results, and of accelerators and other computing offload mechanisms producing
different results than serially executed or non-accelerated codes (i.e. GPU accelerated
code producing different results than the same code executed on the host processor).
Therefore

(15) the framework must provide full provenance information and all of the
metadata required to ensure reproducibility.



This will include the computing architecture, including any specialized hardware used,
on which the application is run as well as the runtime environment, execution model and
concurrency level that the application used. It is likely that a full picture of the
necessary metadata will also require information only known to the workflow
management system. In such a complex environment, it is highly desirable that the
framework provide support to allow the effect of configuration changes and computing
environments to be easily understood.

Random numbers, machine learning and conditions

DUNE will use several libraries outside of the framework software stack, and it will also
be necessary to record the precise versions of all of these libraries to guarantee
reproducibility of the physics results. It is noted that containers (docker et al) could
potentially make provenance tracking easier in this respect. Random number
generation is an important aspect of code and given the additional complications of
multi-threading and co-processors:

(16) it is highly desirable that the framework broker access to random number
generators and seeds in order to guarantee reproducibility.

One important source of external libraries relates to machine learning, and machine
learning inference is expected to play a significant role in all stages of data processing
including analysis.

(17) The framework should give special attention to machine learning inference in
the design, both to allow simple exchanges of inference backends and to record
the provenance of those backends and all necessary versioning information.

In addition to the trigger record data, data processing requires access to non-event data
from various sources, for example slow controls, detector status, beam component
status. Such data is referred to generically as “conditions data” and also includes e.g.
detector calibrations and any data external to the event data. The time granularity or
“interval of validity” of this data varies by source and is typically of much coarser
granularity than the event data, e.g. calibrations may be valid for months of data taking.
Meanwhile there are often several versions of conditions data and correlations between
conditions is not uncommon, making the coherent management of conditions data a
challenge in itself. For this reason, conditions data management should be external to
the framework.



Access to the external conditions data should preferably proceed via REST interfaces
that support loose coupling of the framework and the external conditions management
system. As conditions data may need to be transformed from its persistent format into a
format required by an algorithm, and as multi-threading makes the cache validity of
conditions data complicated:

(18) the framework must provide a conditions service that is a single point of
access to conditions data.

(19) The configuration of the framework conditions service should ideally be via
one configuration parameter (a global tag).

Developers must not hard-code conditions data in their algorithms, although

(20) it must be possible to override a subset of global tag configured conditions
for testing purposes.

Developers usually find it convenient if such alternative conditions payloads can be
provided outside of the main managed conditions system, e.g. via a local file.

Data and I/O layer

The main aim of this document is to describe the data processing steps for simulation
and reconstruction of DUNE data. The first stage of processing in offline jobs, after job
configuration and initialization, is reading in detector data. Offline jobs must read in
data produced directly by the data acquisition system and also data produced by Monte
Carlo simulation. Input data files may be retrieved from a persistent storage system,
delivered over a network, or reside on local storage.

(21) The framework must support reading and writing different persistent data
formats.

Every version of the framework must be able to read data files written by that version of
the framework and all previous versions, with no loss in functionality or change in
meaning of the data elements.

(22) The framework I/O functionality must be backward compatible across
versions.



We do not require forward compatibility, in which data written with newer versions of the
framework are also readable by older versions. Cases in which forward compatibility is
broken need to be documented as far as possible, however, as these are breaking
changes.

Experimenters may change their minds about the contents of data products. For
example, data members may be added because they were initially not included in the
design but later found to be necessary, and rather than create a new data product, an
expansion of an old one is more convenient. Framework programs reading old and new
data files need to behave seamlessly if the data product has changed definition.

(23) A mechanism for user-defined schema evolution of data products needs to
be provided.

The DUNE data model allows for event data to be stored in persistable representations
which are generated by customized hardware or which are optimized for specific
acceleration hardware or computing systems. As a result, the data model expects that
data will have custom “packed” representations that do not conform to 32-bit or 64-bit
little-endian words. Furthermore, compression of the raw waveform data will be
performed in the DAQ, though some data may arrive uncompressed. Some highly
compressible data products may benefit from dedicated compression algorithms
scheduled to run before output. Therefore,

(24) the framework must provide a mechanism to register/associate and to
run/apply custom serialization/deserialization and compression/decompression
algorithms to data on write/read of that data from a persistable form.

Data products that do not have dedicated compression algorithms associated with them
can still benefit from automatic compression that is enabled by default.

(25) The framework should support compression on output data in a manner that
is transparent to users and is configurable. It must be possible to disable the
automatic compression of output data or provide compression transforms that
are effectively identity transforms.

Experience shows that it is highly desirable to be able to configure a maximum file size
such that output files are the correct size for efficient storage and for units of data
processing; currently a file size of several GBs is considered optimal. As this requires



the closure of an existing output file and creation and opening of a new file (with
sensible filename) then this needs to be addressed at the framework level.

(26) The framework should allow a configurable maximum output file size and
provide appropriate file-handling functionality.

Memory management

An issue that arises during data read-in and decompression and unpacking is the
memory footprint used. The DUNE Far Detector is big. Supernova-burst (SNB)
processing in the DUNE Far Detector presents unique challenges due to the large
volume of data that are produced in each trigger. An uncompressed SNB readout for
100 seconds will take about 120TB of storage for one single-phase far detector module
for just the TPC wire data, and DUNE will have four detector modules. These data will
be divided into smaller chunks both in time and by detector component. For
single-phase detector modules, these components are likely to be the anode plane
assemblies (APA) due to the granularity of the data preparation processing.

In the first stage of offline processing, waveforms from the channels are de-noised and
deconvolved, and pulses that are approximately Gaussian appear in the processed
waveforms. Because the 100s of SNB readout from each channel must be artificially
broken into small chunks in time, there is the potential to introduce edge effects at the
chunk boundaries. In order to avoid this, about 100 microseconds of data spanning the
boundary on both sides must be used in processing the chunks.

A common ratio of RAM to CPU cores on existing grids is 2 GB/core. Memory usage
beyond this results in poor performance and can lead to job eviction depending on the
resource configuration. An uncompressed DUNE Far Detector module trigger record
will be larger than this, about 6 GB. A supernova trigger record of 100s will be more
than five orders of magnitude bigger again. Clearly the framework will need to be able
to act on subsets of trigger records, while respecting the overlap criteria noted above in
order to avoid creating artefacts.

(27) The framework must be able to operate on subsets of a trigger record.
Specifically, it must be possible to break trigger records down into smaller
chunks (e.g. one APA) and be able to stitch those chunks back together. For
supernovae, it must also be possible to reuse a fraction (nominally 100 us) of the
previous chunk (nominally 5ms) of data to allow stitching in time.



Data unpacking and initial processing can be arranged to operate on these subsets. In
order to realize the benefit from operating in this way, however, intermediate data
products that are no longer needed must no longer occupy space in memory. Data
products that have been written out and are no longer needed in memory are also good
examples of those that can be evicted from memory, but there are also cases of
intermediate products which must be flushed instead of written out.

(28) Data products should not occupy memory beyond their useful lifetimes.

As noted in “General Considerations”, the framework must be aware of which
algorithms need which data products, while the algorithmic code, by nature of its
modularity and re-use/reconfigurability, is expected to be unaware of what other
components may be run in the same job. Therefore, the framework must be
responsible for garbage collection, capable of freeing up memory at the earliest possible
time. Furthermore, the framework will need to respect the memory constraints imposed
by the processing environment which will entail supporting partial reading of data
objects into memory and potentially purging any data objects or partial data objects not
immediately required.

(29) The framework must manage memory of data products in the Data Store.

Frameworks need to provide configurable, flexible I/O access so that experiments can
control the output of their jobs in fine-grained detail. This is needed to save on storage
and also experimenter time, as smaller datasets take less time to analyze than larger
ones.

(30) The framework needs to support skimming/slimming/thinning for data
reduction.

Similarly, processing and analysis is made much more convenient (or even possible) if
the skimmed/slimmed/thinned output streams can be associated with information in
other streams that may be stored separately. Some analyzers may need the auxiliary
data streams while others may not, and so a framework job that produces outputs for
collaboration use would need to read all of the necessary streams. This also allows
efficient use of storage, as data does not need to be co-located in the same file to be
available for processing. In the case of writing, I/O cost can be very efficiently
amortized if several output streams can be written based on one input file.



(31) The framework needs to be able to read and write several parallel data
streams (including friend trees). Labelling of data objects across streams should
be intuitive and not error prone. Provenance information should support
correlating related data objects across streams.

A common offline job need that goes beyond the 1->1 input to output data model is
event mixing. Monte Carlo simulation is often not sufficiently realistic, perhaps it fails to
capture the time dependence of detector conditions or the generator or detector
simulation simply lacks sufficient accuracy for the physics use case. In this case, Monte
Carlo simulation can be augmented by adding actual detector data, e.g. to embed single
tracks or entire events into data trigger records and reconstruct them as if they were
data. This can lead to a 2->many input output situation with asynchrony in both input
and output.

(32) The framework needs to allow experiment code to mix simulation and
(overlay) data.

Physics analysis

A SNB trigger record may have thousands of interesting physics interactions in it. They
will be small tracks (“stubs”), of order of tens of wires hit in each plane, distributed
through the detector and in time during the long trigger record. A convenient analysis
workflow will save regions of interest to smaller files containing only data needed to
analyze the small tracks and not the large amounts of waveform data containing only
electronics noise and radiologicals. Most other trigger records, initiated by cosmic rays,
beam neutrino interactions and atmospheric neutrino interactions, will have only one
interaction in a Far Detector module. Some cosmic rays arrive in bundles with other
cosmic rays, even at the 4850’ level, and these are interesting to read out.

The near detector, on the other hand, will have many neutrino interactions per LBNF
spill. The Gaseous Argon Near Detector Component (ND-GAr) expects 60 overlaid
interactions per spill, mostly originating in its calorimeter, which has fast timing
capabilities and thus can be used to separate one event’s particles from another. The
liquid-argon TPC near detector will have order of 20 interactions per spill. Some
downstream analyses will benefit from and expect upstream analyses to divide a trigger
record’s data into subsets based on classification algorithms that are intended to
separate one interaction from another. These physics regions of interest, usually called



“slices”, are then what physicists expect to use as a unit of execution, i.e. they loop over
slices in their analysis code.

(33) It must be possible to define arbitrary units of execution that are independent
of trigger records. It must be possible to correlate these units to trigger records
for exposure accounting, and experiment conditions.

Here, experiment conditions refers to data collected outside of the trigger-record data
stream. It consists of monitoring data from slow controls, detector status, and beam
component status.

Data analysis presents its own challenges, and requires different tradeoffs to the
preceding simulation/reconstruction/particle identification stages. Analysis includes the
extraction of oscillation parameters, but is not limited to that, encompassing, as a
minimum, comparisons between data and Monte Carlo, extraction of calibration and
detector performance parameters, cross-section measurements, measurements of
atmospheric, solar, and supernova neutrinos, and searches for non-standard
phenomena.

The event-by-event paradigm is not a good match here. Spectra are filled by looping
over neutrino candidates (or cosmic rays, or candidate exotic events) but then may
undergo substantial processing in their own right. For example, the main work of an
oscillation fit is the evaluation of many different combinations of oscillation and nuisance
parameters. While slices provide sub-event control flow, particle candidate control flow
ignores the event structure entirely.

Efficient data access for typical analysis workflows is also very different to
event-by-event processing. It is very common to require access to only a small subset
of the event information (the variables required to make a cut, or reconstruct a quantity),
and for the amount of information to vary from event to event. For example ROOT
TTrees use a “column-wise” data layout to make this access pattern efficient, but any
event-by-event serialization process will produce “row-wise” data. This may have
implications on the persistent and transient Data Models and corresponding I/O layer
implementations. Taking the above into consideration, the requirements for the
framework are:

(34) The framework should make minimal assumptions about the data model (e.g.
event-by-event or particle-candidate-based).



(35) Analysis must be able to use particle-candidate-based control flow, without
any constraints arising from event-based control flow.

(36) The framework must support partial reading of the persistent data and must
not require reading an entire trigger record unless required (i.e. it must not force
the entire trigger record to be read).

If these requirements cannot be reasonably satisfied then it is highly likely analysis
would need to use a different framework to that used for data processing, but it is noted
that e.g. Belle II has a similar dichotomy satisfied by one framework.

In the case where the data-processing and analyses frameworks are separated, it is
desirable for a level of compatibility to be maintained between the frameworks. In
previous experiments, there is a common pattern where, as the analysis framework
matures, graduate students cease to be able to develop in the data-processing
framework. To avoid this, compatibility layers may be required to allow algorithms (such
as calibration, reconstruction, and selection methods) to transparently plug into either
framework, to the extent it is possible.

(37) Calibration, reconstruction, and selection algorithms must be
framework-agnostic, i.e. able to run transparently in any official DUNE framework
where equivalent requisite data products exist.

Analysis work will be undertaken by a large number of collaborators, with varying levels
of experience. In many cases, rapid feedback and iteration will be required to make
progress. Meaningful analysis work must be possible with resources available locally to
collaborators (single CPU, few gigabytes of memory, <100GB of disk). It must be
possible to produce relevant histograms on interactive timescales (ie minutes). This
re-emphasises the earlier requirements in General Considerations and in addition:

(38) The framework should be easily portable and capable of running on local
resources.

Experience shows that oscillation fits accounting for large numbers of systematic
uncertainties are resource intensive, while analysts will likely only have access to
modest local resources for prototyping and development. Therefore the framework
should make scaling and concurrency transparent both to the analyst and the developer
as far as possible. The use of declarative analysis techniques should be strongly



encouraged to support this even when co-processors (and low-level implementation)
changes.

(39) The same code developed and tested on local resources must scale to large
resources. This should include HPC resources as far as possible.

Analysis files, of course, are derived from the data-processing framework files, and it
must be possible to reconstruct this history. Due to the very large number of events
expected to be summarized in a single analysis file, the size requirements, and the fact
that per event information remains available in the parent files, we require:

(40) Analysis files must record their parent framework files, but no event-by-event
provenance is required. The full provenance information need not be retained in
analysis files as this could easily become larger than the data itself.

One common and insidious class of mistakes is errors in exposure accounting and
normalization. This is also a problem that is entirely solvable at the technical level.
Each individual event (beam spill or other trigger) has exposure associated with it,
whether POT or livetime or both. When filling a summary histogram from events the
exposure should be calculated and stored as an integral part of the histogram, and
operations between histograms should take correct notice of the exposure, e.g. ratio of
one large exposure sample to a smaller exposure sample should produce a
dimensionless ratio that has allowed for the differing exposures.

(41) The framework must have native support for exposure accounting (POT and
livetime), so as to make errors of this sort difficult.

All but the simplest analyses require a treatment of systematic uncertainties. There are
three main technical means by which these systematics can be introduced. The most
common, and most convenient, is reweighting. For example, the effect of various
cross-section and flux uncertainties may be encapsulated by applying weights to events
of certain categories, to increase or decrease their representation in the final spectra.
Secondly, events may be shifted. For example, an energy scale uncertainty may be
most conveniently represented by rewriting of event records to increase or decrease
reconstructed energies by a certain amount. Finally, the least convenient method is
alternate simulation samples. The profusion of files requiring processing and
bookkeeping makes this a heavyweight option, but in the case of uncertainties early in
the analysis chain with complex effects, it may be the only way to handle them
accurately. The treatment of systematics is cross-cutting across all analyses, it is



important it is handled correctly, and the framework is able to offer substantive technical
assistance.

In addition to being able to handle multiple input data streams:

(42) The framework should provide some means of cross-referencing (labelling)
multiple input streams to correlate them in order to facilitate evaluation of
systematic uncertainties.

For oscillation analysis, it will be important to work with both Near and Far detector data.
Whether in an explicit joint fit, or where extracting constraints from the ND to apply to
the FD analysis, there must be a uniformity in the treatment of various systematics. In
general, experience gained with the Near Detector (where the majority of analysis work
is likely to happen) should be transferable to the Far Detector. This re-emphasises the
importance of the framework making minimal assumptions about the Data Model.

(43) The framework should be able to work with both ND and FD data on an equal
footing, and within the same job.

While most of the focus at this stage of the experiment is on other tasks, in the long run
analysis work will dominate. The outsized influence of decisions about data formats and
analysis infrastructure mean that they should be afforded specially-careful
consideration. This is also a very dynamic area, with rapid timescales and the possibility
of important new ideas, so we must also remain flexible.

Utilities

It should be possible to read/write framework-format data outside of the framework.

Utilities must be supplied that list data product names, sizes, and compressed sizes in
files written by the framework.

Desired features

Care must be taken by the experiments to label mixtures of real data and simulated
data as simulations. Experiment code may expect MC truth labels on all objects when



in fact only some may be available, or possibly all are absent by choice. A method or a
flag that returns a binary “isRealData” value may be too coarse-grained. Issues that
need to be addressed are the handling of bookkeeping: trigger record (“event”)
numbering, handling of MC truth information in what otherwise is a data trigger record,
and any code that performs different actions on MC and data. Analyzing mixed events
will almost certainly require access to values from run conditions and calibration
databases, and these have to be understood that they are the ones the user desires.

Another goal to think about without formally requiring it is to allow and encourage the
overlapping of computation and I/O operations. I/O operations often take significant
wall-clock time that can be used for computation if possible. The framework should
support concurrent execution of both I/O and algorithm components and in a manner
that allows for multiple units of data, not limited to just trigger records, to be processed
concurrently (data pipelining).

Production processing usually involves one or more subsequent reprocessing passes,
either after calibration constants have been calculated from the data or from external
sources, or to accommodate new algorithms. Sometimes these reconstruction passes
start with raw data as input, and sometimes they can take advantage of previous
passes initial data processing stages (such as signal processing) and work on
higher-level objects, such as hits. The framework needs to allow for this sort of
workflow to be configured and run by the experiments. Sometimes the results of an
earlier processing pass need to be compared with those of a later pass, and the option
to keep both sets of results in the output for comparison is useful.

It should be possible to reprocess data produced by the framework, both in re-running
some or all previously run processing steps, and to add new processing steps. The
output must be properly labeled and configurable so that the output of the earlier
processing steps may be distinguished, dropped or retained.

The fully processed data and Monte Carlo from the experiment are likely to run to
multiple terabytes. In order for analysis, which must necessarily consume the entire
dataset, a hugely reduced data representation is required. It would be technologically
feasible to do this by aggressive summarizing and slimming of the framework files from
previous stages, and this does have some benefits, but due to the radically different
demands of analysis and the benefits of alternate structurings of the data we explicitly
do not make this a requirement or even a recommendation.



Experience has shown the importance of compatibility between disparate analysis
efforts. This allows work on improving the data formats and analysis framework to be
shared, allows experience and expertise from one area to carry over to another without
retraining, reduces the opportunity for bugs, and saves huge amounts of time spent
attempting to compare between or reconcile analyses.

There should be a common analysis data format, shared by virtually all analysis efforts.

Of course, this does not mean all analyses must use precisely the same files. Different
aspects of data analysis will require radically different event selections, and use
non-overlapping properties of the data. We refer only to technical compatibility. This
skimming work is expected to be common, and analysis is expected to iterate
substantially more rapidly than data processing, including the inevitable respins for
mistakes.

It should be possible to create a new iteration of the analysis files from the
data-processing framework files on a reduced timescale (weeks) and to create skim
files rapidly (days).


