College of Micronesia-FSM Course Modification Request Form

Course number and title: MS 150 Statistics	Division: Natural Sciences and Mathematics	Initiator: Dana Lee Ling	Date initiated: 16 May 2018		
Suggested revision(s) and justification(s) for each: New course objectives to align with the American Statistical Association Guidelines for Assessment and Instruction in Statistics Education best practices (2016): 1. Perform basic statistical calculations for a single variable up to and including graphical analysis, confidence intervals, hypothesis testing against an expected value, and testing two samples for a difference of means. 2. Perform basic statistical calculations for paired correlated variables. 3. Engage in data exploration and analysis using appropriate statistical techniques including numeric calculations, graphical approaches, and tests.					
instructional coordinator	r.				
New course description: [No change] A one semester course designed as an introduction to the basic ideas of data presentation, descriptive statistics, linear regression, and inferential statistics including confidence intervals and hypothesis testing. Basic concepts are studied using applications from health, education, business, social science, and the natural sciences. The course uses spreadsheet software for both data analysis and presentation. The course includes a focus on the use of computing technologies for statistical problem solving					
New textbook: [Edition change only] Lee Ling, Dana (2018). <i>Introduction to Statistics Using Google Sheets™, Edition 6.0</i> , Pohnpei: College of Micronesia-FSM. Or subsequent editions.					
Justification for revising course: Inclusion of exploratory data analysis					
Instructional Coordinate					
Decision reach by CC: [] Approved [] Not approved					
If not approved, reasons for disapproval:					
CC Chair signature:		Date submitted to	VPIA:		
VPIA COM-FSM signa	ture:	Date signed:			

College of Micronesia-FSM Course Outline

GENERAL INFORMATION:

Course title: MS 150 Statistics					
Campus: National	Initiator:	Dana Lee Ling	Date: 16 May 2018		
Course description					
A one semester course designed as an introduction to the basic ideas of data presentation,					
descriptive statistics, linear regression, and inferential statistics including confidence intervals					
and hypothesis testing. Basic concepts are studied using applications from health, education,					
business, social science, and the natural sciences. The course uses spreadsheet software for both					
data analysis and presentation. The course includes a focus on the use of computing technologies					
for statistical problem solving.					

COURSE HOURS/CREDITS:

	Hours per Week		No. of Weeks		Total Hours		Semester Credits
Lecture	3	Х	16	Х	48	=	3
Laboratory		x		X		=	
Workshop		x		X		=	
	-	•		•		-	

Total Semester Credits

3_____

PURPOSE OF COURSE:

- [X] Degree requirement
- [X] Degree elective
- [] Certificate
- [] Other

PREREQUISITES: ESL 089 and passing any 100 level or higher mathematics course.

PSLOS OF OTHER PROGRAMS THIS COURSE MEETS:

PSLO#	Program
GE 3.1	Demonstrate understanding and apply mathematical concepts in problem solving and in day to day activities.
GE 3.2	Present and interpret numeric information in graphic forms.

CC Chair signature: _____ Date recommended: _____

 VPIA signature:

Date approved:

1) INSTITUTIONAL STUDENT LEARNING OUTCOMES (Check all that apply)

	1. Effective oral communication: capacity to deliver prepared, purposeful presentations
[]	designed to increase knowledge, to foster understanding, or to promote change in the
	listeners' attitudes, values, beliefs, or behaviors.
	2. Effective written communication: development and expression of ideas in writing
[]	through work in many genres and styles, utilizing different writing technologies, and
	mixing texts, data, and images through iterative experiences across the curriculum.
[]	3. Critical thinking: a habit of mind characterized by the comprehensive exploration of
	issues, ideas, artifacts, and events before accepting or formulating an opinion or
	conclusion.
[]	4. Problem solving : capacity to design, evaluate, and implement a strategy to answer an
	open-ended question or achieve a desired goal.
	5. Intercultural knowledge and competence: a set of cognitive, affective, and behavioral
[]	skills and characteristics that support effective and appropriate interaction in a variety of
	cultural contexts.
	6. Information literacy : the ability to know when there is a need for information, to be
[]	able to identify, locate, evaluate, and effectively and responsibly use and share that
	information for the problem at hand.
[]	7. Foundations and skills for life-long learning: purposeful learning activity, undertaken
	on an ongoing basis with the aim of improving knowledge, skills, and competence.
	8. Quantitative Reasoning: ability to reason and solve quantitative problems from a wide
[X]	array of authentic contexts and everyday life situations; comprehends and can create
	sophisticated arguments supported by quantitative evidence and can clearly communicate
	those arguments in a variety of formats.

2) PROGRAM STUDENT LEARNING OUTCOMES (PSLOs): The student will be able to:

GE 3.1 Demonstrate understanding and apply mathematical concepts in problem solving and in day to day activities.

GE 3.2 Present and interpret numeric information in graphic forms.

3) COURSE STUDENT LEARNING OUTCOMES (CSLOs) (General): The student will be able to:

1. Perform basic statistical calculations for a single variable up to and including graphical analysis, confidence intervals, hypothesis testing against an expected value, and testing two samples for a difference of means.

2. Perform basic statistical calculations for paired correlated variables.

3. Engage in data exploration and analysis using appropriate statistical techniques including numeric calculations, graphical approaches, and tests.

4) COURSE STUDENT LEARNING OUTCOMES (CSLOs) (Specific): The student will be able to:

CSLO (General) 1: Perform basic statistical calculations for a single variable including					
graphical analysis, confidence intervals, hypothesis testing against an expected value, and testing					
two samples for a difference of means.					
Student Learning Outcome (specific)	ISLO	PSLO	Assessment Strategies		
1.1 Calculate basic statistical	1,4,8	3.1	Students will be able to calculate basic		
measures for the middle, spread of	*		statistical measures for the middle,		
data including quartiles and relative			spread of data including quartiles and		
standing.			relative standing as measured by		
			assignments, tests, presentations.		
			Presentations are marked using rubrics.		
1.2 Generate box plot and histogram	1,4,8	3.2	Students will be able to generate box		
charts from data.			plot and histogram charts from data as		
			measured by assignments, tests,		
			presentations. Presentations are marked		
1.2 Calculate confidence intervale	1 4 0	2.1	using rubrics.		
1.5 Calculate confidence intervals,	1,4,8	3.1	confidence intervals perform		
known value, test two samples for a			hypothesis tests against a known value		
difference of means, calculate effect			test two samples for a difference of		
size			means calculate effect size as		
			measured by assignments, tests		
			presentations. Presentations are marked		
			using rubrics.		
CSLO (General) 2: Perform basic statistical calculations for paired correlated variables.					
Student Learning Outcomes (specific)	ISLO	PSLO	Assessment Strategies		
2.1 Calculate the linear slope,	1,4,8	3.1	Students will able to calculate the		
intercept, nature and strength of the			linear slope, intercept, nature and		
relationship for paired data.			strength of the relationship for paired		
			data as measured by assignments, tests,		
			presentations. Presentations are		
			marked using rubrics.		
2.2 Generate scatter graphs for paired	1,4,8	3.2	Students will able to generate scatter		
data.	-		graphs for paired data as measured by		
			assignments, tests, presentations.		
			Presentations are marked using rubrics.		
2.3 Predict values based on the	1,4,8	3.1	Students will able to predict values		
regression function.			based on the regression function as		

			measured by assignments, tests,	
			presentations. Presentations are	
			marked using rubrics.	
CSLO (General) 3: Engage in data exploration and analysis using appropriate statistical				
techniques including numeric calculatio	ns, grap	hical ap	proaches, and tests.	
Student Learning Outcomes (specific)	ISLO	PSLO	Assessment Strategies	
3.1 Generate appropriate basic	1,4,8	3.1	Students will be able to generate	
statistical measures of the data			appropriate basic statistical measures	
without specific guidance on which			of the data without specific guidance	
measures should be calculated.			on which measures should be	
			calculated. as measured by	
			assignments, presentations using open	
			data exploration, and guided data	
			exploration. Presentations are marked	
			using rubrics.	
3.2 Generate appropriate charts and	1,4,8	3.2	Students will be able to generate	
graphs for the data without specific			appropriate charts and graphs for the	
guidance on which charts should be			data without specific guidance on	
generated.			which charts should be generated as	
			measured by assignments,	
			presentations using open data	
			exploration, and guided data	
			exploration. Presentations are marked	
			using rubrics.	
3.3 Draw conclusions based on	1,4,8	3.1	Students will be able to draw	
statistical analyses and tests, obtain			conclusions based on statistical	
answers to questions about the data,			analyses and tests, obtain answers to	
supported by appropriate statistics.			questions about the data, supported by	
			appropriate statistics as measured by	
			assignments, presentations using open	
			data exploration, and guided data	
			exploration. Presentations are marked	
			using rubrics.	

5) COURSE CONTENT:

- 1. Populations and samples
- 2. Measures of middle and spread
- 3. Visualizing data
- 4. Paired data and scatter diagrams
- 5. Probability
- 6. Normal distribution
- 7. Standard error

- 8. Confidence intervals for the mean
- 9. Hypothesis testing against a known population mean
- 10. Hypothesis testing two sample means
- 11. Data exploration

6) METHOD(S) OF INSTRUCTION:

- [X] Lecture [] Cooperative learning groups
- [] Laboratory [X] In-class exercises
- [] Audio visual [X] Demonstrations
- [] Other

7) REQUIRED TEXT(S) AND COURSE MATERIALS:

Lee Ling, Dana (2018). *Introduction to Statistics Using Google Sheets*TM, *Edition 6.0*, Pohnpei: College of Micronesia-FSM. Or subsequent editions.

8) REFERENCE MATERIALS:

None.

9) INSTRUCTIONAL COSTS:

None.

10) EVALUATION:

Summative evaluation is accomplished by the marking of assignments, tests, presentations, and a final examination. Presentations are scored using rubrics contained within Schoology LMS. The course uses the following marking scale:

Letter Grade	Range	
А	89.5	
В	79.5	
С	69.5	
D	59.5	
F	0	

11) CREDIT BY EXAMINATION:

None.