Seminar on Incentives and Learning (Winter 2022-23) Hi and welcome to the seminar! We meet every Monday 12:30-14:20. Every week, three students will have 90 minutes to present a paper to the class. In the remaining 10 minutes we will have a discussion led by student "reviewers" of the paper. ### Course requirements: - Main task: Your main task is to carefully read, understand, and present a paper to the class with your partners. Grading is individual. - a. After your presentation please upload your slides (e.g. to Dropbox) and share a link in the table below (see the first row for reference). The slides may be used for reference by the other students, and will be used for grading. - Secondary task (mandatory): Read one additional paper and serve as a "reviewer" (reviewing the paper, not its presentation) write a 1-page review of the paper, and lead the 10-20 minute discussion of it in class. Submit the review via Google Form before the meeting in which the paper is discussed. The format will be similar to peer reviews in top conferences. - Attendance: You may miss up to one meeting on weeks #2 to #13 (in case of special circumstances like "miluim"/sickness/etc. please email me). It is possible (but not advised) to participate by Zoom link; Meeting ID: 955 2126 3682; Passcode: bandit - Bonus points for helpful participation in class! Presentation requirements (also used as grading criteria): - Situate the paper you're presenting within the past and present literature don't forget to survey follow-up work. - a. Look for the journal version of your paper and for online talks given by the authors. - Please make sure to pick one or more main technical results or proof techniques and explain the technical ideas behind them. You may also pick a technical topic that comes up in the paper (for example, VC dimension, Gittins index, etc.) and teach it to the class. - a. There is no need to cover in your talk all the results in the paper. - Critical thinking: Come up with directions for future research and/or identify weaknesses in the paper, both as a speaker and as a reviewer. - Please practice your presentation to make sure it is streamlined, clear and engaging. - a. Use figures and examples wherever possible. - b. Please number your slides. Materials and books: See below. #### Paper allocations: - This Google document will be open to editing on Sunday Oct 30 at 17:00 PM, please sign yourself up twice as a presenter and a reviewer. - In extreme cases (like the existence of a slot with a single presenter) I may have to re assign you so please wait for confirmation before you start working. - Needless to say, please respect your fellow students and do not modify names. Unethical behavior will not be accepted. | Date | Paper | Торіс | Presenter(s) | Discussant(s) | |------------------------------------|---|---|---|---| | #1
Oct 24
<u>link</u> | - | Introduction to the seminar + guest lecture on "Auctions in the Wild" | 1. ענבל טלגם-כהן
2. אופיר פרידלר,
חברת Outbrain | - | | #2
Oct 31
link | P. Dhangwatnotai, T. Roughgarden and Q. Yan. Revenue Maximization with a Single Sample. Games and Economic Behavior 2015. | Introduction to mechanism design and sample complexity | 1. שגיא לוי
2. יונתן מדן | - | | #3
Nov 7
<u>link</u> | Braverman et al. Selling to a no-regret buyer . EC'18. | Mechanism design with learning agent | 1. עידו קולמן
2. דורין שטיימן
3. שני גורן | 1. גיא הורוביץ
2. יונתן סומר
3. תום אזולאי | | #4
Nov 14
<u>link</u> | Kolumbus and Nisan. Auctions between regret-minimizing agents. WWW'22. | Mechanism design with learning agents | 1. אור מרקובצקי
2. ליאור מוטולה
3. דניאל יחזקאל | 1. איתן בלוך
2. יואב יעבץ
3. גלעד שמרלר | | #5
Nov 21
<u>link</u> | Paul Dütting, Zhe Feng,
Harikrishna Narasimhan,
David C. Parkes. Optimal
Auctions through Deep
Learning . ICML'19. | Mechanism design via
deep learning | 1. חן דוידוב
2. תומר מלניק
3. שליו ריסין | shani goren ido kolman dorin shteyman Liran Cohen | | #6 Nov 28 link link (pptx) | M. Hardt, N. Megiddo, C. Papadimitriou and M. Wootters. Strategic Classification . ITCS'16. | Strategic classification - gaming | 1. איתן בלוך
2. יואב יעבץ
3. גלעד שמרלר | 1. אור מרקובצקי
2. ליאור מוטולה
3. דניאל יחזקאל | | #7
Dec 5
link
<u>link</u> | J. Kleinberg, S. Mullainathan and M. Raghavan. How Do Classifiers Induce Agents To Invest Effort Strategically? EC'19. | Strategic classification -
incentivizing effort | 1. דניאל בלינקי
2. נעם משה
3. אלון זיו | 1. אורן רוזנברג
2. תומר מלניק
3. שליו ריסין | | #8
Dec 12
<u>link</u> | Sundaram et al. PAC-Learning for Strategic Classification. ICML'21. | Strategic classification -
PAC learning | 1. נטע שור
2. סהר אלבז
3. רחלי צפובצקי | 1. יואב האריס
2. נסים יחיא
3. אלון זיו | |---|--|--|--|--| | Dec 19
#9 | No class Bacon et al. Predicting | Scoring rules: How can we | 1. ניב גלעדי | 1. רחלי צפובצקי | | Dec 26
link | Your Own Effort. AAMAS'12. Waggoner. Proper Scoring Rules. Blog post from "The Tiger's Stripes" 2018. | incentivize an agent to make an accurate prediction? | 2. רועי מחפוד
3. אורן כץ | 2.תמיר שור | | #10
Jan 2
<u>link</u> | Bates et al. Principal-agent hypothesis testing. Working paper. | Hypothesis testing | 1. תום אזולאי
2. דוד ולנסי
3. לירן כהן | 1. יונתן מדן
2. נעם משה
3. דניאל בלינקי
4. סהר אלבז | | #11
Jan 9
<u>link</u>
<u>lab</u> | Arora et al. Generalization and Equilibrium in Generative Adversarial Nets (GANs). ICML'17. | GANs | 1. אורן רוזנברג
2. שניר גרין
3. תמיר שור | 1. ברק גחטן
2. שגיא לוי
3. נטע שור | | #12
Jan 16
<u>link</u> | Blum et al. One for One,
or All for All: Equilibria
and Optimality of
Collaboration in
Federated Learning.
ICML'21. | Federated learning | 1. Andrew
Elashkin
2. גיא הורוביץ
3. יונתן סומר | 1. אורן כץ
2. חן דוידוב
3. ניב גלעדי | | #13
Jan 23
link | J. Kleinberg, S. Mullainathan and M. Raghavan. Inherent Trade-Offs in the Fair Determination of Risk Scores. ITCS'17. | Fairness | 1. ברק גחטן
2. יואב האריס
3. נסים יחיא | 1. Andrew
Elashkin
2. שניר גרין
3. רועי מחפוד
4. דוד ולנסי | ## Materials on AGT and learning Courses, tutorials, talks etc.: - U. Chicago Fall 2022 course: https://www.haifeng-xu.com/cmsc35401fa22/index.htm - MIT Spring 2019 course: http://vsyrgkanis.com/6853sp19/ - TAU Fall 2018 course: http://advanced-topics-ml-agt-tau-2018.wikidot.com/ - NeurlPS'21 workshops: https://sites.google.com/view/strategic-ml.com/ - EC'19 workshop: Learning in Presence of Strategic Behavior - EC'17 tutorial on incentivizing and coordinating exploration - EC'16 tutorial on algorithmic game theory and data science - Dagstuhl 2017 seminar: - https://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17251 - Papadimitriou's 2015 talk at the Simons Institute: https://simons.berkeley.edu/talks/christos-papadimitriou-2015-11-20 • #### Books: - 1. <u>Twenty Lectures on Algorithmic Game Theory</u>, by Tim Roughgarden, Cambridge University Press, 2016. - 2. <u>Mechanism Design and Approximation</u>, by Jason Hartline. - 3. <u>Algorithmic Game Theory</u>, by Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani (eds.), Cambridge University Press, 2007. - 4. Online Learning and Online Convex Optimization, by Shai Shalev-Shwartz, Foundations and Trends in Machine Learning, 2011. - 5. <u>Understanding Machine Learning: From Theory to Algorithms</u>, by Shai Shalev-Shwartz and Shai Ben-David, Cambridge University Press, 2014. - 6. <u>Prediction, Learning, and Games</u>, by N. Cesa-Bianchi and G. Lugosi, Cambridge University Press, 2006. - 7. <u>Introduction to Multi-Armed Bandits</u>, by A. Slivkins, Foundations and Trends in Machine Learning, 2019. See also on <u>my homepage</u> under "Recommended links for students" the links "How to read a paper" and "Tim Roughgarden's AGT courses".