

Apache Beam (incubating) Proposal:
Part 1: IOChannelFactory Redesign
Author: Pei He
JIRA issue: BEAM-59
Last Updated: Dec 2, 2016

Goals & Motivation
This proposal is to support file-based IOs (TextIO, AvroIO) with user-defined file system, such as
hdfs, s3, azure.

Goal: Design an API interface to interact with a file system (rename, delete, copy, stat...).
Non-goal: Unify formats of file-based IOs (newline delimited, avro).

Scope & Impact
The scope of this proposal is in the core sdk. Users include:

1.​ SDK library writers could use the proposed interfaces to make their code
file-system-independent.

2.​ SDK library writers could implement the proposed interfaces to support additional file
systems.

API Proposal

Current IOChannelFactory API to be replaced:

public interface IOChannelFactory {

 Collection<String> match(String spec) throws IOException;

 ReadableByteChannel open(String spec) throws IOException;

 WritableByteChannel create(String spec, String mimeType) throws IOException;

 long getSizeBytes(String spec) throws IOException;

 boolean isReadSeekEfficient(String spec) throws IOException;

 public String resolve(String path, String other) throws IOException;

}

https://issues.apache.org/jira/browse/BEAM-59

Proposed API:
Noticeable proposed changes:

1.​ FileSystem interface for providers to implement, and FileSystems utility for clients.
2.​ FileSystems utility includes the options parameter in most methods to specify behaviors.
3.​ Replace String with URI to include scheme for files/directories locations.
4.​ Require file systems to provide a SeekableByteChannel for read.
5.​ Additional methods, such as rename().

Section 1: interface for file systems providers.

/**

 * File system interface in Beam.

 *

 * <p>New file systems should implement {@link FileSystem}, and clients should

 * use {@link FileSystems} utility.

 */

public interface org.apache.beam.sdk.io.FileSystem {

 // 1. Create write channel.

 // Contract: Create() makes directories if necessary.

 protected WritableByteChannel create(String file, CreateOptions options)

 throws IOException;

 class CreateOptions {

 public String mimeType();

 // Other possible properties: overwrite(), bufferSize(), blockSize().

 }

 // 2. Open read channel.

 protected SeekableByteChannel ReadableByteChannel open(String file) throws

IOException;

 // 3. Rename files.

 /**

 * Contracts:

 * 1. srcFiles have to exist.

 * 2. destFiles will be created recursively.

 * 3. When rename throws, the state of the files is unknown but safe: for every

<source,dest> pair of files, the following are possible: a) source exists, b) dest

exists, c) source and dest both exist. Thus no data is lost, however,

 * duplicated files are possible -- some files might be copied, some might not.

 * In failure scenarios, callers can use {@link #match} [e.g.] to determine the

 * state of the files.

 */

 protected void rename(List<String> srcFiles, List<String> destFiles) throws

IOException;

 // 4. Delete files

 /**

 * Contracts:

 * 1. Throws FileNotFoundException if files are missing.

 * 2. It is recommended not to delete recursively, and let clients to depend on

 * FileSystems’ utility function. However, recursively deletion is not considered

 * as an error.

 * 3. When delete throws, each file might or might not be deleted.

 * In such cases, callers can use {@link #match} to determine the state of the

 * files.

 */

 protected void delete(Collection<String> files) throws IOException;

 // This is removed since URI supports resolve and parse file names.

 [FilePath toPath(URI path);]

 // isGlob() is removed since we can use match() to handle the ambiguities of

 // user strings, see {@link #match()}.

 [boolean isGlob(URI spec);]

 // getMetadata() is removed since we can use match() to get file metadata.

 [protected List<Metadata> getMetadata(Collection<URI> uris) throws IOException;]

 // 5. match

 /**

 * This is the entry point to convert users provided specs to URIs.

 * Callers should use match() to resolve users specs ambiguities before

 * calling other methods.

 *

 * @return List<MatchResult>, which is in the same order of the input specs.

 *

 * @throw IOException if all specs failed to match due to issues like:

 * network connection, authorization.

 * Exception for individual spec need to be deferred until callers retrieve

 * metadata with {@link MatchResult#metadata()}.

 *

 *

 * Implementation should handle the following ambiguities of users provided sepc:

 * 1). spec could be a glob or a file. match() should be able to tell and

 * choose efficient implementations.

 * 2). spec doesn’t end with ‘/’ may refer to files or directories:

 * file:/home/dir/ should be returned for spec “file:/home/dir”.

 * (However, spec ends with ‘/’ always refers to directories.)

 * Note: File systems glob support is different. However, it is required to

 * support glob in the final component of a path (eg file:/foo/bar/*.txt).

 *

 * Throws if the spec is invalid.

 */

 protected List<Metadata> match(String spec);

 protected List<MatchResult> match(List<String> specs)

 class MatchResult {

 public Status status();

 /**

 * @throws the exception for the corresponding spec, if the status() is not OK.

 */

 public Metadata[] metadata() throws Exception;

 class Metadata {

 /**

 * Returns the absolute path.

 *

 * Directories URIs should end with ‘/’ in order for URI.resolve() to

 * work correctly.

 */

 public String path();

 public Long sizeBytes();

 public Boolean isDirectory();

 public Boolean isReadSeekEfficient();

 }

 enum Status {

 OK,

 NOT_FOUND,

 ERROR,

 }

 }

}

Section 2: Utility class for clients.

/**

 * Clients facing utility functions for file system operations.

 */

public class FileSystems {

 public static WritableByteChannel create(String file, CreateOptions options)

 throws IOException;

 public static SeekableByteChannel open(String file, OpenOptions options)

 throws IOException;

 class OpenOptions {

 public long startPosition();

 // Other possible properties: bufferSize(), blockSize().

 }

 public static void delete(Collection<String> files, DeleteOptions options);

 class DeleteOptions {

 // Matches with the prefix, and deletes level by level from the leaf to the

root.

 public boolean recursive();

 // Calls getMetadata() and deletes existing files.

 public boolean ignoreMissingFile();

 }

 public static void rename(

 List<String> srcfiles,

 List<String> destfiles,

 RenameOptions options) throws IOException;

 class RenameOptions {

 public boolean ignoreMissingFile();

 // Other possible properties: overwrite()

 }

 public static List<Metadata> match(URI glob, MatchOptions options);

 public static List<MatchResult> match(List<String> specs, MatchOptions options);

 class MatchOptions {

 // Choose to filter directories based on Metadata.isDirectory().

 boolean includeDir();

 }

}

Section 3: FileSystem specific operation options.

public class GcsFileSystem extends FileSystem {

 @Override protected WritableByteChannel create(

 String file, CreateOptions createOptions) throws IOException {

 if (createOptions instanceof GcsCreateOptions) {

 ...

 } else {

 ...

 }

 }

 public static class GcsCreateOptions extends CreateOptions {

 public int uploadBufferSizeBytes() {};

 }

}

	
	Apache Beam (incubating) Proposal: Part 1: IOChannelFactory Redesign
	Goals & Motivation
	Scope & Impact
	API Proposal
	Current IOChannelFactory API to be replaced:
	
	Proposed API:

