

FINDER- MATCH AND CHAT

​ ​ ​ ​ ​ ​ ​
I. INTRODUCTION...2
II. BASIC DESCRIPTION..3

1. MEET AND CONNECT... 3
2. MESSAGING..3
3. PHOTOS AND PERSONAL INFORMATION... 4
4. DISCOVERY SETTINGS...4
5. HIGHLIGHTS PROFILE... 5

III. FUNCTIONS, TOOLS, AND TECHNOLOGY.. 5
1. FUNCTIONS.. 5
2. TOOLS AND TECHNOLOGY..6

IV. CODE DESCRIPTION... 6
1 . INTEGRATE ADMOB ADVERTISING (Test Version)..6
2. FIREBASE AND DESCRIPTION..9
3. SCREENSHOT AND DETAILED CODE OF EACH SCREEN (Source code).. 13

3.1, Registration and Login.. 13
3.2, Confirmation and User Information Registration:.. 19
3.3, Main Screen of the Application.. 21
3.4, Messages Screen, who like you.. 34
3.5, Top Picks Display Screen... 49
3.6, The profile display screen...53
3.7, The settings screen and advanced paid pages..62

V. GUIDE TO APP INTERFACE CUSTOMIZATION (RESKIN APP).. 65
1 . Change the app's background color.. 65

1.1 Greetings:... 65
1.2 Login screen:.. 65
1.3 Change the color of the Bottom Navigation:... 66
1.4 Swipe user screen:... 67
1.5 Top selection screens:.. 68
1.6 Chat list screen:.. 69
1.7 Chat screen:... 70
1.8 See who likes you screen:.. 72
1.9 Profile screens:... 73
1.10 Settings screen:.. 74
1.11 Notification screens:..75

1.12 Other user profile screen:... 76
1.13 Enter personal information screen:...76
1.14 Search settings screen:.. 77
1.15 Tinder Premium screen:..78

2 . Change the app's icon... 79
3 . Changing the app's language content... 81

I.​ INTRODUCTION
●​ FINDER - MEET NEW PEOPLE, EXPLORE LOVE: is an app designed to help people get to know and

connect emotionally with each other through personal information based on the popular Finder platform

in social media. It is a groundbreaking dating app that allows you to meet unique and interesting

individuals around you. With a user-friendly interface similar to Finder, this app offers an enjoyable and

intimate experience, helping you find that special someone for your life.

●​ Contact support: hongduyle.it@gmail.com

** How to run this source (Finder - Match and Chat) **

Step 1. Open source code folder in Android Studio.

Step 2. Run the following command in Android Studio's terminal:

- flutter pub get

- flutter gen-l10n

Step 3. When source is already running in mobile device, you must configure your own firebase

console to sign up / login app and use all app's functions

-> Take a look at the full documentation below.

mailto:hongduyle.it@gmail.com

II.​ BASIC DESCRIPTION
1.​ MEET AND CONNECT

●​ With Finder you can browse through thousands of user profiles and choose the people you want to

connect with. The first glances, shared interests, and nearby locations provide opportunities for us to

get closer to each other. When two people like each other, a new chance unfolds!

2.​ MESSAGING
●​ You and your match can chat right within the app through the integrated messaging feature. Get to

know each other better and create meaningful connections.

3.​ PHOTOS AND PERSONAL INFORMATION
●​ Present yourself uniquely through photos and personal information. Introduce yourself and attract

attention from people with similar interests.

4.​ DISCOVERY SETTINGS
●​ Customize your search criteria to find people who match what you’re looking for. Easily adjust age,

location, interests, and much more.

5.​ HIGHLIGHTS PROFILE
●​ Make your profile stand out with unique features and questions. Impress everyone you meet with your

creativity and personality.

III.​ FUNCTIONS, TOOLS, AND TECHNOLOGY
1.​FUNCTIONS

1.1, SIGN UP, LOGIN

●​Users can create a new account and login into the app using username and password or

OTP for social media account integration (Google, Facebook, etc.)

1.2, SEARCH AND VIEW USERS:

●​Users can browse through a list of other users and view their profile information, including

pictures, name, age, etc.

1.3, CONNECTING VÀ MATCHING:

●​ Users can connect with people they are interested in by swiping left or right, depending

on their interest in that person. If two users swipe right on each other, they will be

connected and form a “Match”.

1.4, CHATTING:

●​After having a “Match”, users can start chatting with each other through the in-app

messaging system

1.5, INTEGRATED LOCATION SERVICES:

●​ The app can utilize integrated location services to locate users in nearby areas and suggest

suitable matches.

1.6, CUSTOMIZE PROFILES:

●​ Users can customize their profiles by adding photos, self-descriptions, age, gender,

interests, and more.

1.7, NOTIFICATIONS AND SETTINGS:

●​ The app can send notifications to users about activities related to their accounts. Users

can customize app settings such as notifications, privacy, language, etc.

1.8, ACCOUNT MANAGEMENT AND LOGOUT:

●​ Users can manage their accounts, including logging out of the app when necessary.

2.​ TOOLS AND TECHNOLOGY
1.1.​ Framework: Flutter

1.2.​ Technologies applied in the app: Firebase, Navigator 2.0, GoRouter, Bloc, Provider, etc.

1.3.​ State Management Architecture: MVVM, Clean Architecture .

IV. CODE DESCRIPTION
1 . INTEGRATE ADMOB ADVERTISING (TEST VERSION)

●​ Tích hợp quảng cáo bản thử (test) từ AdMob vào ứng dụng Finder giúp bạn kiểm tra việc hiển thị và

hoạt động của quảng cáo mà không gây ảnh hưởng đến người dùng thật sự. Dưới đây là mô tả sơ

qua về việc tích hợp AdMob quảng cáo bản thử trong ứng dụng.

●​ Installation instructions can be found here.

●​ Description of code in the project:

○​ First, we have a Provider to manage AdMob called ‘AdMobProvider’ with initialization

functions for banner ads and ad IDs (Here we use test IDs as an example).

https://developers.google.com/admob/flutter/quick-start

○​ When you want to use real ads in the application, you need to register with Google AdMob

and replace the IDs in the method below to generate revenue from ads:

○​ To display the banner ad, we can call the Provider as follows (Note that you need to declare

AdMobProvider in the main.dart function):

2. FIREBASE AND DESCRIPTION
2.1, Firebase connection in Flutter:See detailed instructions on how to connect here , Link

Firebase of Finder App

2.2, Authentication

●​ In the Finder app, we utilize two authentication methods to allow users to access and

enjoy the app’s features: Registration with a phone number and Login with a Google

Firebase account.

●​ Registration with a phone number: Users can register for an account in the Finder app

using their phone number. When they press the “Register with a phone number” button,

users will be prompted to enter their mobile phone number. After entering the phone

number, they will receive a verification code via SMS to verify their phone number. Users

will input the verification code into the app to complete the registration process.

●​ Login with a Google Firebase account: In addition to registering with a phone number, the

Finder app also supports logging with a Google Firebase account. Users can choose the

“Login with Google” option to sign in to the app.If they have previously logged into Google

on their device, the app will prompt them to authenticate the account once again to access

the Finder app. After successful authentication, users will be directed to the app’s main

screen and start enjoying its functionalities.

2.3, Cloud Firestore

 2.3.1, User:

●​The user field contains information about users in the Finder app. Each record in the

“users” collection represents a specific user with basic information fields..

https://www.youtube.com/watch?v=fxDusoMcWj8
https://console.firebase.google.com/u/0/project/binder-app-3b8de/overview
https://console.firebase.google.com/u/0/project/binder-app-3b8de/overview

 ​ 2.3.2, ChatRoom (Message Management)

●​The ChatRoom field is used to store messages between two users who have formed a

“Match”. Each record in the “chatRoom” collection represents a specific conversation

between two users.

2.3.3, Notification(Thông báo đẩy):

●​The Notification field is used to store notifications and updates for users in the Finder

app. Each record in the “notification” collection represents a specific notification.

2.4, Storage

●​ When users create an account or update their profiles (e.g: adding a profile picture), the

images are uploaded from the user’s device to Firebase Cloud Storage. Firebase will generate

a unique path for the uploaded image, such as

“gs://binder-app-3b8de.appspot.com/images/07SfiIhfRTZDPU9m3CZOCfKZF393”. This path

is stored in the Cloud Firestore database in the “images” field of the user’s account.

2.5,Note: when running the application in Debug mode, it is necessary to assign the SHA-1 code of

the personal machine to Firebase as follows:

●​ How to get the SHA-1 code in your Flutter project HEAR

https://www.geeksforgeeks.org/how-to-generate-sha-1-key-in-flutter/

●​ After we have the SHA-1 code, we go to Firebase according to the link assigned in 2.1 and

add it as follows:

2.6, Note: When publishing the app on Google Store, you need to retrieve the SHA-1 code of your

project from the Google Play Console and input it into the `SDK setup and configuration` section on

Firebase

●​ To get the SHA-1 code from Google Play Console:

●​ Add code into Firebase:

3. SCREENSHOT AND DETAILED CODE OF EACH SCREEN (SOURCE CODE)

3.1, REGISTRATION AND LOGIN
3.1.1, Registration and Login with Google

●​ This feature allows users to register and login to the Finder app using their Google

account.

a)​ Registration: When users access the app for the first time, the Finder app

requests their permission to access their Google account information (e.g:

name, profile picture). After successful authentication, the app retrieves the

user's Google account information and creates a new account in the Firebase

database. The user is then redirected to the app's home screen with the

registered account.

b)​ Login: Users who have registered with their Google accounts can log in. If they

are already logged into Google on their device, the Finder app automatically

authenticates the user's account and logs them in. If not already logged in, the

app prompts the user to authenticate their Google account again. After

successful authentication, the user is redirected to the app's home screen with

the logged-in account.

3.1.1, Registration and Login with Phone Number

●​ This feature allows users to register and log in to the Finder app using their mobile

phone numbers..

c)​ Registration: When users access the app for the first time, the Finder app

sends a verification code via SMS to the provided phone number. Users enter

the verification code from the message to complete the account registration

process. After successfully entering the verification code, the user's account is

created and stored in the Firebase database. The user is then redirected to

the app's home screen with the registered account.

d)​ Login: Users who have registered with their phone numbers can log in. The

user enters the registered mobile phone number into the app. The Finder app

https://github.com/lonbgddd/chat_app

sends a verification code via SMS to the provided phone number. Users enter

the verification code from the message to log in to their account. After

successfully entering the verification code, the user is redirected to the app's

home screen with the logged-in account.

●​ This is the screenshots:

●​ Related Code Sections (Referenced in each heading's link):

a)​ Registration and Login Screen: This screen displays functions to start using the

App, including the following sections:

- WithGoogle:

+, Choose to register and use the app with Google

+, Provider manages usage with Google

- With Phone number

+, Phone number registration screen

https://github.com/lonbgddd/chat_app/blob/main/lib/Auth/login_home_screen.dart
https://github.com/lonbgddd/chat_app/blob/main/lib/config/changedNotify/login_google.dart
https://github.com/lonbgddd/chat_app/blob/main/lib/Auth/login_phone_screen.dart

The code snippet above represents the login or registration interface based on the phone

number, with an input field for the phone number and a country selection. Users can enter their

phone number and choose the country before pressing the "Continue" button to proceed with

login or registration. The Consumer from the Provider package is used to listen to changes and

rebuild related child widgets accordingly.

+, The Code Verification Screen:

https://github.com/lonbgddd/chat_app/blob/main/lib/Auth/screen/verify_OTP.dart

​ ​

-​The above code snippet is the OTP verification input interface for the login or registration process

in the app. It allows users to enter the OTP code and verify it to complete the login or registration

process.

+, Provider manages usage with Phone Number

https://github.com/lonbgddd/chat_app/blob/main/lib/config/changedNotify/login_phone.dart

3.2, CONFIRMATION AND USER INFORMATION REGISTRATION:
●​ This feature allows users to register basic information about themselves to be displayed

when using the App. After completing the required steps, the user's database is created,

and they are directed to the main screen of the app to start using it.

●​ This is the screenshots

●​ Related code items.(In the link attached to each title) :

The user verification screen after completing registration will display various pages for

entering basic information such as name, date of birth, gender, the person they want to

meet, sexual orientation, interests, purposes, and uploaded photos…

The "ConfirmProfile" screen utilizes an "IndexedStack" to sequentially display each widget for

user information input on the screen, managed by the "currentPageIndex" variable of

"PageDataConfirmProfileProvider."

The information entered into the input widgets is managed through the state provided by

PageDataConfirmProfileProvider. The input data will be stored in variables within the provider.

The input fields (TextFields) will be controlled using controllers created in the provider. Once all

the information is entered into the widgets, including the widget for adding an image, when the

user presses the confirmation button, the data will be saved through a function within the

PageDataConfirmProfileProvider provider.

If the user grants permission to access their location, they will be redirected to the home

screen; otherwise, they will be redirected to the LocationScreen to input their address.

To view the detailed code, please access the following links.

- , Main screen and confirm information pages

-, Constructor Widgets

-, Verification Management Provider

3.3, MAIN SCREEN OF THE APPLICATION
●​ This function includes a user interface featuring cards of other users, along with basic

information such as their name, interests, and a list of display pictures. Users can swipe to

send a "Match" to the other person, view detailed profiles of others, and highlight their

own profile to increase compatibility and make friends. Additionally, the page also includes

sections such as a notification screen to display updates on new matches, incoming

messages, and app-related notifications. There is also a filtering screen to sort users' data

based on location, age, and gender to cater to users' specific preferences.

●​ Screenshots

https://github.com/lonbgddd/chat_app/tree/main/lib/Auth/screen/pageConfirm
https://github.com/lonbgddd/chat_app/tree/main/lib/Auth/widget
https://github.com/lonbgddd/chat_app/blob/main/lib/config/changedNotify/confirm_profile_watch.dart

●​ Related code items.(In the link attached to each title) :

a)​ The screen displays user cards for sending Match invitations, notifications when a

Match is successful, viewing detailed user profiles, and highlighting.

- , BinderPage main screen

The main content of the BinderPage screen is a FutureBuilder, which renders the interface

based on the value of the future obtained from the allUserBinder function of the

BinderWatch provider. The parameters passed to the allUserBinder function are the filtering

conditions, which are also received from the BinderWatch provider.

Specifically, the BinderPage screen will display data related to user binders (such as

information or a list) based on the filtering conditions received from the BinderWatch

provider. These filtering conditions will be processed on the filter settings screen.

https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_page/binder_page.dart

allUserBinder function of provider BinderWatch:

The function takes parameters as filter conditions and a query to retrieve a list of users who

meet the filtering conditions through the getUserHasFilterKm or getUserHasFilter function

from the DatabaseMethods class. After obtaining the list of users, it uses the shuffleUsers

function to shuffle the positions of the users.

The obtained list of users will be displayed on the BinderPage screen as a stack of ProfileCard

widgets. The ProfileCard widget displays user information in the form of a card. If it's the first

card, it returns the buildCard function; otherwise, it returns the cardProfile function.

Additionally, there are functional buttons created from the buildFloatingButton function:

The function buildCard contains a GestureDetector widget and a LayoutBuilder to handle

swipe events when users swipe. When a user swipes, it will call functions from the

BinderWatch provider to handle the events.

The function cardProfile displays the user information of the card.:

The event handling functions in the provider will process based on the direction of the user's

swipe. If the swipe is to the left, the getStatus function will return StatusCard.dislike, and if it's

to the right, it will return StatusCard.like. After the swipe, it will trigger the endPosition

function, which will check the status returned by the getStatus function. If it's a like, it will call

the like function; if it's a dislike, it will call the dislike function.

-, Highlight Page Screen : Push your profile to the top of someone else's.

https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_page/highlight_page.dart

The code snippet above displays a list of popular packages over time and allows users to view

and select packages for use in an application. It also includes a Provider to store and display

the popular packages.

-, Profile Screen

More details about the code, please see the links.

https://github.com/lonbgddd/chat_app/blob/main/lib/home/profile/detail_profile_others.dart

-, Children Widgets

-, Providers and Data Connections management.

b)​ The screen displays user filtering settings based on criteria such as location, gender,

and age.

​

- , The main filtering screen

https://github.com/lonbgddd/chat_app/tree/main/lib/home/binder_page/components
https://github.com/lonbgddd/chat_app/tree/main/lib/config
https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_page/components/discovery_setting.dart

-, Providers and Data Connections management.

c)​ The notification screen is designed to display a list of push notifications whenever

there is a new update or change.

Notification main screen and widgets

https://github.com/lonbgddd/chat_app/tree/main/lib/config
https://github.com/lonbgddd/chat_app/tree/main/lib/home/notification

- , Notification main screen and widgets

-, Providers and Data Connections management.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/notification
https://github.com/lonbgddd/chat_app/tree/main/lib/config

3.4, MESSAGES SCREEN, WHO LIKE YOU
●​ This feature includes the first interface which is a list of users when both parties have

matched each other. Below that, there is a message list where users can exchange

messages, send text, images, or emojis. The chat interface allows users to have

conversations with each other.

●​ The second interface displays a list of people who have sent Match requests to the user.

The user can choose to accept or decline these requests. If they accept, they can start

sending messages to each other as usual.

●​ Screenshots

●​ Related code items.(In the link attached to each title) :

a)​ The screen displaying "Who Likes You" and the functionalities to accept or reject.

-​ Who like you main screen

-​ Providers and Data Connections management.

-​ Below is the general layout of the "Who Like You" screen.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/group_chat
https://github.com/lonbgddd/chat_app/tree/main/lib/config

Inside the Column widget, there are several widgets that configure the interface and widgets

that contain the main content:

The code uses FutureBuilder to handle a future obtained from the userFollowYou function of

the FollowNotify provider. Based on the result of the future, it displays a GridView containing

a list of LikedUserCards or a circular progress indicator (CircularProgressIndicator) while

loading the data.

Provider FollowNotify:

Widget LikedUserCard :

The code utilizes GestureDetector and FutureBuilder to handle futures and display user

information in the form of a card with an image and options to send messages or perform

other actions. Based on the future obtained from the checkMatched function of the

LikeUserCardProvider provider, it checks for matches to determine which functional buttons

should be displayed. When tapping on a LikedUserCard item, it navigates to another user's

profile information (DetailProfileOthersScreen) using the context.goNamed method.

Provider LikeUserCardProvider:

The functions "addFollow" and "removeFollow" are used for feature buttons when there is

no match yet. The function "getChatRoomId" is used to retrieve the chat room ID for use

when pressing feature buttons after a match has been made.

b)​ The main messaging screen and the chat screen for conversing with each other.

- , Main Messages Screen, Message details

- Below is the general layout of the conversation list screen:

https://github.com/lonbgddd/chat_app/tree/main/lib/home/group_chat

This screen utilizes "BlocBuilder" to manage the state and build the interface based on

events and states provided by "MessageBloc," "MessageEvent," and "MessageState." If the

state is "ChatRoomsLoading," it will display a centered header with a

"CircularProgressIndicator" to let the user know that data is being loaded. If the state is

"ChatRoomsLoaded," it will display the interface with a list of new conversations and a list of

previously joined user conversations.

- Message Bloc

-Message State

- Message Event

​ ​

- The list of conversations is divided into two parts: the section of new conversations and the

section of previously joined user conversations.

- The code above is used to display information about each new conversation, including the

avatar and name. It utilizes "BlocConsumer" to manage the state and build the interface

based on events and states provided by "ChatItemBloc," "ChatItemState," and

"ChatItemEvent."

- ChatItemState

- ChatItemEvent

- ChatItemBloc

​ ​

​ ​

​ ​

​ ​

The code above is used to display information about the conversation between a user and

another user in a list of conversations. This includes the avatar, username, and the content of

the last message. The code utilizes a FutureBuilder to handle a future obtained from the

getUserInformation function in ItemMessageProvider. If the future contains data, it displays

the information on the screen.

ItemMessageProvider

-​ When users tap on a conversation, they will be taken to the messaging screen. Below

is an overview of the messaging screen used to display detailed conversations

between two users in a chat application. This widget allows users to view and send

text and image messages. It utilizes "BlocBuilder" to manage the state and build the

interface based on events and states provided by "DetailMessageBloc,"

"DetailMessageState," and "DetailMessageEvent."

-​

-​ DetailMessageBloc

-​ DetailMessageState

-​ DetailMessageEvent

-​

-, Providers and Data Connections management.

https://github.com/lonbgddd/chat_app/tree/main/lib/features/message

3.5, TOP PICKS DISPLAY SCREEN
●​ This feature includes a user interface that shows a list of users filtered according to various

criteria such as most active, recently online, highly prominent, etc. When clicking on a user,

it will display detailed information about that user, while still sending a match request as

usual.

●​ ScreenShot

●​ Related code items.(In the link attached to each title) :

a)​ Top Picks Display Screen

- , MainScreen

-, Providers and Data Connections management.

​ Screenshots:

https://github.com/lonbgddd/chat_app/tree/main/lib/home/binder_selection
https://github.com/lonbgddd/chat_app/tree/main/lib/config

​ ​ BinderSelection.dart​

​ ​ ​

The Body widget of this code snippet has been extracted into a separate file to improve

readability and maintainability.

​Body.dart

In this code snippet, there are two private functions to display modals and one function to

handle the event when the user scrolls the screen. When the user reaches the bottom,

the _showBottomModal function will be called to display the modal. Now, let's continue

with the content of the code inside the build function:

After initializing the interface, the allUserSelectionBinder() function will be used to filter

out individuals with the same interests and gender. The filtered results will be displayed

on a GridView based on the ItemSelectionCard.

You can access the following link to view this code snippet: item_selection_card

3.6, THE PROFILE DISPLAY SCREEN
●​ This function includes a user interface displaying personal information and editable details,

with multiple diverse fields to customize and make the profile more appealing and

outstanding.

●​ Screenshots:

https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_selection/components/item_selection_card.dart

●​ Related code items(In the link attached to each title.) :

a)​ The screen displays the details of one's personal profile, and the tabs to update

personal information such as photos, biography, interests, lifestyle, objectives,

language, and location.

The general layout of the screen for displaying and updating user information would be

implemented as a StatefulWidget, using the provider UpdateNotify to manage the state.

Use the WillPopScope widget to handle the event when the user presses the back button to

save the changed information. The Stack widget will contain two child widgets: one is

SingleChildScrollView to display the main content, and the other is a widget to display

loading while data is being loaded (when the isLoading variable of the UpdateNotify provider

is true).

The main content is contained within a Column widget, which includes various widgets to

display and edit user information.

User information is retrieved from the getUser function of the UpdateNotify provider:

The information is stored in variables within UpdateNotify and is utilized on the

UpdateProfile screen.

Widget to update a list of images:

The Widget UpdateImage retrieves a list of images from the photoList variable of the

UpdateNotify provider and displays them in a GridView, limited to 9 items. For items that

already have an image, the image will be shown. However, for elements without an image, a

replacement widget will be displayed instead. When the user taps on this replacement

widget, it will call the pickImages function of UpdateNotify to select images.

The functions pickImages and _cropImage:

The "ImagePicker" library is used to allow users to select images from their device's memory

or gallery. After selecting an image, the "ImageCropper" library comes into play, allowing

users to edit or crop the selected image as desired.

After selecting and editing, the data will be passed to the UpdatePhotoList function to save

the information to Firestore. The function will handle the process of storing the edited image

data in the Firestore database.

Next up are the widgets for editing descriptions, company names, school names, and

addresses. These widgets use TextFields for data entry:

A TextField has a controller that is managed by a provider. The information entered will be

saved when the user exits the update screen by calling a function in the provider:

The remaining widgets follow a similar logic. They will display user information, and when

the user taps on them, a BottomSheet will open for editing. After the editing is completed,

the updated information will be saved using functions provided by the Provider.

Example, widget of gender information:

Save Gender Function:

Detailed information about the remaining widgets and BottomSheet can be found at the link

below:

- , Main screen, profile update, and sub-widgets.

-, Provider and data connection management.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/profile
https://github.com/lonbgddd/chat_app/tree/main/lib/config

3.7, THE SETTINGS SCREEN AND ADVANCED PAID PAGES.
●​ This functionality includes the general app settings interface such as search settings, user

filtering, language preferences, and logout option.

●​ Screenshots

●​ Related code items.(In the link attached to each title) :

a)​ The main settings screen with an avatar and navigation buttons, as well as

advertisements.

- , Main Screen

https://github.com/lonbgddd/chat_app/blob/main/lib/home/profile/profile.dart

The ProfileScreen contains a primary content that is a StreamBuilder listening to a stream

obtained from the context.watch<ProfileWatch>().getUserStream() function. It holds

information about the current user to display their name, age, and avatar in the

ProfileScreen. Additionally, the screen includes several UI elements for premium features,

which you can find more details about in the link above.

The widget displaying the avatar is interactive and triggers a navigation event to switch to the

UpdateProfileScreen when tapped.

b)​ The SettingScreen includes various functionalities as described:

​

- , The main settings screen

- , The data for changing the language.

-, The providers and data connections manage the settings and logout functionalities.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/setting
https://github.com/lonbgddd/chat_app/tree/main/lib/l10n
https://github.com/lonbgddd/chat_app/tree/main/lib/features/message

V.​ GUIDE TO APP INTERFACE CUSTOMIZATION (RESKIN APP)
1 . CHANGE THE APP'S BACKGROUND COLOR.

1.1 GREETINGS:
Change background color:

●​ Open the file named "welcome.dart".

●​ Find the "build" widget as shown in the image below.

●​ Modify the LinearGradient in BoxDecoration with the desired color.

1.2 LOGIN SCREEN:
Change background color:

●​ Open the file named "login_home_screen.dart".

●​ Find the "build" widget as shown in the image below.

●​ Modify the LinearGradient in BoxDecoration with the desired color.

1.3 CHANGE THE COLOR OF THE BOTTOM NAVIGATION:
●​ Open the file named "home.dart".

●​ Find the widget named "BottomNavigationBar" as shown in the image below.

●​ Change the "backgroundColor" to the color you want.

1.4 SWIPE USER SCREEN:
Change the color of the AppBar:

●​ Open the file named "binder_page.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color while loading data:

●​ Open the file named "binder_page.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

Change the background color after having data:

●​ Open the file named "binder_page.dart".

●​ Find the "getBody" widget as shown in the image below.

●​ Change the "color" in BoxShadow to the color you want.

1.5 TOP SELECTION SCREENS:
Change the color of the AppBar:

●​ Open the file named "binder_selection.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "body.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

1.6 CHAT LIST SCREEN:
Change the color of the AppBar:

●​ Open the file named "message_screen.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "message_screen.dart".

●​ Find the "_buildBody" widget as shown in the image below.

●​ Change the "color" in Container to the color you want.

1.7 CHAT SCREEN:
Change the color of the AppBar:

●​ Open the file named "detail_message.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "detail_message.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "color" in BoxDecoration to the color you want.

●​ Then find the "listMessage" widget and change the color of the container to

transparent.

1.8 SEE WHO LIKES YOU SCREEN:

Change the color of the AppBar:

●​ Open the file named "who_like_page.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "who_like_page.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

1.9 PROFILE SCREENS:
Change the color of the AppBar:

●​ Open the file named "profile.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "profile.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

●​ Then, open the file "BodyBuyPremium.dart".
●​ Find the "build" widget as shown in the image below.

●​ Change the "color" in Container to the color you want.

1.10 SETTINGS SCREEN:

Change the color of the AppBar:

●​ Open the file named "setting_screen.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "setting_screen.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

1.11 NOTIFICATION SCREENS:

Change the color of the AppBar:

●​ Open the file named "notification_screen.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "notification_screen.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

1.12 OTHER USER PROFILE SCREEN:
Change the background color:

●​ Open the file named "detail_profile_others.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

1.13 ENTER PERSONAL INFORMATION SCREEN:
Change the background color:

●​ Open the files in the pageConfirm directory, such as add_birthday_page.dart.

●​ Find the "build" widget as shown in the image below.

●​ Add or modify the "backgroundColor" property in Scaffold to the color you

want.

1.14 SEARCH SETTINGS SCREEN:
Change the color of the AppBar:

●​ Open the file named "discovery_setting.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

●​ Open the file named "discovery_setting.dart".

●​ Find the "build" widget as shown in the image below.

●​ Change the "backgroundColor" in Scaffold to the color you want.

1.15 TINDER PREMIUM SCREEN:
Change the background color:

●​ Open the file named "bottom_modal_fullscreen.dart".

●​ Find the "build" widget as shown in the image below.

●​ Modify the LinearGradient in BoxDecoration with the desired color.

2 . CHANGE THE APP'S ICON.

​ Open the “assets” folder from the root directory of your project, then right- click

​ and select “Reveal in File Explorer”

​

​ At this point, your computer will automatically open that folder, and what you need to do is

click on the "assets" folder, then continue clicking on the "icons" folder. This is where all the

resources of the application are located

​ You can modify resources as you wish. After that, open the Integrated Development

Environment (IDE) and find the file "app_assets.dart" located in the folder

lib\config\helpers

After that, configure the resources for your application. Then, rebuild the application.

// Example of configuring a static resource constant:

// static const String iconExample = '$iconPath + your-resource-icon.png'

If you want to use the icon in a particular file, navigate to that file and write

Appassets.iconExample to reference the iconExample constant from the

Appassets class.

​ ​ ​ ​ Change icon in welcome.dart

If you want to add image resources, you can do the same as you did for icons.

3 . CHANGING THE APP'S LANGUAGE CONTENT
●​ When you want to add a new word or add a new language in the app, you can use flutter

localizations, which can be further explored here.

●​ After reading and understanding how to handle multiple languages, you can add, modify, or

delete new phrases or words here:

https://docs.flutter.dev/accessibility-and-localization/internationalization

where the files in the l10n directory represent different languages customized with the 'key':'value'

pairs. The key must match accurately across all language files.

●​ After adding the language values, run the command 'flutter gen-l10n' in the project's

terminal to synchronize the values and use them. In the main.dart function, you need to

initialize as follows to handle multiple languages.

●​ Usage is as follows:

○​ In the file where you want to use a different language, import

'package:flutter_gen/gen_l10n/app_localizations.dart'; then initialize 'final

appLocal = AppLocalizations.of(context);' inside the build method of each

Widget.

○​ Finally, to access the text values created above, you just need to use

'appLocal.key' to initialize the multilingual support for the app when switching

between languages.

○​ When you want to use the language switching feature, you can do it as follows:

	I.​INTRODUCTION
	II.​BASIC DESCRIPTION
	1.​MEET AND CONNECT
	2.​MESSAGING
	3.​PHOTOS AND PERSONAL INFORMATION
	4.​DISCOVERY SETTINGS
	5.​HIGHLIGHTS PROFILE

	III.​FUNCTIONS, TOOLS, AND TECHNOLOGY
	1.​FUNCTIONS
	2.​TOOLS AND TECHNOLOGY

	IV. CODE DESCRIPTION
	1 . INTEGRATE ADMOB ADVERTISING (TEST VERSION)
	2. FIREBASE AND DESCRIPTION
	3. SCREENSHOT AND DETAILED CODE OF EACH SCREEN (SOURCE CODE)
	3.1, REGISTRATION AND LOGIN
	3.2, CONFIRMATION AND USER INFORMATION REGISTRATION:
	3.3, MAIN SCREEN OF THE APPLICATION
	3.4, MESSAGES SCREEN, WHO LIKE YOU
	3.5, TOP PICKS DISPLAY SCREEN
	3.6, THE PROFILE DISPLAY SCREEN
	3.7, THE SETTINGS SCREEN AND ADVANCED PAID PAGES.

	V.​GUIDE TO APP INTERFACE CUSTOMIZATION (RESKIN APP)
	1 . CHANGE THE APP'S BACKGROUND COLOR.
	1.1 GREETINGS:
	1.2 LOGIN SCREEN:
	1.3 CHANGE THE COLOR OF THE BOTTOM NAVIGATION:
	1.4 SWIPE USER SCREEN:
	1.5 TOP SELECTION SCREENS:
	1.6 CHAT LIST SCREEN:
	1.7 CHAT SCREEN:
	1.8 SEE WHO LIKES YOU SCREEN:
	1.9 PROFILE SCREENS:
	1.10 SETTINGS SCREEN:
	1.11 NOTIFICATION SCREENS:
	1.12 OTHER USER PROFILE SCREEN:
	1.13 ENTER PERSONAL INFORMATION SCREEN:
	1.14 SEARCH SETTINGS SCREEN:
	1.15 TINDER PREMIUM SCREEN:

	2 . CHANGE THE APP'S ICON.
	3 . CHANGING THE APP'S LANGUAGE CONTENT

