Research Studies List

Yellow = Title / Subject

Green = Publication date

Pink = Other cannabinoids also included in findings (should also be linked to this study)

Blue = Definition for clarity

Cannabis (General)

ALS

- Raman, Chandrasekaran, et al. "Amyotrophic Lateral Sclerosis: Delayed Disease Progression in Mice by Treatment with a Cannabinoid." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 5, no. 1, Mar. 2004, pp. 33–39, https://doi.org/10.1080/14660820310016813
- Dash, Raju, et al. "Emerging Potential of Cannabidiol in Reversing Proteinopathies." *Ageing Research Reviews*, vol. 65, 1 Jan. 2021, p. 101209, www.sciencedirect.com/science/article/pii/S1568163720303445
- Lim, Keane, et al. "A Systematic Review of the Effectiveness of Medical Cannabis for Psychiatric, Movement and Neurodegenerative Disorders." Clinical Psychopharmacology and Neuroscience, vol. 15, no. 4, 30 Nov. 2017, pp. 301–312, https://pmc.ncbi.nlm.nih.gov/articles/PMC5678490/

Arthritis:

Guillouard, M, et al. "Cannabis Use Assessment and Its Impact on Pain in Rheumatologic Diseases: A Systematic Review and Meta-Analysis." *Rheumatology*, vol. 60, no. 2, 7 Nov. 2020, pp. 549–556, https://doi.org/10.1093/rheumatology/keaa534.

Anti-microbial / bacterial:

· Karas, John A., et al. "The Antimicrobial Activity of Cannabinoids." *Antibiotics*, vol. 9, no. 7, 13 July 2020, https://www.mdpi.com/2079-6382/9/7/406

Antioxidant:

· "CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as Antioxidant Agents and Their Intervention Abilities in Antioxidant Action." *Fitoterapia*, vol. 152, 1 July 2021, p. 104915, https://www.sciencedirect.com/science/article/pii/S0367326X21000903?via%3Dihub#s0090

Bladder:

- · Christie, Stewart, et al. "Endocannabinoids in Bladder Sensory Mechanisms in Health and Diseases." Frontiers in Pharmacology, vol. 12, 5 July 2021, https://pmc.ncbi.nlm.nih.gov/articles/PMC8287826/
- Tyagi, Pradeep, et al. "Functional Role of Cannabinoid Receptors in Urinary Bladder." *Indian Journal of Urology*, vol. 26, no. 1, 2010, p. 26, https://pmc.ncbi.nlm.nih.gov/articles/PMC2878434/
- Ruggieri, Michael R. "Cannabinoids: Potential Targets for Bladder Dysfunction." Handbook of Experimental Pharmacology, 2011, pp. 425–451,
 https://www.researchgate.net/publication/49806835 Cannabinoids Potential Targets for Bladder Dysfunction

Bone / Osteo:

- Palmini, Gaia, et al. "Cannabinoids: New Friends in Bone Fracture and in Joint Disease Prevention?" International Journal of Bone Fragility, vol. 2, no. 3, 28 Dec. 2022, pp. 84–92, www.journalbonefragility.com/wp-content/uploads/journal/2022/2.3/84-92.pdf
- · Idris, Aymen I., and Stuart H. Ralston. "Role of Cannabinoids in the Regulation of Bone Remodeling." Frontiers in Endocrinology, vol. 3, 2012, https://doi.org/10.3389/fendo.2012.00136.

Crohn's:

- · Naftali, Timna, et al. "Treatment of Crohn's Disease with Cannabis: An Observational Study." *The Israel Medical Association Journal: IMAJ*, vol. 13, no. 8, 1 Aug. 2011, pp. 455–458, https://www.ima.org.il/FilesUploadPublic/IMAJ/0/39/19985.pdf
- Naftali, Timna, et al. "Cannabis Induces a Clinical Response in Patients with Crohn's Disease: A Prospective Placebo-Controlled Study." Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, vol. 11, no. 10, 1 Oct. 2013, pp. 1276-1280.e1, https://doi.org/10.1016/j.cgh.2013.04.034.

Cancer

- Moreno, Estefanía, et al. "The Interplay between Cancer Biology and the Endocannabinoid System—Significance for Cancer Risk, Prognosis and Response to Treatment." Cancers, vol. 12, no. 11, 5 Nov. 2020, p. 3275, res.mdpi.com/d_attachment/cancers/cancers-12-03275/article_deploy/cancers-12-03275-v2.pdf https://doi.org/10.3390/cancers12113275.
- Mazuz, Moran, et al. "Synergistic Cytotoxic Activity of Cannabinoids from Cannabis Sativa against Cutaneous T-Cell Lymphoma (CTCL) In-Vitro and Ex-Vivo." Oncotarget, vol. 11, no. 13, 31 Mar. 2020, pp. 1141–1156, https://doi.org/10.18632/oncotarget.27528 (Primarily CBD & THC)

- Ladin, D. A., Soliman, E., Griffin, L., & Van Dross, R. (2016). Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents. *Frontiers in Pharmacology*, 7, 217542. https://doi.org/10.3389/fphar.2016.00361
- Scott, Katherine A., et al. "Anticancer Effects of Phytocannabinoids Used with Chemotherapy in Leukaemia Cells Can Be Improved by Altering the Sequence of Their Administration." *International Journal of Oncology*, vol. 51, no. 1, 29 May 2017, pp. 369–377, https://doi.org/10.3892/ijo.2017.4022.
- · Kleckner, Amber S., et al. "Opportunities for Cannabis in Supportive Care in Cancer." Therapeutic Advances in Medical Oncology, vol. 11, 1 Aug. 2019, https://journals.sagepub.com/doi/epdf/10.1177/1758835919866362?src=getftr&utm_source=tfo&getft_integrator=tfo

Fibromyalgia:

- · Sagy, Iftach, et al. "Safety and Efficacy of Medical Cannabis in Fibromyalgia." *Journal of Clinical Medicine*, vol. 8, no. 6, 5 June 2019, p. 807, www.ncbi.nlm.nih.gov/pmc/articles/PMC6616435/, https://doi.org/10.3390/icm8060807.
- · Habib G;Levinger U. "CHARACTERISTICS of MEDICAL CANNABIS USAGE among PATIENTS with FIBROMYALGIA." *Harefuah*, vol. 159, no. 5, 2020, https://pubmed.ncbi.nlm.nih.gov/32431124/
- · Chaves, Carolina, et al. "Ingestion of a THC-Rich Cannabis Oil in People with Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial." *Pain Medicine*, vol. 21, no. 10, 1 Oct. 2020, pp. 2212–2218, www.ncbi.nlm.nih.gov/pmc/articles/PMC7593796/
- · Mazza, Manuela. "Medical Cannabis for the Treatment of Fibromyalgia Syndrome: A Retrospective, Open-Label Case Series." *Journal of Cannabis Research*, vol. 3, no. 1, 17 Feb. 2021, https://doi.org/10.1186/s42238-021-00060-6.

Gastrointestinal:

· Gyires, Klára, and Zoltán S. Zádori. "Role of Cannabinoids in Gastrointestinal Mucosal Defense and Inflammation." *Current Neuropharmacology*, vol. 14, no. 8, 31 Oct. 2016, pp. 935–951, https://doi.org/10.2174/1570159x14666160303110150

Inflammation:

· Anil, S. M., Peeri, H., & Koltai, H. (2022). Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action. *Frontiers in Pharmacology*, *13*, 908198. https://doi.org/10.3389/fphar.2022.908198 (THC, CBD, CBG)

- "A Systematic, Integrative Review of the Effects of the Endocannabinoid System on Inflammation and Neurogenesis in Animal Models of Affective Disorders." *Brain, Behavior, and Immunity*, vol. 93, 1 Mar. 2021, pp. 353–367, https://doi.org/10.1016/j.bbi.2020.12.024
- · Kopustinskiene, Dalia M., et al. "Cannabis Sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation." *Antioxidants*, vol. 11, no. 4, 29 Mar. 2022, p. 660, https://doi.org/10.3390/antiox11040660.

MS / Spasms:

- Pryce, G, and D Baker. "Control of Spasticity in a Multiple Sclerosis Model Is Mediated by CB1, Not CB2, Cannabinoid Receptors." British Journal of Pharmacology, vol. 150, no. 4, 29 Jan. 2009, pp. 519–525, https://doi.org/10.1038/sj.bjp.0707003
- · Malfitano, Anna Maria, et al. "Cannabinoids in the Management of Spasticity Associated with Multiple Sclerosis." *Neuropsychiatric Disease and Treatment*, vol. 4, no. 5, 2008, pp. 847–53, www.ncbi.nlm.nih.gov/pmc/articles/PMC2626929/
- · ROG, D, et al. "Oromucosal Δ9-Tetrahydrocannabinol/Cannabidiol for Neuropathic Pain Associated with Multiple Sclerosis: An Uncontrolled, Open-Label, 2-Year Extension Trial." *Clinical Therapeutics*, vol. 29, no. 9, Sept. 2007, pp. 2068–2079, https://doi.org/10.1016/j.clinthera.2007.09.013

Neuroprotection

- Ramirez, B. G. "Prevention of Alzheimer's Disease Pathology by Cannabinoids: Neuroprotection Mediated by Blockade of Microglial Activation." *Journal of Neuroscience*, vol. 25, no. 8, 23 Feb. 2005, pp. 1904–1913, www.ineurosci.org/content/25/8/1904
- Currais, Antonio, et al. "Amyloid Proteotoxicity Initiates an Inflammatory Response Blocked by Cannabinoids." Npj Aging and Mechanisms of Disease, vol. 2, no. 1, 23 June 2016, https://doi.org/10.1038/npjamd.2016.12, https://www.salk.edu/news-release/cannabinoids-remove-plaque-forming-alzheimers-proteins-from-brain-cells/
- · Marchalant, Y., et al. "Anti-Inflammatory Property of the Cannabinoid Agonist WIN-55212-2 in a Rodent Model of Chronic Brain Inflammation." *Neuroscience*, vol. 144, no. 4, Feb. 2007, pp. 1516–1522, https://doi.org/10.1016/j.neuroscience.2006.11.016
- · Hampson, A. J., et al. "Cannabidiol and (-) 9-Tetrahydrocannabinol Are Neuroprotective Antioxidants." *Proceedings of the National Academy of Sciences*, vol. 95, no. 14, 7 July 1998, pp. 8268–8273, https://doi.org/10.1073/pnas.95.14.8268. (CBD, THC)

Opiates (reduction in use):

- · Silver, Jacob, et al. "Cannabis Use Is Associated with Decreased Opioid Prescription Fulfillment Following Single Level Anterior Cervical Discectomy and Fusion (ACDF)." North American Spine Society Journal, vol. 14, 1 June 2023, p. 100226, https://pmc.ncbi.nlm.nih.gov/articles/PMC10333711/
- Renslo, Bryan, et al. "Medical Cannabis Use Reduces Opioid Prescriptions in Patients with Osteoarthritis." *Cureus*, 24 Jan. 2022, https://doi.org/10.7759/cureus.21564

Pain

- · Wallace, Mark S, et al. "Efficacy of Inhaled Cannabis on Painful Diabetic Neuropathy." The Journal of Pain: Official Journal of the American Pain Society, vol. 16, no. 7, 2015, pp. 616–27, https://pmc.ncbi.nlm.nih.gov/articles/PMC5152762/
- · Wilsey, Barth, et al. "An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain from Spinal Cord Injury and Disease." The Journal of Pain, vol. 17, no. 9, Sept. 2016, pp. 982–1000, https://pmc.ncbi.nlm.nih.gov/articles/PMC5007175/#S34
- Ware, M. A., et al. "Smoked Cannabis for Chronic Neuropathic Pain: A Randomized Controlled Trial." Canadian Medical Association Journal, vol. 182, no. 14, 30 Aug. 2010, pp. E694–E701, https://www.cmaj.ca/content/cmaj/early/2010/08/30/cmaj.091414.full.pdf
- · Wilsey, Barth, et al. "Low Dose Vaporized Cannabis Significantly Improves Neuropathic Pain." *The Journal of Pain: Official Journal of the American Pain Society*, vol. 14, no. 2, 1 Feb. 2013, pp. 136–148, https://pmc.ncbi.nlm.nih.gov/articles/PMC3566631/
- · Johnson, Jeremy R., et al. "Multicenter, Double-Blind, Randomized, Placebo-Controlled, Parallel-Group Study of the Efficacy, Safety, and Tolerability of THC:CBD Extract and THC Extract in Patients with Intractable Cancer-Related Pain." *Journal of Pain and Symptom Management*, vol. 39, no. 2, Feb. 2010, pp. 167–179, https://doi.org/10.1016/j.jpainsymman.2009.06.008.
- Boehnke, Kevin F., et al. "Medical Cannabis Use Is Associated with Decreased Opiate Medication Use in a Retrospective Cross-Sectional Survey of Patients with Chronic Pain." The Journal of Pain, vol. 17, no. 6, June 2016, pp. 739–744, https://www.jpain.org/article/S1526-5900(16)00567-8/fulltext
- Rabgay, Karma, et al. "The Effects of Cannabis, Cannabinoids, and Their Administration Routes on Pain Control Efficacy and Safety: A Systematic Review and Network Meta-Analysis." *Journal of the American Pharmacists Association*, vol. 60, no. 1, Jan. 2020, pp. 225-234.e6, https://doi.org/10.1016/j.japh.2019.07.015.

- Mücke, Martin, et al. "Cannabis-Based Medicines for Chronic Neuropathic Pain in Adults."
 Cochrane Database of Systematic Reviews, vol. 3, no. 3, 7 Mar. 2018,
 https://doi.org/10.1002/14651858.cd012182.pub2.
- Jaseena Elikottil, et al. "The Analgesic Potential of Cannabinoids." *Journal of Opioid Management*, vol. 5, no. 6, 2024, p. 341, https://pmc.ncbi.nlm.nih.gov/articles/PMC3728280/#S15

Sleep:

· Kesner, Andrew J., and David M. Lovinger. "Cannabinoids, Endocannabinoids and Sleep." Frontiers in Molecular Neuroscience, vol. 13, no. 125, 22 July 2020, https://doi.org/10.3389/fnmol.2020.00125.

General:

- · Namdar, Dvora, et al. "Chronological Review and Rational and Future Prospects of Cannabis-Based Drug Development." *Molecules*, vol. 25, no. 20, 20 Oct. 2020, p. 4821, https://doi.org/10.3390/molecules25204821.
- · Bostwick, J. Michael. "Blurred Boundaries: The Therapeutics and Politics of Medical Marijuana." *Mayo Clinic Proceedings*, vol. 87, no. 2, Feb. 2012, pp. 172–186, www.mayoclinicproceedings.org/article/S0025-6196(11)00021-8/fulltext, https://doi.org/10.1016/j.mayocp.2011.10.003
- Russo, Ethan B. "Beyond Cannabis: Plants and the Endocannabinoid System." *Trends in Pharmacological Sciences*, vol. 37, no. 7, July 2016, pp. 594–605, https://mychronicrelief.com/wp-content/uploads/2016/05/Beyond-Cannabis-Plants-and-the-Endocannabinoid-System.pdf
- Pertwee, Roger G. "Cannabinoid Pharmacology: The First 66 Years." *British Journal of Pharmacology*, vol. 147, no. S1, 2 Feb. 2009, pp. S163–S171, www.ncbi.nlm.nih.gov/pmc/articles/PMC1760722/
- Crocq, Marc-Antoine. "History of Cannabis and the Endocannabinoid System." Cannabinoids, vol. 22, no. 3, 22 Sept. 2020, pp. 223–228, www.ncbi.nlm.nih.gov/pmc/articles/PMC7605027/

Websites:

https://icrs.co/

Books:

· O'brien, Kylie, and Philip Blair. Medicinal Cannabis and CBD in Mental Healthcare. https://cannalib.eu/wp-content/uploads/2022/03/Medicinal-Cannabis-and-CBD-in-Mental-Healthcare-2021.pdf

· Kinghorn, et al. *Progress in the Chemistry of Organic Natural Products*, Phytocannabinoids:

Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa Volume 103,

https://tech.chemistrydocs.com/Books/Medicinal/Phytocannabinois-Unraveling-the-Complex-Chemistry-and-Pharmacology-of-Cannabis-sativa-by-A.-Douglas-Kinghorn.pdf

CBD (cannabidiol)

Walczyńska-Dragon, Karolina, et al. "Cannabidiol Intervention for Muscular Tension, Pain, and Sleep Bruxism Intensity—a Randomized, Double-Blind Clinical Trial." Journal of Clinical Medicine, vol. 13, no. 5, 1 Jan. 2024, p. 1417, www.mdpi.com/2077-0383/13/5/1417 (Sleep Bruxism = teeth grinding)

Anti-Convulsant / Seizures:

- · Jones, N. A., et al. "Cannabidiol Displays Anti-epileptiform and Antiseizure Properties in Vitro and in Vivo." *Journal of Pharmacology and Experimental Therapeutics*, vol. 332, no. 2, 11 Nov. 2009, pp. 569–577, https://doi.org/10.1124/jpet.109.159145.
- · Silvestro, Serena, et al. "Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials." *Molecules*, vol. 24, no. 8, 12 Apr. 2019, p. 1459, www.mdpi.com/1420-3049/24/8/1459?type=check_update&version=2, https://doi.org/10.3390/molecules24081459.
- Rosenberg, Evan. *Cannabidiol Modulates Excitatory-Inhibitory Ratio to Counter Hippocampal Hyperactivity*. (Epileptic Seizures) Neuron, Volume 111, Issue 8, 1282 1300.e8, 19 Apr. 2023, <a href="https://www.cell.com/neuron/fulltext/S0896-6273(23)00066-1?_returnURL=https://www.cell.com/neuron/fulltext/S0896-6273(23)00066-1?_returnURL=https://www.cell.com/neuron/fulltext/S0896627323000661%3Fshowall%3Dtrue.
- · Gaston, Tyler E., et al. "Long-Term Safety and Efficacy of Highly Purified Cannabidiol for Treatment Refractory Epilepsy." *Epilepsy & Behavior*, vol. 117, Apr. 2021, p. 107862, https://doi.org/10.1016/j.yebeh.2021.107862.

Anxiety:

- · Blessing, Esther M., et al. "Cannabidiol as a Potential Treatment for Anxiety Disorders." *Neurotherapeutics*, vol. 12, no. 4, 4 Sept. 2015, pp. 825–836, link.springer.com/article/10.1007%2Fs13311-015-0387-1, https://doi.org/10.1007/s13311-015-0387-1.
- Dahlgren, Mary Kathryn, et al. "Clinical and Cognitive Improvement Following Full-Spectrum, High-Cannabidiol Treatment for Anxiety: Open-Label Data from a Two-Stage, Phase 2 Clinical Trial." Communications Medicine, vol. 2, no. 1, 2 Nov. 2022, https://doi.org/10.1038/s43856-022-00202-8.

- Resstel, Leonardo B.M., et al. "5-HT1Areceptors Are Involved in the Cannabidiol-Induced Attenuation of Behavioural and Cardiovascular Responses to Acute Restraint Stress in Rats." *British Journal of Pharmacology*, vol. 156, no. 1, Jan. 2009, pp. 181–188, https://doi.org/10.1111/j.1476-5381.2008.00046.x.
- · Soares, Vanessa de Paula, et al. "Intra-Dorsal Periaqueductal Gray Administration of Cannabidiol Blocks Panic-like Response by Activating 5-HT1A Receptors." *Behavioural Brain Research*, vol. 213, no. 2, Dec. 2010, pp. 225–229, https://doi.org/10.1016/j.bbr.2010.05.004.

Anti-psychotic:

Leweke, F M, et al. "Cannabidiol Enhances Anandamide Signaling and Alleviates Psychotic Symptoms of Schizophrenia." *Translational Psychiatry*, vol. 2, no. 3, Mar. 2012, pp. e94–e94, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316151/

Cancer:

- · Massi, Paola, et al. "Cannabidiol as Potential Anticancer Drug." *British Journal of Clinical Pharmacology*, vol. 75, no. 2, 10 Jan. 2013, pp. 303–312, https://doi.org/10.1111/j.1365-2125.2012.04298.x.
- Ramer, Robert, et al. "Cannabidiol Inhibits Lung Cancer Cell Invasion and Metastasis via Intercellular Adhesion Molecule-1." *The FASEB Journal*, vol. 26, no. 4, 23 Dec. 2011, pp. 1535–1548, https://realmofcaring.org/wp-content/uploads/2020/12/Cannabidiol-inhibits-lung-cancer-cell-invasion-and-metastasis-via-intercellular-adhesion-molecule-1.pdf
- · Bar-Lev Schleider, Lihi, et al. "Prospective Analysis of Safety and Efficacy of Medical Cannabis in Large Unselected Population of Patients with Cancer." European Journal of Internal Medicine, vol. 49, 1 Mar. 2018, pp. 37–43, pubmed.ncbi.nlm.nih.gov/29482741/, https://doi.org/10.1016/j.ejim.2018.01.023.
- Heider, Camren G., et al. "Mechanisms of Cannabidiol (CBD) in Cancer Treatment: A Review." *Biology*, vol. 11, no. 6, 26 May 2022, p. 817, www.ncbi.nlm.nih.gov/pmc/articles/PMC9220307/, https://doi.org/10.3390/biology11060817.
- O'Brien, Kylie. "Cannabidiol (CBD) in Cancer Management." *Cancers*, vol. 14, no. 4, 10 Feb. 2022, p. 885, https://doi.org/10.3390/cancers14040885.
- Seltzer, Emily S., et al. "Cannabidiol (CBD) as a Promising Anti-Cancer Drug." Cancers, vol. 12, no. 11, 30 Oct. 2020, p. 3203, https://doi.org/10.3390/cancers12113203.
- · Solinas, Marta, et al. "Cannabidiol, a Non-Psychoactive Cannabinoid Compound, Inhibits Proliferation and Invasion in U87-MG and T98G Glioma Cells through a Multitarget Effect." *PLoS ONE*, vol. 8, no. 10, 21 Oct. 2013, p. e76918, https://doi.org/10.1371/journal.pone.0076918

- · Mashabela, Manamele Dannies, and Abidemi Paul Kappo. "Anti-Cancer and Anti-Proliferative Potential of Cannabidiol: A Cellular and Molecular Perspective." *International Journal of Molecular Sciences*, vol. 25, no. 11, 1 Jan. 2024, p. 5659, www.mdpi.com/1422-0067/25/11/5659#:~:text=CBD%20acts%20as%20an%20agonist, https://doi.org/10.3390/ijms25115659
- · Shrivastava, Ashutosh, et al. "Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-Talk between Apoptosis and Autophagy." *Molecular Cancer Therapeutics*, vol. 10, no. 7, 2011, pp. 1161–72, https://aacrjournals.org/mct/article/10/7/1161/91099/Cannabidiol-Induces-Programmed-Cell-Death-in

Depression:

· Zanelati, TV, et al. "Antidepressant-like Effects of Cannabidiol in Mice: Possible Involvement of 5-HT1A Receptors." *British Journal of Pharmacology*, vol. 159, no. 1, 4 Dec. 2009, pp. 122–128, https://doi.org/10.1111/j.1476-5381.2009.00521.x.

Digestive / IBD:

- · Borrelli, Francesca, et al. "Cannabidiol, a Safe and Non-Psychotropic Ingredient of the Marijuana Plant Cannabis Sativa, Is Protective in a Murine Model of Colitis." *Journal of Molecular Medicine*, vol. 87, no. 11, 20 Aug. 2009, pp. 1111–1121, https://thc-safety.com/wp-content/uploads/2018/12/CBD Colitis Protection 2009.pdf
- · Capasso, R, et al. "Cannabidiol, Extracted From Cannabis Sativa, Selectively Inhibits Inflammatory Hypermotility in Mice." *British Journal of Pharmacology*, vol. 154, no. 5, July 2008, pp. 1001–1008, https://doi.org/10.1038/bjp.2008.177.
- Pagano, E., Capasso, R., Piscitelli, F., Romano, B., Parisi, O. A., Finizio, S., Lauritano, A., Marzo, V. D., Izzo, A. A., & Borrelli, F. (2016). An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse. *Frontiers in Pharmacology*, 7, 222194. https://doi.org/10.3389/fphar.2016.00341

Inflammation:

- Atalay, Sinemyiz, et al. "Antioxidative and Anti-Inflammatory Properties of Cannabidiol." Antioxidants, vol. 9, no. 1, 25 Dec. 2019, p. 21, www.ncbi.nlm.nih.gov/pmc/articles/PMC7023045/, https://doi.org/10.3390/antiox9010021.
- · Hegde, Venkatesh L., et al. "Role of Myeloid-Derived Suppressor Cells in Amelioration of Experimental Autoimmune Hepatitis Following Activation of TRPV1 Receptors by Cannabidiol." *PLoS ONE*, vol. 6, no. 4, 1 Apr. 2011, p. e18281, https://doi.org/10.1371/journal.pone.0018281

- · Ribeiro, Alison, et al. "Cannabidiol, a Non-Psychotropic Plant-Derived Cannabinoid, Decreases Inflammation in a Murine Model of Acute Lung Injury: Role for the Adenosine A2A Receptor." European Journal of Pharmacology, vol. 678, no. 1-3, Mar. 2012, pp. 78–85, https://doi.org/10.1016/j.eiphar.2011.12.043.
- Lowin, Torsten, et al. "Cannabidiol (CBD): A Killer for Inflammatory Rheumatoid Arthritis Synovial Fibroblasts." *Cell Death & Disease*, vol. 11, no. 8, Aug. 2020, https://doi.org/10.1038/s41419-020-02892-1
- · Adriana Yndart Arias, et al. "Anti-Inflammatory Effects of CBD in Human Microglial Cell Line Infected with HIV-1." *Scientific Reports*, vol. 13, no. 1, 5 May 2023, https://doi.org/10.1038/s41598-023-32927-4.

Nausea:

- Rock, Erin M., et al. "Therapeutic Potential of Cannabidiol, Cannabidiolic Acid, and Cannabidiolic Acid Methyl Ester as Treatments for Nausea and Vomiting." Cannabis and Cannabinoid Research, 11 June 2021, https://doi.org/10.1089/can.2021.0041 (Also includes CBD-A, CBDA-ME, a derivative of CBD-A)
- Rock, EM, et al. "Cannabidiol, a Non-Psychotropic Component of Cannabis, Attenuates Vomiting and Nausea-like Behaviour via Indirect Agonism of 5-HT1A Somatodendritic Autoreceptors in the Dorsal Raphe Nucleus." *British Journal of Pharmacology*, vol. 165, no. 8, 23 Mar. 2012, pp. 2620–2634, https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01621.x
- Grimison, P., et al. "Oral THC:CBD Cannabis Extract for Refractory Chemotherapy-Induced Nausea and Vomiting: A Randomised, Placebo-Controlled, Phase II Crossover Trial." *Annals of Oncology*, vol. 31, no. 11, Nov. 2020, pp. 1553–1560, https://doi.org/10.1016/j.annonc.2020.07.020 (Also includes THC)
- Apichaya Sukpiriyagul, et al. "Oral Tetrahydrocannabinol (THC): Cannabinoid (CBD) Cannabis Extract Adjuvant for Reducing Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial." *International Journal of Women's Health*, vol. Volume 15, 1 Aug. 2023, pp. 1345–1352, https://doi.org/10.2147/ijwh.s401938

Neuroprotection:

- Dirikoc, S., et al. "Nonpsychoactive Cannabidiol Prevents Prion Accumulation and Protects Neurons against Prion Toxicity." *Journal of Neuroscience*, vol. 27, no. 36, 5 Sept. 2007, pp. 9537–9544, https://doi.org/10.1523/ineurosci.1942-07.2007
- Watt, Georgia, and Tim Karl. "In Vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer's Disease." Frontiers in Pharmacology, vol. 8, 3 Feb. 2017, www.ncbi.nlm.nih.gov/pmc/articles/PMC5289988/, https://doi.org/10.3389/fphar.2017.00020.

- · Castillo, A, et al. "The Neuroprotective Effect of Cannabidiol in an in Vitro Model of Newborn Hypoxic-Ischemic Brain Damage in Mice Is Mediated by CB(2) and Adenosine Receptors."

 Neurobiology of Disease, vol. 37, no. 2, 2010, pp. 434–40, www.ncbi.nlm.nih.gov/pubmed/19900555
- Esposito, Giuseppe, et al. "The Marijuana Component Cannabidiol Inhibits β-Amyloid-Induced Tau Protein Hyperphosphorylation through Wnt/β-Catenin Pathway Rescue in PC12 Cells." *Journal of Molecular Medicine*, vol. 84, no. 3, 31 Dec. 2005, pp. 253–258, https://doi.org/10.1007/s00109-005-0025-1.
- · Esposito, G, et al. "Cannabidiol in Vivo Blunts β-Amyloid Induced Neuroinflammation by Suppressing IL-1β and INOS Expression." *British Journal of Pharmacology*, vol. 151, no. 8, 29 Jan. 2009, pp. 1272–1279, https://doi.org/10.1038/sj.bjp.0707337
- · Vallée, Alexandre, et al. "Effects of Cannabidiol Interactions with Wnt/β-Catenin Pathway and PPARγ on Oxidative Stress and Neuroinflammation in Alzheimer's Disease." Acta Biochimica et Biophysica Sinica, vol. 49, no. 10, 1 Oct. 2017, pp. 853–866, https://www.sciengine.com/ABBS/doi/10.1093/abbs/gmx073;JSESSIONID=28a2ada8-692c-49e0-9ead-c64d700ff092#sec-005

Pain:

- · Villanueva, Maria Resah B, et al. "Efficacy, Safety, and Regulation of Cannabidiol on Chronic Pain: A Systematic Review." *Cureus*, vol. 14, no. 7, 16 July 2022, https://doi.org/10.7759/cureus.26913.
- · Ellis, Ronald J, et al. "Smoked Medicinal Cannabis for Neuropathic Pain in HIV: A Randomized, Crossover Clinical Trial." *Neuropsychopharmacology*, vol. 34, no. 3, 6 Aug. 2008, pp. 672–680, https://doi.org/10.1038/npp.2008.120.
- Lynch, Mary E., et al. "A Double-Blind, Placebo-Controlled, Crossover Pilot Trial with Extension Using an Oral Mucosal Cannabinoid Extract for Treatment of Chemotherapy-Induced Neuropathic Pain." Journal of Pain and Symptom Management, vol. 47, no. 1, 1 Jan. 2014, pp. 166–173, www.jpsmjournal.com/article/S0885-3924(13)00238-8/fulltext, https://doi.org/10.1016/j.jpainsymman.2013.02.018.
- · Comelli, Francesca, et al. "Beneficial Effects of A Cannabis Sativa extract Treatment on Diabetes-Induced Neuropathy and Oxidative Stress." *Phytotherapy Research*, vol. 23, no. 12, Dec. 2009, pp. 1678–1684, https://doi.org/10.1002/ptr.2806

Sleep:

· Murillo-Rodríguez, Eric, et al. "Cannabidiol, a Constituent Of Cannabis Sativa, Modulates Sleep in Rats." *FEBS Letters*, vol. 580, no. 18, 10 July 2006, pp. 4337–4345, https://doi.org/10.1016/j.febslet.2006.04.102.

· CARLINI, ELISALDO A., and JOMAR M. CUNHA. "Hypnotic and Antiepileptic Effects of Cannabidiol." *The Journal of Clinical Pharmacology*, vol. 21, no. S1, 9 Aug. 1981, pp. 417S427S, https://doi.org/10.1002/j.1552-4604.1981.tb02622.x.

CBC (cannabichromene)

TURNER, CARLTON E., and MAHMOUD A. ELSOHLY. "Biological Activity of Cannabichromene, Its Homologs and Isomers." *The Journal of Clinical Pharmacology*, vol. 21, no. S1, 9 Aug. 1981, pp. 283S291S,

https://www.druglibrary.net/crl/pain/Turner_-_Elsohly_81Cannabichromene_JClinPharmacol.pdf (Inflammation / Anti-microbial / Anti-fungal)

- Sepulveda, Diana E, et al. "The Potential of Cannabichromene (CBC) as a Therapeutic Agent." Journal of Pharmacology and Experimental Therapeutics, 22 May 2024, p. JPET-MR-2024-002166, jpet.aspetjournals.org/content/jpet/early/2024/05/22/jpet.124.002166.full.pdf, https://doi.org/10.1124/jpet.124.002166. (Inflammation / Anti-microbial, Anti-convulsant)
- Walsh, Kenneth, et al. "Minor Cannabinoids: Biosynthesis, Molecular Pharmacology and Potential Therapeutic Uses." Frontiers in Pharmacology Experimental Pharmacology and Drug Discovery Volume 12, 28 Nov. 2021,
 www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.777804/full.
 (Inflammation, Pain, Anandamide booster, Neuroprotective, Anti-tumor)

Anti-bacterial:

Appendino, Giovanni, et al. "Antibacterial Cannabinoids From Cannabis Sativa: A Structure-Activity Study." *Journal of Natural Products*, vol. 71, no. 8, Aug. 2008, pp. 1427–1430, https://www.researchgate.net/publication/275830072_Antibacterial_Cannabinoids_from_Cannabis_sativa_A_Structure-Activity_Study (Also includes CBD, CBG, CBN, THC)

Anti-depressant:

El-Alfy, Abir T., et al. "Antidepressant-like Effect of Δ9-Tetrahydrocannabinol and Other Cannabinoids Isolated from Cannabis Sativa L." *Pharmacology Biochemistry and Behavior*, vol. 95, no. 4, June 2010, pp. 434–442, www.ncbi.nlm.nih.gov/pmc/articles/PMC2866040/, https://doi.org/10.1016/j.pbb.2010.03.004. (Also includes THC & CBD)

Anadamide:

De Petrocellis, Luciano, et al. "Plant-Derived Cannabinoids Modulate the Activity of Transient Receptor Potential Channels of Ankyrin Type-1 and Melastatin Type-8." *Journal of Pharmacology and*

Experimental Therapeutics, vol. 325, no. 3, 19 Mar. 2008, pp. 1007–1015, https://doi.org/10.1124/jpet.107.134809

Anti-Convulsant / Seizure:

- Wang, Zihan, et al. "Cannabichromene from Full-Spectrum Hemp Extract Exerts Acute
 Anti-Seizure Effects through Allosteric Activation of GABAA Receptors." Fundamental Research, 1

 Apr. 2024, https://doi.org/10.1016/j.fmre.2023.05.023 (Also includes CBD & CBN)
- Lyndsey L. Anderson, et al. "Cannabichromene, Related Phytocannabinoids, and 5-Fluoro-cannabichromene Have Anticonvulsant Properties in a Mouse Model of Dravet Syndrome." ACS Chemical Neuroscience 2021 12 (2), 330-339, https://pubs.acs.org/doi/10.1021/acschemneuro.0c00677

Acne / Skin:

· Oláh, Attila, et al. "Differential Effectiveness of Selected Non-Psychotropic Phytocannabinoids on Human Sebocyte Functions Implicates Their Introduction in Dry/Seborrhoeic Skin and Acne Treatment." Experimental Dermatology, vol. 25, no. 9, 15 June 2016, pp. 701–707, https://doi.org/10.1111/exd.13042 (Also CBG, CBG-V, CBD-V, THC-V)

Cancer:

- · Anis, Omer, et al. "Cannabis-Derived Compounds Cannabichromene and Δ9-Tetrahydrocannabinol Interact and Exhibit Cytotoxic Activity against Urothelial Cell Carcinoma Correlated with Inhibition of Cell Migration and Cytoskeleton Organization." *Molecules*, vol. 26, no. 2, 17 Jan. 2021, www.ncbi.nlm.nih.gov/pmc/articles/PMC7830447/
- · Kifah Blal, et al. "The Effect of Cannabis Plant Extracts on Head and Neck Squamous Cell Carcinoma and the Quest for Cannabis-Based Personalized Therapy." *Cancers*, vol. 15, no. 2, 13 Jan. 2023, pp. 497–497, www.ncbi.nlm.nih.gov/pmc/articles/PMC9856564/

Digestive / IBD:

- · Izzo, Angelo A, et al. "Inhibitory Effect of Cannabichromene, a Major Non-Psychotropic Cannabinoid Extracted from Cannabis Sativa, on Inflammation-Induced Hypermotility in Mice." *British Journal of Pharmacology*, vol. 166, no. 4, 17 May 2012, pp. 1444–1460, https://doi.org/10.1111/j.1476-5381.2012.01879.x.
- Romano, B, et al. "The Cannabinoid TRPA1 Agonist Cannabichromene Inhibits Nitric Oxide Production in Macrophages and Ameliorates Murine Colitis." *British Journal of Pharmacology*, vol. 169, no. 1, 12 Apr. 2013, pp. 213–229, https://www.prixgalien.it/wp-content/uploads/2014/10/2014_art_romano.pdf

Inflammation:

- Hong, Min, et al. "In Vitro and in Vivo Anti-Inflammatory Potential of Cannabichromene Isolated from Hemp." *Plants*, vol. 12, no. 23, 1 Jan. 2023, p. 3966, www.mdpi.com/2223-7747/12/23/3966, https://doi.org/10.3390/plants12233966.
- Esmaeel Ghasemi Gojani, et al. "Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages." *Molecules*, vol. 28, no. 18, 7 Sept. 2023, pp. 6487–6487, https://doi.org/10.3390/molecules28186487
- Wirth, Philip W., et al. "Anti-Inflammatory Properties of Cannabichromene." *Life Sciences*, vol. 26, no. 23, June 1980, pp. 1991–1995, https://doi.org/10.1016/0024-3205(80)90631-1

Pain:

- · Maione, Sabatino, et al. "Non-Psychoactive Cannabinoids Modulate the Descending Pathway of Antinociception in Anaesthetized Rats through Several Mechanisms of Action." *British Journal of Pharmacology*, vol. 162, no. 3, 12 Jan. 2011, pp. 584–596, https://doi.org/10.1111/j.1476-5381.2010.01063.x.
- Raup-Konsavage, Wesley M, et al. "Antinociceptive Effects of Cannabichromene (CBC) in Mice: Insights from von Frey, Tail-Flick, Formalin, and Acetone Tests." *Biomedicines*, vol. 12, no. 1, 29 Dec. 2023, pp. 83–83, https://doi.org/10.3390/biomedicines12010083

CBG (cannabigerol)

· Calapai, Fabrizio, et al. "Pharmacological Aspects and Biological Effects of Cannabigerol and Its Synthetic Derivatives." *Evidence-Based Complementary and Alternative Medicine: ECAM*, vol. 2022, 2022, p. 3336516, https://doi.org/10.1155/2022/3336516 (intraocular pressure, antioxidant, anti-inflammatory, anti-tumoral, anti-anxiety, neuroprotective, dermatological, and appetite-stimulating)

Antioxidant:

- · "CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as Antioxidant Agents and Their Intervention Abilities in Antioxidant Action." *Fitoterapia*, vol. 152, 1 July 2021, p. 104915, https://www.sciencedirect.com/science/article/pii/S0367326X21000903?via%3Dihub
- · Giacoppo, Sabrina, et al. "Cannabinoid CB2 Receptors Are Involved in the Protection of RAW264.7 Macrophages against the Oxidative Stress: An in Vitro Study." *European Journal of Histochemistry*, 23 Jan. 2017, https://pmc.ncbi.nlm.nih.gov/articles/PMC5289301/

Anti-inflammatory:

- · Robaina Cabrera, Carmen Lorena, et al. "The Anti-Inflammatory Effects of Cannabidiol and Cannabigerol Alone, and in Combination." *Pulmonary Pharmacology & Therapeutics*, vol. 69, Aug. 2021, p. 102047, https://doi.org/10.1016/j.pupt.2021.102047.
- Lowin, Torsten, et al. "Anti-Inflammatory Effects of Cannabigerol in Rheumatoid Arthritis Synovial Fibroblasts and Peripheral Blood Mononuclear Cell Cultures Are Partly Mediated by TRPA1." International Journal of Molecular Sciences, vol. 24, no. 1, 3 Jan. 2023, p. 855, https://doi.org/10.3390/ijms24010855

Anti-Anxiety:

· Cuttler, Carrie, et al. "Acute Effects of Cannabigerol on Anxiety, Stress, and Mood: A Double-Blind, Placebo-Controlled, Crossover, Field Trial." *Scientific Reports*, vol. 14, no. 1, 13 July 2024, p. 16163, https://doi.org/10.1038/s41598-024-66879-0.

Appetite Stimulant:

• Brierley, Daniel I, et al. "Cannabigerol Is a Novel, Well-Tolerated Appetite Stimulant in Pre-Satiated Rats." *Psychopharmacology*, vol. 233, no. 19-20, 9 Aug. 2016, pp. 3603–3613, https://doi.org/10.1007/s00213-016-4397-4

Anandamide:

- · Arnold, William R., et al. "Cross-Talk of Cannabinoid and Endocannabinoid Metabolism Is Mediated via Human Cardiac CYP2J2." *Journal of Inorganic Biochemistry*, vol. 184, 1 July 2018, pp. 88–99, https://pmc.ncbi.nlm.nih.gov/articles/PMC5964033/
- De Petrocellis, Luciano, et al. "Effects of Cannabinoids and Cannabinoid-Enriched Cannabis extracts on TRP Channels and Endocannabinoid Metabolic Enzymes." *British Journal of Pharmacology*, vol. 163, no. 7, 12 July 2011, pp. 1479–1494, https://pmc.ncbi.nlm.nih.gov/articles/PMC3165957/

Bone-Growth:

Deepak Kumar Khajuria, et al. "Cannabidiol and Cannabigerol, Nonpsychotropic Cannabinoids, as Analgesics That Effectively Manage Bone Fracture Pain and Promote Healing in Mice." Journal of Bone and Mineral Research, 25 Sept. 2023, https://doi.org/10.1002/jbmr.4902 (Also includes CBD)

Bladder:

Pagano, Ester, et al. "Effect of Non-Psychotropic Plant-Derived Cannabinoids on Bladder Contractility: Focus on Cannabigerol." *Natural Product Communications*, vol. 10, no. 6, June 2015, p. 1934578X1501000, https://journals.sagepub.com/doi/pdf/10.1177/1934578X1501000653

Blood Clots:

· Formukong, E A, et al. "The Inhibitory Effects of Cannabinoids, the Active Constituents of Cannabis Sativa L. On Human and Rabbit Platelet Aggregation." *Journal of Pharmacy and Pharmacology*, vol. 41, no. 10, Oct. 1989, pp. 705–709, https://doi.org/10.1111/j.2042-7158.1989.tb06345.x

Cancer / Anti-tumor:

- · Baek,. "Synthesis and Antitumor Activity of Cannabigerol." *Archives of Pharmacal Research*, vol. 19, no. 3, 2016, pp. 228–230, https://koreascience.kr/article/JAKO199611919462974.pdf (skin melanoma)
- · Baek, Seung Hwa, et al. "Boron Trifluoride Etherate on Silica-A Modified Lewis Acid Reagent (VII). Antitumor Activity of Cannabigerol against Human Oral Epitheloid Carcinoma Cells." *Archives of Pharmacal Research*, vol. 21, no. 3, June 1998, pp. 353–356, https://pubmed.ncbi.nlm.nih.gov/9875457/
- Ligresti, Alessia, et al. "Antitumor Activity of Plant Cannabinoids with Emphasis on the Effect of Cannabidiol on Human Breast Carcinoma." *Journal of Pharmacology and Experimental Therapeutics*, vol. 318, no. 3, 25 May 2006, pp. 1375–1387, https://pubmed.ncbi.nlm.nih.gov/16728591/ (Also includes CBD, CBC, CBD-A, THC-A)
- Borrelli, Francesca, et al. "Colon Carcinogenesis Is Inhibited by the TRPM8 Antagonist Cannabigerol, a Cannabis-Derived Non-Psychotropic Cannabinoid." *Carcinogenesis*, vol. 35, no. 12, 1 Dec. 2014, pp. 2787–2797, https://pubmed.ncbi.nlm.nih.gov/25269802/
- Lah, Tamara T., et al. "Cannabigerol Is a Potential Therapeutic Agent in a Novel Combined Therapy for Glioblastoma." *Cells*, vol. 10, no. 2, 5 Feb. 2021, p. 340, https://pmc.ncbi.nlm.nih.gov/articles/PMC7914500/

Digestive / IBD:

Borrelli, Francesca, et al. "Beneficial Effect of the Non-Psychotropic Plant Cannabinoid Cannabigerol on Experimental Inflammatory Bowel Disease." Biochemical Pharmacology, vol. 85, no. 9, 1 May 2013, pp. 1306–1316,

https://www.sciencedirect.com/science/article/abs/pii/S0006295213000543?via%3Dihub

· Anderson, Benjamin D, et al. "High Cannabigerol Hemp Extract Moderates Colitis and Modulates the Microbiome in an Inflammatory Bowel Disease Model." *Journal of Pharmacology and Experimental Therapeutics*, 15 July 2024, p. JPET-002204, https://ipet.aspetiournals.org/content/390/3/331

Glaucoma:

- Colasanti, B K, et al. "Intraocular Pressure, Ocular Toxicity and Neurotoxicity after Administration of Cannabinol or Cannabigerol." *Experimental Eye Research*, vol. 39, no. 3, 1 Sept. 1984, pp. 251-259, https://www.sciencedirect.com/science/article/abs/pii/0014483584900137?via%3Dihub
- Colasanti, Brenda K. A Comparison of the Ocular and Central Effects of Δ^9 -Tetrahydrocannabinol and Cannabigerol. Vol. 6, no. 4, 1 Jan. 1990, pp. 259–269, https://doi.org/10.1089/jop.1990.6.259
- · Szczesniak, Anna-Maria, et al. "Nonpsychotropic Cannabinoids, Abnormal Cannabidiol and Canabigerol-Dimethyl Heptyl, Act at Novel Cannabinoid Receptors to Reduce Intraocular Pressure." *Journal of Ocular Pharmacology and Therapeutics*, vol. 27, no. 5, Oct. 2011, pp. 427–435, https://doi.org/10.1089/jop.2011.0041

Neuroprotection:

- Gugliandolo, Agnese, et al. "In Vitro Model of Neuroinflammation: Efficacy of Cannabigerol, a Non-Psychoactive Cannabinoid." *International Journal of Molecular Sciences*, vol. 19, no. 7, 1 July 2018, p. 1992, https://pmc.ncbi.nlm.nih.gov/articles/PMC6073490/
- · Granja, Aitor G., et al. "A Cannabigerol Quinone Alleviates Neuroinflammation in a Chronic Model of Multiple Sclerosis." *Journal of Neuroimmune Pharmacology*, vol. 7, no. 4, 14 Sept. 2012, pp. 1002–1016, https://pubmed.ncbi.nlm.nih.gov/22971837/
- · Carrillo-Salinas, Francisco J., et al. "A Cannabigerol Derivative Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis." *PloS One*, vol. 9, no. 4, 2014, p. e94733, https://pmc.ncbi.nlm.nih.gov/articles/PMC3984273/
- · García, Concepción, et al. "Benefits of VCE-003.2, a Cannabigerol Quinone Derivative, against Inflammation-Driven Neuronal Deterioration in Experimental Parkinson's Disease: Possible Involvement of Different Binding Sites at the PPARy Receptor." *Journal of Neuroinflammation*, vol. 15, no. 1, 16 Jan. 2018, https://pmc.ncbi.nlm.nih.gov/articles/PMC5771072/
- Valdeolivas, Sara, et al. "Neuroprotective Properties of Cannabigerol in Huntington's Disease:
 Studies in R6/2 Mice and 3-Nitropropionate-Lesioned Mice." Neurotherapeutics, vol. 12, no. 1, 25
 Sept. 2014, pp. 185–199, https://pmc.ncbi.nlm.nih.gov/articles/PMC4322067/
- di Giacomo, Viviana, et al. "Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes." *International Journal of Molecular Sciences*, vol. 21, no. 10, 18 May 2020, p. 3575, https://pmc.ncbi.nlm.nih.gov/articles/PMC7279038/
- · Rodríguez-Cueto, Carmen, et al. "Neuroprotective Effects of the Cannabigerolic Quinone Derivative VCE-003.2 in SOD1G93A Transgenic Mice, an Experimental Model of Amyotrophic Lateral Sclerosis (ALS)." *Biochemical Pharmacology*, vol. 157, Nov. 2018, pp. 217–226, https://www.sciencedirect.com/science/article/abs/pii/S0006295218303198?via%3Dihub

Pain:

· Zagzoog, Ayat, et al. "In Vitro and in Vivo Pharmacological Activity of Minor Cannabinoids Isolated from Cannabis Sativa." *Scientific Reports*, vol. 10, no. 1, 23 Nov. 2020, p. 20405, https://pmc.ncbi.nlm.nih.gov/articles/PMC7684313/ (anti-nociceptive, IE PAIN)

Skin Aid:

- Pucci, Mariangela, et al. "Epigenetic Control of Skin Differentiation Genes by Phytocannabinoids."
 British Journal of Pharmacology, vol. 170, no. 3, 17 Sept. 2013, pp. 581–591,
 https://doi.org/10.1111/bph.12309 (Also Includes CBD)
- Perez, Eduardo, et al. "In Vitro and Clinical Evaluation of Cannabigerol (CBG) Produced via Yeast Biosynthesis: A Cannabinoid with a Broad Range of Anti-Inflammatory and Skin Health-Boosting Properties." *Molecules*, vol. 27, no. 2, 15 Jan. 2022, pp. 491–491, https://doi.org/10.3390/molecules27020491

CBN (Cannabinol)

- Somvanshi, Rishi K., et al. "Cannabinol Modulates Neuroprotection and Intraocular Pressure: A Potential Multi-Target Therapeutic Intervention for Glaucoma." *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease*, vol. 1868, no. 3, 1 Mar. 2022, p. 166325, https://www.sciencedirect.com/science/article/pii/S0925443921002581?via%3Dihub
- Aya Khouchlaa, et al. "Health Benefits, Pharmacological Properties, and Metabolism of Cannabinol: A Comprehensive Review." Industrial Crops and Products (Print), vol. 213, 1 July 2024, pp. 118359–118359, https://doi.org/10.1016/j.indcrop.2024.118359 (Pain, Anti-oxidant, Anti-convulsant, Anti-microbial, Cancer, Inflammation)

Cancer / Tumor:

- · Munson, A. E., et al. "Antineoplastic Activity of Cannabinoids." *JNCI: Journal of the National Cancer Institute*, vol. 55, no. 3, Sept. 1975, pp. 597–602, https://shorturl.at/30oUF (THC, CBN)
- Wang, Bo, et al. "Cannabinol Inhibits Cellular Proliferation, Invasion, and Angiogenesis of Neuroblastoma via Novel MiR-34a/TRiMetF31/PFKFB3 Axis." Cancers, vol. 14, no. 8, 10 Apr. 2022, pp. 1908–1908, https://www.mdpi.com/2072-6694/14/8/1908

Leelawat, Surang, et al. "Antitumor Effects of Delta (9)-Tetrahydrocannabinol and Cannabinol on Cholangiocarcinoma Cells and Xenograft Mouse Models." Evidence-Based Complementary and Alternative Medicine, vol. 2022, 21 Nov. 2022, pp. 1–14, https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/6477132?getft_integrator=readcube&src=getftr&utm_source=readcube

Pain:

- · Sofia, R. Duane, et al. "Comparative Analgesic Activity of Various Naturally Occurring Cannabinoids in Mice and Rats." *Psychopharmacologia*, vol. 40, no. 4, 1975, pp. 285–295, https://doi.org/10.1007/bf00421466. (Also includes THC)
- Wong, Hayes, and Brian E. Cairns. "Cannabidiol, Cannabinol and Their Combinations Act as Peripheral Analgesics in a Rat Model of Myofascial Pain." Archives of Oral Biology, vol. 104, 1 Aug. 2019, pp. 33–39, https://www.sciencedirect.com/science/article/abs/pii/S0003996919302249

MRSA:

· Appendino, Giovanni, et al. "Antibacterial Cannabinoids From Cannabis Sativa: A Structure–Activity Study." *Journal of Natural Products*, vol. 71, no. 8, Aug. 2008, pp. 1427–1430, https://doi.org/10.1021/np8002673. (Also includes THC, CBD, CBG, CBC)

Neuroprotection:

- Liang, Zhibin, et al. "Cannabinol Inhibits Oxytosis/Ferroptosis by Directly Targeting Mitochondria Independently of Cannabinoid Receptors." *Free Radical Biology and Medicine*, vol. 180, Feb. 2022, pp. 33–51, https://doi.org/10.1016/i.freeradbiomed.2022.01.001.
- Liang, Zhibin, et al. "Fragment-Based Drug Discovery and Biological Evaluation of Novel Cannabinol-Based Inhibitors of Oxytosis/Ferroptosis for Neurological Disorders." *Redox Biology*, vol. 72, 1 June 2024, pp. 103138–103138, https://www.sciencedaily.com/releases/2024/04/240417182826.htm

Sleep:

- · Bonn-Miller, Marcel O., et al. "A Double-Blind, Randomized, Placebo-Controlled Study of the Safety and Effects of CBN with and without CBD on Sleep Quality." Experimental and Clinical Psychopharmacology, 5 Oct. 2023, https://psycnet.apa.org/fulltext/2024-14146-001.html
- Gannon, William, et al. "Novel Formulation of THC and CBN in a Repeat-Action Tablet Improves Objective and Subjective Measurements of Sleep Original Research." *American Journal of Endocannabinoid Medicine I*, vol. 3, Feb 2021, https://realmofcaring.org/wp-content/uploads/2024/05/Sleep-Study.pdf

THC (tetrahydrocannabinol)

Alzheimer's / Nuro:

- · Eubanks, Lisa M., et al. "A Molecular Link between the Active Component of Marijuana and Alzheimer's Disease Pathology." *Molecular Pharmaceutics*, vol. 3, no. 6, Dec. 2006, pp. 773–777, www.ncbi.nlm.nih.gov/pmc/articles/PMC2562334/
- · Aso, Ester, et al. "Cannabis-Based Medicine Reduces Multiple Pathological Processes in AβPP/PS1 Mice." *Journal of Alzheimer's Disease*, vol. 43, no. 3, 2 Dec. 2014, pp. 977–991, https://doi.org/10.3233/jad-141014 (THC & CBD)

Appetite / Anorexia:

- · Beal, Jeffrey E., et al. "Dronabinol as a Treatment for Anorexia Associated with Weight Loss in Patients with AIDS." *Journal of Pain and Symptom Management*, vol. 10, no. 2, Feb. 1995, pp. 89–97, https://tinyurl.com/39jkwfcj (Dronabinol = THC in sesame oil)
- · Foltin, Richard W., et al. "Effects of Smoked Marijuana on Food Intake and Body Weight of Humans Living in a Residential Laboratory." *Appetite*, vol. 11, no. 1, 1 Aug. 1988, pp. 1–14, www.sciencedirect.com/science/article/abs/pii/S0195666388800175
- Plasse, Terry F., et al. "Recent Clinical Experience with Dronabinol." *Pharmacology Biochemistry and Behavior*, vol. 40, no. 3, Nov. 1991, pp. 695–700, https://doi.org/10.1016/0091-3057(91)90385-f

Anti-inflammatory:

• Gaffal, E., et al. "Anti-Inflammatory Activity of Topical THC in DNFB-Mediated Mouse Allergic Contact Dermatitis Independent of CB1 and CB2 Receptors." *Allergy*, vol. 68, no. 8, 29 July 2013, pp. 994–1000, https://doi.org/10.1111/all.12183

Antioxidant:

Borges, Rosivaldo, et al. "Understanding the Molecular Aspects of Tetrahydrocannabinol and Cannabidiol as Antioxidants." Molecules, vol. 18, no. 10, 14 Oct. 2013, pp. 12663–12674, https://doi.org/10.3390/molecules181012663

Fibromyalgia:

van de Donk, Tine, et al. "An Experimental Randomized Study on the Analgesic Effects of Pharmaceutical-Grade Cannabis in Chronic Pain Patients with Fibromyalgia." *Pain*, vol. 160, no. 4, 1 Apr. 2019, pp. 860–869, www.ncbi.nlm.nih.gov/pubmed/30585986

Gastro:

· Kinsey, Steven G., and Erica C. Cole. "Acute Δ9-Tetrahydrocannabinol Blocks Gastric Hemorrhages Induced by the Nonsteroidal Anti-Inflammatory Drug Diclofenac Sodium in Mice." European Journal of Pharmacology, vol. 715, no. 1-3, Sept. 2013, pp. 111–116, https://doi.org/10.1016/j.ejphar.2013.06.001

Nausea:

- Parker, Linda A, et al. "Regulation of Nausea and Vomiting by Cannabinoids." *British Journal of Pharmacology*, vol. 163, no. 7, 12 July 2011, pp. 1411–1422, www.ncbi.nlm.nih.gov/pmc/articles/PMC3165951/ (Also includes CBD)
- Vincent, Beverly J., et al. "Review of Cannabinoids and Their Antiemetic Effectiveness." *Drugs*, vol. 25, no. Supplement 1, 1983, pp. 52–62, https://doi.org/10.2165/00003495-198300251-00006
- Orr, Leo E. "Antiemetic Effect of Tetrahydrocannabinol." *Archives of Internal Medicine*, vol. 140, no. 11, 1 Nov. 1980, p. 1431, https://doi.org/10.1001/archinte.1980.00330220019010.
- · CHANG, ALFRED E. "Delta-9-Tetrahydrocannabinol as an Antiemetic in Cancer Patients Receiving High-Dose Methotrexate." *Annals of Internal Medicine*, vol. 91, no. 6, 1 Dec. 1979, p. 819, https://doi.org/10.7326/0003-4819-91-6-819.

Pain:

- · Mao, J, et al. "Two Distinctive Antinociceptive Systems in Rats with Pathological Pain." *Neuroscience Letters*, vol. 280, no. 1, 11 Feb. 2000, pp. 13–16, www.sciencedirect.com/science/article/abs/pii/S0304394099009982?via%3Dihub
- Notcutt, William, et al. "Initial Experiences with Medicinal Extracts of Cannabis for Chronic Pain: Results from 34 ?N of 1? Studies." *Anaesthesia*, vol. 59, no. 5, May 2004, pp. 440–452, https://doi.org/10.1111/j.1365-2044.2004.03674.x. (Also includes CBD)

· Richardson, Jennelle Durnett. "Cannabinoids Modulate Pain by Multiple Mechanisms of Action." The Journal of Pain, vol. 1, no. 1, Jan. 2000, pp. 2–14, https://doi.org/10.1016/s1526-5900(00)90082-8.

Spasms:

- Zajicek, J P. "Cannabinoids in Multiple Sclerosis (CAMS) Study: Safety and Efficacy Data for 12 Months Follow Up." Journal of Neurology, Neurosurgery & Psychiatry, vol. 76, no. 12, 1 Dec. 2005, pp. 1664–1669, https://doi.org/10.1136/jnnp.2005.070136
- · PETRO, DENIS J., and CARL ELLENBERGER. "Treatment of Human Spasticity with Δ9-Tetrahydrocannabinol." The Journal of Clinical Pharmacology, vol. 21, no. S1, 9 Aug. 1981, pp. 413S416S, https://pubmed.ncbi.nlm.nih.gov/6271839/
- Ungerleider, J. T., et al. "Delta-9-THC in the Treatment of Spasticity Associated with Multiple Sclerosis." Advances in Alcohol & Substance Abuse, vol. 7, no. 1, 1987, pp. 39–50, https://www.tandfonline.com/doi/abs/10.1300/J251v07n01_04
- · Vaney, C, et al. "Efficacy, Safety and Tolerability of an Orally Administered Cannabis Extract in the Treatment of Spasticity in Patients with Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study." *Multiple Sclerosis Journal*, vol. 10, no. 4, Aug. 2004, pp. 417–424, https://doi.org/10.1191/1352458504ms10480a. (Also includes CBD)

THC-A (tetrahydrocannabinol acid)

- Palomares, Belén, et al. "Tetrahydrocannabinolic Acid a (THCA-A) Reduces Adiposity and Prevents Metabolic Disease Caused by Diet-Induced Obesity." Biochemical Pharmacology, vol. 171, 1 Jan. 2020, pp. 113693–113693, https://doi.org/10.1016/j.bcp.2019.113693. (Stimulates bone growth, reduces weight / fat mass, fatty liver, improves glucose tolerance, insulin sensitivity)
- · Moreno-Sanz, Guillermo. "Can You Pass the Acid Test? Critical Review and Novel Therapeutic Perspectives of Δ9-Tetrahydrocannabinolic Acid A." Cannabis and Cannabinoid Research, vol. 1, no. 1, Dec. 2016, pp. 124–130, https://doi.org/10.1089/can.2016.0008 (anti-inflammatory, immunomodulatory, neuroprotective, and antineoplastic)

Anti-convulsant:

Benson, Melissa J., et al. "Evaluation of the Possible Anticonvulsant Effect of Δ9-Tetrahydrocannabinolic Acid in Murine Seizure Models." Cannabis and Cannabinoid Research, vol. 7, no. 1, 1 Feb. 2022, pp. 46–57, https://doi.org/10.1089/can.2020.0073

Anti-inflammatory:

- · Nallathambi, Rameshprabu, et al. "Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in *Cannabis* Extracts." *Cannabis and Cannabinoid Research*, vol. 2, no. 1, Jan. 2017, pp. 167–182, https://doi.org/10.1089/can.2017.0027
- · Shin, Joonyoung, et al. "In Vitro and in Vivo Anti-Inflammatory and Antidepressant-like Effects of Cannabis Sativa L. Extracts." *Plants*, vol. 13, no. 12, 12 June 2024, pp. 1619–1619, www.mdpi.com/2223-7747/13/12/1619
- Palomares, Belén, et al. " Δ " -Tetrahydrocannabinolic Acid Alleviates Collagen-Induced Arthritis: Role of PPARγ and CB ₁ Receptors." *British Journal of Pharmacology*, vol. 177, no. 17, 8 July 2020, pp. 4034–4054, https://doi.org/10.1111/bph.15155

Cancer / Tumor:

- · Kovalchuk, Olga, and Igor Kovalchuk. "Cannabinoids as Anticancer Therapeutic Agents." *Cell Cycle*, vol. 19, no. 9, 5 Apr. 2020, pp. 961–989, https://doi.org/10.1080/15384101.2020.1742952.
- · Nigro, Ersilia, et al. "Cancer Initiation, Progression and Resistance: Are Phytocannabinoids from Cannabis Sativa L. Promising Compounds?" *Molecules*, vol. 26, no. 9, 2 May 2021, p. 2668, https://doi.org/10.3390/molecules26092668. (Also includes THC, CBD)
- Baram, Liran, et al. "The Heterogeneity and Complexity of Cannabis Extracts as Antitumor Agents." *Oncotarget*, vol. 10, no. 41, 25 June 2019, pp. 4091–4106, https://pmc.ncbi.nlm.nih.gov/articles/PMC6609248/#s2
- Bala, Asis, et al. "UPLC-MS Analysis of Cannabis Sativa Using Tetrahydrocannabinol (THC), Cannabidiol (CBD), and Tetrahydrocannabinolic Acid (THCA) as Marker Compounds: Inhibition of Breast Cancer Cell Survival and Progression." *Natural Product Communications*, vol. 14, no. 8, Aug. 2019, p. 1934578X1987290, https://doi.org/10.1177/1934578x19872907.

Immunoregulation:

· Verhoeckx, Kitty C.M., et al. "Unheated Cannabis Sativa Extracts and Its Major Compound THC-Acid Have Potential Immuno-Modulating Properties Not Mediated by CB1 and CB2 Receptor Coupled Pathways." *International Immunopharmacology*, vol. 6, no. 4, Apr. 2006, pp. 656–665, https://doi.org/10.1016/j.intimp.2005.10.002.

Liver Fibrosis (fatty liver disease):

· Carmona-Hidalgo, Beatriz, et al. "<u>A9-Tetrahydrocannabinolic Acid Markedly Alleviates Liver Fibrosis and Inflammation in Mice</u>." *Phytomedicine*, vol. 81, Jan. <u>2021</u>, p. 153426, https://doi.org/10.1016/j.phymed.2020.153426.

Nausea:

- · Rock, E M, et al. "Tetrahydrocannabinolic Acid Reduces Nausea-Induced Conditioned Gaping in Rats and Vomiting InSuncus Murinus." *British Journal of Pharmacology*, vol. 170, no. 3, 17 Sept. 2013, pp. 641–648, https://doi.org/10.1111/bph.12316.
- · Rock, Erin M, et al. "Effect of Phytocannabinoids on Nausea and Vomiting." Oxford University Press EBooks, 21 Aug. 2014, pp. 435–454, academic.oup.com/book/27329/chapter/197038916, https://tinyurl.com/mr24u2u8

Neuroprotection:

- · Nadal, Xavier, et al. "Tetrahydrocannabinolic Acid Is a Potent PPARγ Agonist with Neuroprotective Activity." *British Journal of Pharmacology*, vol. 174, no. 23, 2 Nov. 2017, pp. 4263–4276, https://doi.org/10.1111/bph.14019.
- · Kim, Juyong, et al. "The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce Amyloid-Beta and Tau Pathology in an Alzheimer's Disease-like Mouse Model." *International Journal of Molecular Sciences*, vol. 24, no. 7, 6 Apr. 2023, pp. 6827–6827, https://doi.org/10.3390/ijms24076827.
- · Moldzio, Rudolf, et al. "Effects of Cannabinoids Δ (9)-Tetrahydrocannabinol, Δ (9)-Tetrahydrocannabinolic Acid and Cannabidiol in MPP+ Affected Murine Mesencephalic Cultures." *Phytomedicine*, vol. 19, no. 8-9, June 2012, pp. 819–824, https://doi.org/10.1016/j.phymed.2012.04.002 (protect neurons against cell death.)

THC-V (Tetrahydrocannabivarin)

· Abioye, Amos, et al. "<u>A9-Tetrahydrocannabivarin</u> (THCV): A Commentary on Potential Therapeutic Benefit for the Management of Obesity and Diabetes." *Journal of Cannabis Research*, vol. 2, no. 1, 31 Jan. 2020, https://doi.org/10.1186/s42238-020-0016-7.

Diabetes:

Jadoon, Khalid A., et al. "Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study." *Diabetes Care*, vol. 39, no. 10, 1 Oct. 2016, pp. 1777–1786, https://pubmed.ncbi.nlm.nih.gov/27573936/

Obesity:

- · Wargent, E T, et al. "The Cannabinoid $\Delta 9$ -Tetrahydrocannabivarin (THCV) Ameliorates Insulin Sensitivity in Two Mouse Models of Obesity." *Nutrition & Diabetes*, vol. 3, no. 5, May 2013, pp. e68–e68, https://doi.org/10.1038/nutd.2013.9.
- · Riedel, Gernot, et al. "Synthetic and Plant-Derived Cannabinoid Receptor Antagonists Show Hypophagic Properties in Fasted and Non-Fasted Mice." *British Journal of Pharmacology*, vol. 156, no. 7, 31 Mar. 2009, pp. 1154–1166, https://doi.org/10.1111/j.1476-5381.2008.00107.x.