

Basics of working with the Pandas module.

Download documents to your folder:

deti.csv,

bolezni.xlsx (File -> download as MS Excel),

world.csv.

To work with data in Python, programmers have a tool that will never let you
down:pandas. It is a full-featured and intuitive open source library that provides
data structures for working with high-dimensional datasets. There are 2 main
data structures:

-​ Series for one-dimensional arrays;
-​ DataFrame for two-dimensional tables containing rows and columns.

Importing the module:

import pandas as pd

If everything is correct, there will be no error.

Task 1. Loading csv files. We consider the desired table into a variable
data_st. Step 1. If you do not specify the path to the desired folder, then you
must first download the file as follows:

Select the desired file on the computer, and upload to the system:

Step2. In the cell, we write the read command, specifying a semicolon as
a separator:

data_st=pd.read_csv('deti.csv', sep=';')

Step3. We output the table:

data_st
Jupiter Notebook, allows in some cases to do without the print command.

https://drive.google.com/file/d/1jjv6NelKX12eybvCM2B_lWBA0QX3QzX_/view?usp=sharing
https://docs.google.com/spreadsheets/d/1xYUWoXfVMT-aMpbMfjaDT66VRkUtEAMU/edit?usp=sharing&ouid=100736375458455542354&rtpof=true&sd=true
https://drive.google.com/file/d/1lZ2l2Ap8cCro4yhrEAjYZIS_rZS6QdzW/view?usp=sharing
https://pandas.pydata.org/

Print the table using the print command, see the difference.

Task 2.Get information about the dataframe using the commands: Shape,

info(), columns, head(), tail(), sample(),isna(), isna().sum(), value_counts().

Task 3. Download Excel files.Step1 is the same as step 1 from task 1.

Step2. In the cell, we write the reading command, indicating, in addition to the file name, the sheet name:

excel_data_df = pd.read_excel('bolezni.xlsx', sheet_name='disease')

Step3. We output the table:

excel_data_df

Task 4.Analyze the data in the tableexcel_data_df using the method describe().

Please note that the data is displayed only for 2020 2021. This is because the
COVID-19 row contains non-numeric data. Replace '-' with '0' in the string
COVID - 19, using the method replace.

excel_data_df=excel_data_df.replace('-',0)

excel_data_df= put the result in the same dataframe

excel_data_df dataframe name

. replace replacement method
'-'

what are we changing
0 what we change into

Apply the describe() method to the table again.

Task 5. Add a `metka' column to the dataframe.

excel_data_df['metka']=0
excel_data_df

Task 6. Add a %̀ column to 2020 and calculate how many percent is the
incidence in 2021 in relation to 2020. Customize the output with two
decimal places and a percent sign.

and a percent sign.

Task 7. Add columns `% to 2018, %̀ to 2019 and calculate the percentage of
incidence in 2021 in relation to 2018 and 2019. Customize the output with
two decimal places after the point and a percent sign.

Task 8.Create a new dataframe from a subset of columns. It may useful if you
want to store multiple dataframe columns in a new dataframe, but don't want to
write out the names of the columns you want to remove. Specify the table name
and the list of columns to be transferred to the new table.

Task 9.Create a new dataframe (data_df_0) from columns 2021, % to 2018 ,̀
%̀ to 2019 ,̀%̀ to 2020 .̀

Task 10.Delete the specified columns. This approach may be useful if only a
few columns need to be removed from the dataframe.

We use the drop method to remove columns and write the result to a new
dataframe. From the method parameters we use labels axis

drop(self,labels=None,axis=0, index=None, columns=None, level=None,
inplace=False, errors='raise')

The drop method drops or, in other words, removes the specified labels from
rows or columns.labelscan be a single label or a list of labels or columns, to be
dropped. axisdetermines if labels are removed from the index/string (0 or index)
or column (1 or columns).

Task 11. Delete columns `metka and '% from 2020', '%from 2019', '%from 2018' from
the source table

Task 12. Create a list or Series object based on the values of a column. For
example, to get a separate list of diseases. The following commands apply here:

list_bolezn=data_df_1['diseases'].tolist()

list_bolezn

Task 13. Create a list based on the values in the 2021 column. From
excel_data_df dataframe.

Task 14.In some previous tasks it was necessary to list column headers. Get the
list of dataframe column headers from Task 7. Create a list of column headers:
dataframe.columns.tolist()

Task 15. Let's sort the dataframe by the values of the column 2̀021y. ,̀use the

.sort_values method:excel_data_df.sort_values('2021', ascending=False)

excel_data_df​ dataframe name
. sort_values​ sorting method
'2021'​ which column
ascending=False​ in alphabetical order (reverse alphabetical True)

Task 16. Sort the dataframe by the values in the diseases column, in reverse
alphabetical order.
Task 17. Sort the dataframe by the values of the column 2̀020y. ,Inalphabet
order.

From dataframes, you can select rows that meet a given condition, that is, filter.
Note that using the method preserves the existing index values. To avoid this
use method reset_index()

Task 18. Select rows from the excel_data_df dataframe that have values in the '2021'
column Greater than or equal to 5000:excel_data_df[excel_data_df['2021'] >=5000]

Task 19. Select rows from the excel_data_df dataframe that have values in the '2015'
column Less than or equal to 1000.

Task 20. Let's add rows with the sum of values from other rows to the dataframe.

data_df_1

dataframe name
. append
(data_df_1[['2020', '2021']] .
sum(axis=0),
ignore_index=True)

the method will add a string to the end of the
dataframe specify
which columns of the dataframe we are working
with the method
applied to the data in the columns
indexes are ignored, i.e. do not touch line
numbers

You can see that the title row is NaN because we didn't add the values of the
disease name column. Let's add the title of this line:

Task 21. Add rows to the dataframe with the average of other rows, use the
method mean(axis=0).

Task 22. Build a "Box with a mustache" on the excel_data_df dataframe, on the
column '2015'

Task 23. Build a "Box with a mustache" on the excel_data_df dataframe, on
all columns. Import the Library matplotlib:

import matplotlib.pyplot as plt

This can be done immediately before building, however, it is common to specify
loadable modules (libraries) in the first lines of the program (code). Therefore, it
is good practice to load the library in the first cell and re-execute all commands:
Cell -> Run All or Kernel -> Restart & Run All

excel_data_df.plot(kind = 'box', grid=True, figsize=(18,9), fontsize=(15)) dataframe method building(type
 diagrams = box ,̀ mesh=Yes, size
 construction area, font size)

plt.title('"Boxes" by years', fontsize=20) title, title font size
plt.xlabel('diseases', fontsize=13) x-axis label, label font size

plt.ylabel('years', fontsize=13) y-axis label, label font size

plt.show() output for demonstration

Task 24. Load the date frameworld.csv.The dataframe contains the following data.

columns Description

CCA3 3 digit country/area code

Name Name of country/territories

Part_world The part of the world in which the country/territory is located

2022 Population of the country/territories in 2022.
2020 Population of the country/territories in 2020.
2015 Population of the country/territories in 2015.
2010 Population of the country/territories in 2010.
2000 Population of the country/territories in 2000.
1990 Population of the country/territories in 1990.
1980 Population of the country/territories in 1980.
1970 Population of the country/territories in 1970.
area Area of the country/territories in square kilometers.
Density Population density per square kilometer.

Percentage​ Percentage of population for each country/territory.

Study the table. Be sure to use the isna()+sum() and info() methods.

One of the basic functions of data analysis is grouping and aggregation. In
pandas functiongroup bycan be combined with one or more functions
aggregation to quickly and easily summarize data.aggregation functionis a
function that takes multiple individual values and returns a summary. In most
cases, the returned data is a single value. The most common aggregation
functions aresimple average(simple average) orsummation(summation) values.

Task 25. Simple aggregation example:world_df['Area'].agg(['sum', 'mean']):

There are several ways to call an aggregation function, such as using a dictionary:
df.agg({'fare': ['sum', 'mean'],'sex' : ['count']}).

The most common built-in aggregation functions are basic math functions,
includingamount(sum),mean(means) median value(median),minimum(minimum),
maximum(maximum),standard deviation(standard deviation)dispersion(variance),
mean absolute deviation (mean absolute deviation) andwork(product).

Our dataframe contains 187 rows, not very much, however, this number can
be optimized for further analysis, for example, by applying grouping:
world_df.groupby('Part_world') on the 'Part_world' column.

Task 26. To “see” which rows belong to which group, use the methodgroups,
and also give the grouped table a new name.

Task 27. Summarize the data in the grouped table and place it in a new one:

Task 28. Let's group the data by the "Part_world" column and find
various characteristics by columns:

world_df.groupby(["Part_world"]).agg({"Name": "count", "Area":["sum","mean"],

"Density": "mean", "Percent_num": "mean"}).reset_index()
And reset the old indexes.

Task 29. It can be seen that more than 50% of the world's population lives in Asian
countries. Let's form a dataframe containing only Asian countries. Let's reset the
old indexes:

You can see that in addition to the new ones, the old indexes are preserved, let's get rid of them:

Task 30. Sort the dataframe by the '2022' column. Place in the same dataframe.

Task 31. Let's build a graph.

Task 32. Let's build a graph using another library. Import the Library seaborn:

import seaborn as sns

This can be done immediately before building, however, it is common to specify
loadable modules (libraries) in the first lines of the program (code). Therefore, it
is good practice to load the library in the first cell and re-execute all commands:
Cell -> Run All or Kernel -> Restart & Run All.

