Fronfend
Inferview Quesfions

Q) How does the CSS position property work?

The CSS position property is used to control the positioning
of an element within its containing element.

There are primarily 4 types:
- Static

- Relative

- Absolute

- Fixed

Static

This is the default positioning. Elements are positioned
according to the normal flow of the document.

The top, right, bottom, and left properties have no effect.

Relative:

Elements are positioned relative to their normal position in
the document flow.

The element stays in the normal flow but can be nudged

around from its original position using top, right, bottom, or
left.

Absolute:

Elements are removed from the normal document flow and
positioned relative to the nearest positioned ancestor. If no
positioned ancestor is found, it is positioned relative to the
initial containing block (usually the viewport).

It won't affect other elements' positions, and you can use top,
right, bottom, or left to precisely place it.

Fixed:

The element is removed from the normal document flow and
positioned relative to the initial containing block.

It remains fixed at its position even when the page is
scrolled. Handy for things like fixed navigation bars.

Css posHion pyopey:
P P P @Ma\.L mant @ma\{beshalini
Static Fixed
HTML elements 0xe e —y).,lww.lg SMT o+ the (L
i X e —— \ 3
pocitioned Static ba. r ! Same place Y has
detu,wt-t- i === Cexolif doec not fC
positioned. occoyding ¢ 1 ' Changet s 1 ion
to e nosmal gow 3 A &Mé B tlment
0% the P“‘jﬁ'
Re‘““ue. Ant Gimwref—‘bygﬂl [
Any element posihoned R Qi1 5 :
5 2R [gn'\'inon obcolute Is
s “Relative” s ([| g
H o' N0 wist +15 ek F1 00
seasanged velaxve || Rty vt & =
, U poxent element
o > i f\ﬂﬁ—fn‘&[| o L ”;1\::;'.)?:‘"1\“ TL + hac N paxent
eo@,n‘hpn t\-o‘(l%iﬂa __TI r! r'T'f‘ TS element he document| body
posixion) S0t & . i 3""“:!' consideyed - | /
bottOm s 20pA" W v
iqht & 209X

Q) How do you declare variables in JavaScript, and
what's the difference between let and const?

In JavaScript, we can declare variables using three keywords:
- var

- let

- const

var:

- var 1s the oldest way to declare variables in JavaScript.

- Variables declared with var are function-scoped, which
means they are only accessible within the function where
they are declared.

- They can also be accessed outside the function, but their
value will be undefined until the point in the code where they
are declared.

let:

- let was introduced in ECMAScript 6 (ES6) and provides a
block-scoping mechanism.

- Variables declared with let are limited in scope to the block,
statement, or expression where they are defined.

- let allows you to reassign values to the variable.

const:

- Like let, const was also introduced in ES6.

- Variables declared with const are block-scoped, just like let.
- The key difference is that the value of a const variable
cannot be reassigned once it has been assigned. It is a

constant.

Difference between let and const:

- let allows you to reassign values to the variable, whereas
const does not. Once a value is assigned to a const variable,
it cannot be changed.

- It's important to note that while the value of a const variable
1s immutable, the variable itself 1s not. This means that if a
const variable holds an object or array, the properties or
elements of that object or array can still be modified.

"} aVaScrip‘t 101

let ug var vg const

@may_hemont @waybeshalin

var let cons®
apple =] ‘ apple = V/a apple = ¥/o
************ 1] O o e) :ﬁ___%:"‘_"‘l
| -4 I I P et I = T |
: o e ’ : Lige | : reedil " |
(i - | R > | I & - |
! e k>, 1 I S, I | .“"_/n.‘_\,f‘(|
s I = I e s, .

, Yeroee=@ .' et opple= @ R 1)
I _ 1] d) | | N,] e I
I = I I B \ 1 ~d I
e d | R 4 R iy .. 1 -+
The scope of a var The scope of a let variable The scepe of a const variable
variable is Funetional seope. is block scope. is block scope.

It can be "‘f"’l“‘tf-'-d and It con be upcln‘tao(but cannot 2 c:m:ot Le. upa‘ntepi o
re-declored mto the scope. be re-declored into the scope re-declared inte the scope.

Q) What is the difference between synchronous and
asynchronous JavaScript?

Synchronous and asynchronous in JavaScript refer to how
code 1s executed and how tasks are handled in relation to the
event loop.

- Synchronous JavaScript:
* In synchronous code execution, tasks are performed one at
a time, 1n sequence.

 Each task must complete before the next one starts,
blocking the execution of code until the current task is

finished.

« It follows a predictable and straightforward flow, making it
casier to understand and debug.

Asynchronous JavaScript:
» Asynchronous code allows tasks to be executed
concurrently without waiting for the completion of each task.

* It doesn't block the execution of code; instead, it uses
mechanisms like callbacks, promises, or async/await to
handle tasks in the background.

« Asynchronous operations are often used for tasks that may
take some time to complete, such as fetching data from a
server or reading a file.

Q) FlexBox vs Grid Layout (in CSS) What would you use
and why?

Both Flexbox and CSS Grid are powerful layout systems in
CSS, but they have different use cases and are designed to
solve different layout challenges.

My choice between Flexbox and Grid will depend on the
specific layout requirements project.

About flexbox:

Flexbox 1s primarily designed for one-dimensional layouts,
either in a row or a column. It's great for arranging items
within a container along a single axis, which makes it
suitable for scenarios like navigation menus, lists and simple
card layouts.

When To use FlexBox:
1. Simple Row/Column Layouts:

If your layout requires arranging items in a single row or
column.

2. Alignment and Centering

3. Unequal Heights or Widths:
When dealing with items of varying heights or widths,
Flexbox can help align them neatly.

About Grid:

CSS Grid Layout 1s a two-dimensional system designed for
creating complex grid-based layouts. It allows us to define
both rows and columns and place items at precise locations
within this grid. It's particularly useful for creating complex
designs.

When to Use CSS Grid:

1. Complex Layouts:

If your layout requires a multi-dimensional grid structure,
such as magazine layouts or intricate card designs.

2. Multi-Column and Multi-Row Forms:
When designing forms with multiple columns or rows.

3. Responsive Designs with Complex Requirements: For
layouts that need to change significantly across different
screen sizes, CSS Grid can handle the complexity better than
Flexbox.

Q) What is useState() in React?

useState() is a React Hook that allows functional components
in React to manage and update their own local state. It's like
a special function that gives you a state variable and a
function to update that variable.

It helps functional components remember things and
re-render when those things change. For example, you might
use useState() to keep track of a number of likes on a post,
and when the user clicks a "like" button, it updates that
number and causes the component to re-render, reflecting the
new state. It's a way for React components to have their own
memory, making them more dynamic and interactive.

Syntax:
const [state, setState] = useState(initialState);

state: This 1s the current state value, similar to this.state in

class components.

setState: This is a function that allows you to update the
state. When setState 1s called, React will re-render the
component, and the new state will be reflected.

initialState: This 1s the initial value of the state. It can be a
primitive value (e.g., number, string) or an object.

3 4 BN - - |} Py |
wseStote Hook

- ceatele the useStote hook is used to declore o state
1 col It, S LD = se 8); w "
DUty settountl Haestate ! variable called “count” with an intial value of 0.

- : shows the current value of the “count” state,
You clicked {count} times which will be it Il t to O
\ 1% ty] i
onClick={() setCount(count + 1) ot ally =e 2

Click me

When the button is c['.ckerll it tr'i?ﬁers an onClick evert,
which calls the setCount Punction. The setCouwnt Punction
is used to mcrement the "count” state lv.f 1 {count + 1)

As o result, each time the button is clicked, the "count”
stote is up:la‘tcg:i, and the porograph cln,mom-'.tcx”xf ciisp'a&l.r:;
the updated count,

Q) Explain React Lifecycle Methods vs. Effects

React Lifecycle Methods:

Imagine a React component as a machine with different parts
that move and work together. In the past, React used
something called "lifecycle methods" to control how this
machine behaved. These methods were like levers you could
pull or buttons you could push at specific times during the
machine's life.

For example, there was a method called
componentDidMount that would be triggered when the
machine was "born," or when it was first put on the web
page. You could use this method to do things like load data
from a server. Another method, componentDidUpdate, was
like a button you could press whenever something about the
machine changed. You could use it to respond to changes in
the machine's state or props.

useEffect Hook:

Now, React has a new tool called the useEffect hook. It's like
a more versatile and flexible way of controlling the
machine's behavior. Instead of having different levers and
buttons for different situations, you have one tool that can do
it all.

With useEffect, you can say, "Hey, React, I want to do
something when certain conditions are met." You tell React
what conditions to watch, like when a specific piece of data
changes or when the component is first created. For example,
you can use useEffect to say, "When this component is born
(componentDidMount), do this thing." Or, "Whenever this
piece of data changes (componentDidUpdate), do this other
thing."

To make it easier:

Lifecycle methods are like separate buttons and levers for
controlling your component's behavior at specific moments
in its life. useEffect is like a more flexible tool that you can
use to specify when and how you want to do something with
your component, whether it's when it's born, when it
changes, or in other situations.

In modern React development, the useEffect hook is
generally preferred because it offers more control and
simplifies how you manage side effects (like data fetching,
subscriptions, or DOM manipulation) in your components.

Q) What is responsive web design, and how does it differ
from mobile-first design?

Responsive web design is an approach to web development
that aims to ensure a seamless and consistent user experience
across various devices and screen sizes. It involves designing
and coding a website so that it automatically adapts and
responds to different viewport sizes, such as those of
desktops, tablets, and smartphones. Responsive web design
uses flexible grids, media queries, and flexible images to
achieve this adaptability.

On the other hand, mobile-first design 1s a specific strategy
within responsive design. It involves initially designing and
developing a website for mobile devices before progressively
enhancing it for larger screens. The idea is to prioritize the
mobile experience, ensuring that the site 1s optimized for
smaller screens, and then scaling up the design and
functionality for larger devices.

While responsive design focuses on creating a flexible and
adaptive layout for various devices, mobile-first design
specifically starts with the mobile user experience in mind,
often resulting in a more streamlined and efficient design.

Both approaches contribute to a better overall user
experience, but they differ in their initial design priorities.

Conclude it like:

Responsive web design is like making a website that's smart
and can adjust itself to look good on any device, like a
computer, tablet, or phone.

Mobile-first design 1s a special way of doing this. It means
you first design the website to work really well on small
screens, like phones, and then make it bigger for computers.
So, responsiveness 1s about making websites flexible for all
devices, and mobile-first is a cool strategy to start by making
it awesome for phones.

Q) What is the difference between React & React Native?
React (React.js):

- Used for building websites and web applications. It uses
regular web components like <div> and <input>.

- Styling is typically done with CSS. Development happens
in web browsers with web development tools. Apps are
deployed to web servers and accessed through web browsers.

React Native:

- Used for creating mobile apps for iOS and Android. It uses
mobile-specific components like <View> and <Text>.

- Styling i1s done using JavaScript-like styles. Development
requires mobile development tools, simulators, or physical
devices. Apps are distributed through app stores (Apple App
Store, Google Play).

Code Reusability:

- In React, code isn't directly reusable in React Native. - In
React Native, you can share some code and components
between 10S and Android apps.

Performance:

- React apps perform well in web browsers, using the virtual
DOM. React Native apps also perform well due to native
components, but complex animations might require native
code.

Q) How do you handle errors in javascript?

Handling errors in JavaScript is crucial for writing robust and
reliable code. There are several mechanisms to deal with
errors 1in JavaScript:

- Global Error Handling:
» Use window.onerror or window.addEventListener('error') to
capture unhandled errors globally.

- Try-Catch Blocks:

« JavaScript has a built-in mechanism for handling errors
using try, catch, and finally blocks.

» We can wrap the potentially error-prone code in a try block,
and 1f an exception occurs, it 1s caught and handled in the
corresponding catch block.

- Throwing Custom Errors:

* We can throw custom errors using the throw statement,
allowing you to create meaningful error messages and handle
them accordingly.

-Async/Await Error Handling:

* When working with asynchronous code and async/await,
use try-catch blocks to handle errors in a synchronous
manner.

Q) How is React Router different from Conventional
Routing?

React Router:

React Router is a powerful navigation library tailored for
single-page applications (SPAs) in React.

Employing a declarative and component-based approach,
React Router seamlessly integrates with the React
ecosystem.

Routes are defined as components, facilitating dynamic
navigation and enabling developers to efficiently manage Ul
states.

With client-side navigation, React Router ensures a smooth
and responsive user experience by updating views without
requiring server requests.

Conventional Routing:

Conventional routing, often associated with multi-page
applications (MPAs), relies on an imperative model.
Navigation 1s typically tightly coupled with templates or
files, and changes may involve manual updates across
multiple pages.

Unlike React Router's component-based structure,
conventional routing may lack the flexibility and ease of
managing dynamic UI states.

Additionally, client-side navigation is less common, resulting
in full page reloads and potentially slower performance due
to server requests for each navigation event.

Q) What is JSX in React, and how is it different from
HTML?

First of all, let's understand, What is JSX?

JSX is a way to write code in React that looks a lot like
HTML. It lets you describe how things should look in your
web app. Even though it looks like HTML, it's actually a
special kind of JavaScript.

How is it different from HTML?

- Mixing with JavaScript:

In JSX, you can easily include pieces of JavaScript code
right alongside your HTML-like code. This helps to make
your web app more dynamic.

- Attribute Names:

Some words that HTML uses for special things (like class for
defining styles) need to be a bit different in JSX. For
example, class becomes className.

- Styles:
If you want to add styles, in JSX, you use a JavaScript object
instead of a regular CSS string.

Conclude it by saying, JSX is like a more powerful version
of HTML that plays really well with JavaScript, especially
in React apps. It helps make your web pages interactive and
dynamic.

Q) Discuss the advantages and disadvantages of using
CSS frameworks.

Advantages:

- Faster Building Blocks: CSS frameworks provide
pre-made building blocks (like buttons, forms, and layouts)
that save time. Instead of starting from scratch, developers
can use these ready-to-go pieces.

- Consistent Look: Frameworks help ensure that your
website looks consistent. They provide a set of rules and
styles, so every part of your site has a similar appearance,
making 1t look more professional.

- Works on Different Devices: Many frameworks make it
easier to build websites that look good on both big computer
screens and small phone screens. This 1s crucial because
people use all sorts of devices to browse the internet.

- Less Browser Headache: Frameworks are tested on
different web browsers, so you're less likely to run into
problems where your site looks great in one browser but
terrible in another.

Disadvantages:

- Takes Time to Learn: Learning how to use a framework
can take some time. If you're working on a small project, the
time spent learning might not be worth it.

- Can Make Your Site Slower: Frameworks come with a lot
of code, and sometimes you might end up with more code
than you actually need. This can slow down your website's
loading time.

- Less Freedom to be Unique: Using a framework might
limit your ability to make your website look exactly the way
you want. Your site might end up looking like many other
sites that also use the same framework.

- Dependent on Updates: If the framework gets updated, it
could change how things work. This means you might need
to spend time fixing your website when you update the
framework.

- Might Not Fit Every Project: Some frameworks have a
specific style or way of doing things. If your project doesn't
fit well with the framework's style, it might be more trouble
than it's worth.

Q) Discuss the purpose of the Document Object Model
(DOM) in web development.

The Document Object Model (DOM) in web development
serves as a programming interface for web documents. It
represents the structure of a document as a tree of objects,
where each object corresponds to a part of the document,
such as elements, attributes, and text.

It 1s like a digital blueprint that web browsers use to
understand and organize the different parts of a webpage. It
creates a tree-like structure where each branch represents an
element, like paragraphs or images. Web developers use the
DOM to change what's on a webpage without refreshing the
whole thing. For instance, it helps in updating scores in a
game, loading new posts on social media, or showing and
hiding elements when you click a button. In simpler terms,
the DOM i1s the web developer's tool to make websites
interactive and dynamic, allowing them to respond to your
actions in real-time.

The DOM plays a crucial role in web development for
several key purposes:

- Dynamic Content Manipulation

- Responsive User Interfaces

- Event Handling

- AJAX (Asynchronous JavaScript and XML) Requests
- Cross-Browser Compatibility

- Structural Representation

- Document Navigation and Modification

- Integration with Other Web Technologies

Q) Describe the concept of scope in JavaScript.

In JavaScript, scope 1s like a set of rules that determines
where in your code you can use or change a variable.
There are two main types of scope:

- Global Scope:

Variables declared outside of any function or block have a
global scope. They can be accessed from any part of the
code, including inside functions.

Imagine you have a toy that you can play with anywhere in
your house. That toy is like a variable in the global scope,
you can use it anywhere in your code.

- Local Scope:

Variables declared inside a function or block have a local
scope. They are only accessible within that specific function
or block.

Now, think of a toy that you can only play with inside your
house. This toy is like a variable in a local scope you can
only use it in a specific part of your code, like inside a
function or a specific area.

Scope Chain:

When you want to use a variable, JavaScript checks if it's
available in the current place you're working. If not, it looks
in the outer areas, moving up like climbing stairs until it
finds the variable or reaches the top level (global scope).

Block Scope (ES6 and later):

In newer JavaScript, some variables stay limited to the area
where they are created. It's like having a special toy that only
works within a certain playroom and doesn't affect the rest of
the house.

Understanding scope helps prevent confusion and ensures
that your variables work where you expect them to in your
code.

Q) Explain the concept of event delegation in JavaScript.

Event delegation is a programming pattern in JavaScript
where a single event listener is used to manage all
occurrences of a particular event type for multiple elements,
usually within a common parent container.

How it works:
Instead of attaching an event listener to each individual child
element, you attach a single event listener to a common

ancestor (typically a parent element) that contains all the
child elements.

Advantages:

- Efficiency:

It reduces the number of event listeners, making the code
more efficient, especially in scenarios with a large number of
elements.

- Dynamic Elements:
It allows for handling events on dynamically added elements
without needing to attach new listeners each time.

Event delegation 1s particularly beneficial in scenarios where
the number of elements or dynamic changes to the DOM
structure can make attaching individual event listeners
impractical.

Q) Discuss the concept of the CSS box model and its
components. How does it impact the layout of elements
on a webpage?

The CSS box model is a fundamental concept that describes
the layout of elements on a webpage. It consists of four main
components:

1. Content:

- Represents the actual content of the box, such as text,
images, or other media.

- Its size 1s determined by properties like width and height.

2. Padding:

- A transparent area surrounding the content, inside the
border.

- It adds space between the content and the border.

- Controlled by properties like padding-top, padding-right,
padding-bottom, and padding-left.

3. Border:
- A border surrounding the padding (and content) of the box.

- It's defined by properties like border-width, border-style,
and border-color.

4. Margin:

- A transparent area outside the border, providing space
between this box and its neighboring elements.

- Controlled by properties like margin-top, margin-right,
margin-bottom, and margin-left.

Impact on Layout:

- The total width or height of an element is calculated as
follows: width/height + padding + border.

- The margin adds spacing between elements, preventing
them from being too close to each other.

Q) What is the difference between null and undefined?

In JavaScript, null and undefined are both special values that
represent the absence of a meaningful value, but they are
used in slightly different contexts.

- undefined: When a variable is declared but not initialized, it
automatically gets assigned the value undefined. If you try to
access an object property that doesn't exist, you get
undefined.

- null: It is a value that represents the intentional absence of
any object value. You can explicitly assign a variable or

object property the value null to indicate no value or no
object. It 1s often used to indicate that a variable or object
property should have no value or that the value is unknown
or irrelevant. Conclusion 1s, undefined is typically a default
value that indicates the absence of an assigned value, while
null is a value that needs to be explicitly assigned to indicate
a deliberate absence of a meaningful value.

let x;

console.log(x);

let obj = {}:;

console.log(obj.property):

let v = null;

n 3
console.log(y):;

