C

FINDER- MATCH AND CHAT

I. INTRODUCGTION. .. cuiiteituiiuiieitaiieeiieesiaesiairsstssstessiassiasstassssssssstssstssstsssssssssssssssasstasssassssssssssssssssssasssasssnnssns 2
I1. BASIC DESCRIPTION.....cccttttttttetmmeemmmemmmmmrmmmmmmmmmmemmmimmmmmmmimmmimmiimesimemmseeisseimmesss 3
1. MIEET AND CONNECT c.tuetiiitttiiie st eetttie s e ettt s e et et ttae s s e e et ataa e s e e e eaebaaeeseeetasaaseeeseeaasanseeeaeessaseseeesensannnnns 3

2. IMIESSAGING. ... utiieiitt ettt ettt ettt et e sttt e et te e s bte e s bbeesabae e s bbeesabaeeaabaeesabeeeaabaeeaabaeenateesabeesabeesbaeesaabeenas 3

3. PHOTOS AND PERSONAL INFORMATION. .. .uuuuuuuuuiiieieieeeeeeeeeeeeeseeeeeeeeeeeeeeeseeesessseessseseserennnnnnnnnnaaeeeeesees 4

4. DISCOVERY SETTINGS....cetitttiiitteiitte ettt e sttt e sttt e sttt e sateeesabeeesabeessabaeesabeeessteessabaeesaseessaseesanbeesnnsaesnsseesnsseenns 4

o 1€ TR I = 2(0 1 TR 5

lll. FUNCTIONS, TOOLS, AND TECHNOLOGY......cccoeetssiissnns 5
L FUNGCTIONS. ettt et et e ettt ettt ettt e e e e b e e b e bbb e s asassssesaaasaaaaaeaeeeeeseseeenesesesesssssessssnsnnnnnn 5

2. TOOLS AND TECHNOLOGY.....cititeiiiiiitiiiiies s eettiies s e e ettt s s e e s et tates s e e e e e eaaa e s e e e s ae b e e eaaaaassaeeeaanassansesesesssnnnss 6

IV. CODE DESCRIPTION......ccciitiiirssisssssssssssnsseesseesssessseesssssssnnns 6
1. INTEGRATE ADMOB ADVERTISING (TESt VEISION)....ceicuriieeeeciiieeeeecieee e eeereee e e et e e e e eveee e e eetreeeeeenreeeeeennneas 6

2. FIREBASE AND DESCRIPTION. .. .uttiitttiitteeeiieesitteestteesiteestee e sttt esateessabaeessseessssaessseesssseesnsseesnssesssseessssenenns 9

3. SCREENSHOT AND DETAILED CODE OF EACH SCREEN (Source code)......cccceeeeciieeeeeciiieeeecieeeeeecvveee e 13
3.1, Registration and LOGIN.......cceiiciiieeiiiiiee e cciteee ettt e et e e et e e e e et e e e e sbtaeeeesbtaeeeesartaeeesentaeeesanes 13

3.2, Confirmation and User Information Registration:...........cccccuieiiieciiiie e e e 19

3.3, Main Screen Of the APPliCatiON......ueeei i e e e e e e e e e e e rabraaeraeeeaee s 21

3.4, Messages SCreen, Who [IKE YOU........ooo it e e e ree e e e 34

3.5, TOP PiCKS DiSPlay SCIEEN....cciiiictiieieieciieee ettt e ettt e e e s st e e e s sbte e e e ssataeeesssstaeeessnstaeeessnnseeeessnns 49

3.6, The Profile diSplay SCrEEN.......cci it e e s e e e e e b e e e e e e abte e e s esasaeeeeeennreas 53

3.7, The settings screen and advanced Paid PABES......coicuriieiriiiiieiiiieee e eriree s e e e sree e e e sbee e e e s sareeas 62

V. GUIDE TO APP INTERFACE CUSTOMIZATION (RESKIN APP)......ccuuueummmmnsmmnnmmnsmmssmmsssmssssssserssesssssssesssessssesne 65
1. Change the app's background COlON.........neueiiiiieeeeee e e et e e e e e e s e e aneees 65

L CT=T= 1 o To LT EPPP R PRTPPPRI 65

2 Mo |1 IE=Ted £ == o OO EPPP PSPPI 65

1.3 Change the color of the Bottom Navigation:............ccccoiiiii e 66

L T oYY U [ST =Y =T oa (=YY o O 67

RS T [o) o JE=T= (=Tt [g T =YY o - 68

LSO ¢ = 115 =T == o R 69

O ¢ = T = o 70

1.8 Se€ WO [IKES YOU SCIEEN:.....cciii ittt e e e e e e e e e aanee 72

1.9 PrOfil@ SCIEENS: ...ttt et e e e e e e e e e e e e e e e e nnereeeeeeeeeannnes 73

1.10 SEHINGS SCIEENuuiiiiiiiiiiee ettt e 74

1.13 Enter personal information SCreeN:...........c..uuiiiiiiiiii e 76
1.14 Search setlings SCrEENcoii it e e e e s s e s sesesssseeeeeeeeeees 77
1.15 TiNder Premilm SCrEENttt ee et e e e ee et e e e e e e eeeeeeeeeeeeeeens 78
I O T [T L d aT=I o o I ol o USSP 79
3. Changing the app's langUAgE CONTENt..........uuiiiiiiiieie e e e e e e e e e s e e e e e e e e e e e annenns 81

I. INTRODUCTION

o FINDER - MEET NEW PEOPLE, EXPLORE LOVE: is an app designed to help people get to know and
connect emotionally with each other through personal information based on the popular Finder platform
in social media. It is a groundbreaking dating app that allows you to meet unique and interesting
individuals around you. With a user-friendly interface similar to Finder, this app offers an enjoyable and
intimate experience, helping you find that special someone for your life.

e Contact support: hongduyle.it@gmail.com

** How to run this source (Finder - Match and Chat) **
Step 1. Open source code folder in Android Studio.

Step 2. Run the following command in Android Studio's terminal:
- flutter pub get
- flutter gen-110n

Step 3. When source is already running in mobile device, you must configure your own firebase
console to sign up / login app and use all app's functions
-> Take a look at the full documentation below.

mailto:hongduyle.it@gmail.com

Il. BASIC DESCRIPTION

1. MEET AND CONNECT
With Finder you can browse through thousands of user profiles and choose the people you want to

connect with. The first glances, shared interests, and nearby locations provide opportunities for us to
get closer to each other. When two people like each other, a new chance unfolds!

2. MESSAGING
You and your match can chat right within the app through the integrated messaging feature. Get to

know each other better and create meaningful connections.

Find love and connect with ease
Simple and user-friendly interface

Convenient and flexible online dating
experience

4

I’

7

3::4;’

Chat feature: Finder's chat function enables direct
communication between users, fostering conversations and
connections.

Sending icons: Finder allows users to send expressive icons
adding an additional layer of communication and emotion to
the conversation.

Sending photos: Finder's chat feature lets you share photos

allowing for a more visual and personal exchange during
conversations.

3. PHOTOS AND PERSONAL INFORMATION

£
@ Finden

Q search

New Compatibility

4

®
Alikes
Message

Vu Viet
‘ e 021

helluwy

e Present yourself uniquely through photos and personal information. Introduce yourself and attract

attention from people with similar interests.

| ST
« Editprofile

Photos

4. DISCOVERY SETTINGS

4

—a®
Edit Profile screen: The Edit Profile screen on Finder allows users

to update their personal information and profile details.

Bio: Users can write a brief description about themselves to
give others a glimpse into their personality and interests.

Photos: Users can add and rearrange photos to showcase their
best self and create a visually appealing profile

Preferences: Users can specify their preferred gender,
age range, and location settings to tailor their matches to their

specific preferences.

e Customize your search criteria to find people who match what you’re looking for. Easily adjust age,

location, interests, and much more.

Priority distance
4

i one
Show only people within this range —a®
i PLATINGM
°
Show me Everyone > ed Likes, See Who Likes You & More

1822

Preferred age

&Finderﬁ’ . . . 3 2 < > -
S TSR The settings screen in Finder provides users with options to customize their
app experience and manage their account.lt includes various

Finder +
b i features such as:

inlimited Likes & More Benefits!

Show only people within this range

Discovery Preferences: Users can adjust their search preferences
including distance, age range, and gender, to refine their
potential matches.

* 4

Get Super Likes Buy Speed Up

®

Use incognito mode

o S Privacy Settings: Users can manage their privacy options
including who can see their profile and whether their profile

Priority distance
Current language Z English > A £
" is shown in the card stack.
‘Show only people within this ra . = .
Language Settings: Users can switch between different languages
including English and Vietnamese, to customize their app
interface and communication.

Show me

5. HIGHLIGHTS PROFILE

e Make your profile stand out with unique features and questions. Impress everyone you meet with your

creativity and personality.

Priority distance
I

Show only people within this range —a®’
inder XS
[
Show me Everyone > og Likes, See Who Likes You & More

1822

Preferred age

&Finderﬂz . . . 3 2 - > -
S Ry The settings screen in Finder provides users with options to customize their
app experience and manage their account.lt includes various

Finder +
b i features such as:

inlimited Likes & More Benefits!

Show only people within this range

Discovery Preferences: Users can adjust their search preferences
including distance, age range, and gender, to refine their
potential matches.

* 4

Get Super Likes Buy Speed Up

®

Use incognito mode

Search Settings Privacy Settings: Users can manage their privacy options
including who can see their profile and whether their profile

Priority distance =
English > 3 .
is shown in the card stack.

Current language

‘Show only people within this ra

" Language Settings: Users can switch between different languages
including English and Vietnamese, to customize their app
interface and communication.

Show me

lll. FUNCTIONS, TOOLS, AND TECHNOLOGY

1. FUNCTIONS

1.1, SIGN UP, LOGIN
e Users can create a new account and login into the app using username and password or

OTP for social media account integration (Google, Facebook, etc.)

1.2, SEARCH AND VIEW USERS:
e Users can browse through a list of other users and view their profile information, including

pictures, name, age, etc.

1.3, CONNECTING VA MATCHING:

e Users can connect with people they are interested in by swiping left or right, depending
on their interest in that person. If two users swipe right on each other, they will be
connected and form a “Match”.

1.4, CHATTING:

e After having a “Match”, users can start chatting with each other through the in-app
messaging system

1.5, INTEGRATED LOCATION SERVICES:

e The app can utilize integrated location services to locate users in nearby areas and suggest
suitable matches.

1.6, CUSTOMIZE PROFILES:

e Users can customize their profiles by adding photos, self-descriptions, age, gender,
interests, and more.

1.7, NOTIFICATIONS AND SETTINGS:

e The app can send notifications to users about activities related to their accounts. Users
can customize app settings such as notifications, privacy, language, etc.

1.8, ACCOUNT MANAGEMENT AND LOGOUT:
e Users can manage their accounts, including logging out of the app when necessary.

2. TOOLS AND TECHNOLOGY
1.1. Framework: Flutter
1.2. Technologies applied in the app: Firebase, Navigator 2.0, GoRouter, Bloc, Provider, etc.
1.3. State Management Architecture: MVVM, Clean Architecture .
IV. CODE DESCRIPTION

1. INTEGRATE ADMOB ADVERTISING (Test VeRrsion)
e Tich hop quang cdo ban thir (test) tlr AdMob vao (rng dung Finder gitip ban kiém tra viéc hién thi va
hoat dong clia quang cdo ma khong gay anh hudng dén ngwdi diing that sw. Dudi day 1a mo ta so
qua vé viéc tich hop AdMob quang cdo ban thir trong (rng dung.

e |[nstallation instructions can be found here.

e Description of code in the project:

o First, we have a Provider to manage AdMob called ‘AdMobProvider’ with initialization
functions for banner ads and ad IDs (Here we use test IDs as an example).

https://developers.google.com/admob/flutter/quick-start

class AdMobProvider with ChangeNotifier {
BannerAd? _bannerAd;

bool _isLoaded = false;

BannerAd? get bannerAd = _bannerAd;

bool get islLoaded — _isloaded;

Future<void> loadBannerAd(BuildContext context) async {
final AnchoredAdaptiveBannerAdSize? size =
await AdSize.getCurrentOrientationAnchoredAdaptiveBannerAdSize(

MediaQuery.of(context).size.width.truncate());

if (size = null) {
print('Unable to get height of anchored banner.');

return;

_bannerAd = BannerAd(

adUnitId: Platform.isAndroid
? 'ca-app-pub-3940256099942544/6300978111"
' ca—app-pub-3940256099942544/2934735716" ,
: size,
: AdRequest(),
r: BannerAdListener(
onAdLoaded: (Ad ad) {
print('$ad loaded: ${ad.responseInfo}');
_isloaded = true;
notifylListeners();
}
onAdFailedTolLoad: (Ad ad, LoadAdError error) {
print('Anchored adaptive banner failedTolLoad: $error');
ad.dispose();
+
),
)i

await _bannerAd!.load();

Qoverride
void dispose() {
_bannerAd ?. dispose();

super.dispose();

o When you want to use real ads in the application, you need to register with Google AdMob
and replace the IDs in the method below to generate revenue from ads:

adUnitId: Platform.isAndroid

? 'ca—app-pub-3940256099942544/6300978111"

: 'ca—app-pub-3940256099942544/2934735716" ,

o To display the banner ad, we can call the Provider as follows (Note that you need to declare
AdMobProvider in the main.dart function):

Eoverride
Widget build(BuildContext context) {
final appLocal = Applocalizations.of(context);

finol adProvider = Provider.of<AdMobProvider>{context);

return Scaffold(
hody: isloading
? Center(...)
: Container(
dgcoration: BoxDecoration(...),
child: Stack(
children: [
Positioned(...
Column(...],
(adProvider.isloaded £&& adProvider.bannerAd == null) ?
Align(
alignment: Alignment.bottomCenter,
child: SizedBox(
width: adProvider.bannerAd?. size.width.toDouble(],
height: adProvider.bannerAd?. size.height.toDouble(),

child: AdWidget(ad: adProvider.bannerAd!']),

: SizedBox.shrink(),

2. FIREBASE AND DESCRIPTION
2.1, Firebase connection in Flutter:See detailed instructions on how to connect here , Link

Firebase of Finder App

2.2, Authentication

e Inthe Finder app, we utilize two authentication methods to allow users to access and
enjoy the app’s features: Registration with a phone number and Login with a Google

Firebase account.

® Registration with a phone number: Users can register for an account in the Finder app
using their phone number. When they press the “Register with a phone number” button,
users will be prompted to enter their mobile phone number. After entering the phone
number, they will receive a verification code via SMS to verify their phone number. Users
will input the verification code into the app to complete the registration process.

e Login with a Google Firebase account: In addition to registering with a phone number, the
Finder app also supports logging with a Google Firebase account. Users can choose the
“Login with Google” option to sign in to the app.If they have previously logged into Google
on their device, the app will prompt them to authenticate the account once again to access
the Finder app. After successful authentication, users will be directed to the app’s main
screen and start enjoying its functionalities.

‘ Firebase

Project Overview

Users

2 Authentication
Firestore Database
Storage

Messaging

Build
Release & Monitor
Analytics

Engage

2.3, Cloud Firestore

2.3.1, User:

Finder App «

Authentication

Sign-in method Templates Usage Settings

Q, search by email address, phone number, or user UID

Identifier Providers

coQ

QO @

)

b

Created

% Extensions &

+ Signed In

3 -

yPDMILFJ6UMTMZB0GE1IuCXg8s

User UID

8chT51YLLrabB6TDNLLUe4S2

e The user field contains information about users in the Finder app. Each record in the
“users” collection represents a specific user with basic information fields..

https://www.youtube.com/watch?v=fxDusoMcWj8
https://console.firebase.google.com/u/0/project/binder-app-3b8de/overview
https://console.firebase.google.com/u/0/project/binder-app-3b8de/overview

‘ Firebase Finder App + QoP

»

Pserwrer S Cloud Firestore

Data Rules Indexes Usage | % Extensions €ZD

Authentication

Panelview Query builder

Storage
Messaging
A > users > QLkajIrCNIR2D] & More in Google Cloud v
= app-3bBde W users = i B QLkajICNIR2DjHyCdteXkpGSHT2
Build
+ start collection + Add document + start collection
Release & Monitor
chatRoom 87SFiIhfRTZDPUIM3CZOCFKZF393 % 4 Addfield
Analytics otification a
users >
Engage
avatar: “hitps//fi googleapis.com pp-
il peoducts 3b8de.appspot. QLKajIrCNIR2D]F T2%2F
©f78-4552-0807-57ebe6c6416 jpgPalt=mediakioken=32103210-b281-46
BA9ghgr2 18a3d6fee119"
SRZvyScnhKzaeXori2ri ka2 birthday: '2003-04-15"

QLkaj1rCNiR2DjHyCAteXkpGSHT2 > a

communi

tkrdrr2
Customize your nav!

eTNPAFKR 7802

You can now foeus your console
experience by customizing your
navigation

ss: '3,Tdp S84, Nam Tir Liém, Ha Noi, Viét Nam"
LLrabB!

datingPurpose: 0

drinkingStatus: -1

a

@ Natahace Incation: asia-snitheact]

2.3.2, ChatRoom (Message Management)
e The ChatRoom field is used to store messages between two users who have formed a

“Match”. Each record in the “chatRoom” collection represents a specific conversation
between two users.

Firebase Finder App ~ B e 7
e Cloud Firestore

Data Rules Indexes Usage | % Extensions @ZD

Authentication

Panelview Query builder

Storage
Messaging
A > chatRoom > 2e igBh... > chats & More in Google Cloud
| chatRoom = B 2ecnigYEawgBhnmxzAUetR M chats =
Build
+ Add document + start collection + Add document
Release & Monitor
2ecnlqVEaWgBhnmxzAUStRSFpzql_c4ZC1v chats > A
Analytics 3
Engage
Al products
+ Add field
chatRoonId: "2ecnlqYEaWgBhRmXZAUetR
~ newChatRoom

8 "cAZCIVINEQ6bTIDhifeGFOTUga2"
Customize your nav!

"2ecnlqYEaWgBhnmxzAUetR5Fpzq1

You can now focus your console
experience by customizing your ime: "2023-07-18 14:40:16.598463
navigation ©eertines
Leammore Gotit - 8
time: "2023-0718

14:40:16.598463"
uid: "c4ZCIVIVNEGEbTIDhifeGFOTU

« CE— >

© Database location: asiz-southeast1

2.3.3, Notification(Théng bao day):
e The Notification field is used to store notifications and updates for users in the Finder
app. Each record in the “notification” collection represents a specific notification.

‘ Firebase = DB &
@ Project overview Cloud Firestore

Data Rules Indexes Usage | ¥ Extensions @ED

2 Authentication

Firestore Database

Panelview Query builder
Storage

Messaging

A > notification » NI1VZtSxclg > & More in Google Cloud v
B N1VZiSxcLgUPPVKR W mess T i @ WsJgMq2UXyuQNUSE2roF
Build
+ Start collection + Add document + start collection
Release & Monitor
mess > FoveTa + Addfield
Analyti YNOK1FF
nalytics TUVNSK1FF2My avatar: “hitps googleapis.com/v0/b/binder-app-
. W8JgMG2UXyUQNUBE2 OF > 3bBde.appspot.com/o/images%2FTjgXaZwlaPhGCpAUBSiqs1e12QJ3%2F7
ngage 39¢1-469 b b. b
fuvt 110231c42dce’

i Allproducts chatRoomId: "N1VZISxcLgUPPVKRxIbnBASGhgr2_TjgXaZwlaPhGCp4UBSigsel ZQ.

+ Addfield

“New compatible”
ZbyDvaOHH9yHihZ1s8z nane: "New compatible”

status: “false”
i time: '2023-07-16T16:10:35.110274"
Customize your na
type: ‘match’

1id: 'TigxazwlaPhGCpauBSsigs1e1zQJs’

Leam more

Q Database location: asia-southeast]

2.4, Storage

e When users create an account or update their profiles (e.g: adding a profile picture), the
images are uploaded from the user’s device to Firebase Cloud Storage. Firebase will generate
a unique path for the uploaded image, such as
“gs://binder-app-3b8de.appspot.com/images/07SfilhfRTZDPU9IM3CZOCFKZF393”. This path
is stored in the Cloud Firestore database in the “images” field of the user’s account.

¥ Firebase Finder App ~ (>N - Q
Project Overview Storage
Files Rules Usage & Extensions Q&

2% Authentication

irestore Database
- G gsi//binder-app-3b8de.appspotcom > images 2 upload file
storage

Messaging [m} Name Size Type Last modified

O [07sfilhfRTZDPUIM3CZOCIKZF393/

3 O [obaiuraoyHa2Rs1gUpZMIXojzy Folder

Release & Monitor
O [191QCkwAW3Y4Texeqn90592GRNIT/
Analytics

Engage O £ 1b0SRbOMITPhKTEDIOjsSJddss1/
= All products O [3cvas41ixuuzquqqEmM2pogsohmz/

[m} [3F1uSbILOIR4yetNozgJtsBWXn82/

O [3KdseNrKADZnwKrywaPIC3ex2B53/

Customize your nav!

[m} [6i67z5Y11gfyjlobzp1WVzGghMmi2/
navigation
& O [7AgivouAwoIRIUGOTFSFobuy2d2/

O [7TimiMyUswvMgaKUpTIxsCoGpe2/

O [829tT4I0eVhodnYIKNKER}vSGHE/

O [8NQvaxigizhsOPNzZImYGYnigsrz2/

2.5,Note: when running the application in Debug mode, it is necessary to assign the SHA-1 code of
the personal machine to Firebase as follows:

e How to get the SHA-1 code in your Flutter project HEAR

https://www.geeksforgeeks.org/how-to-generate-sha-1-key-in-flutter/

e After we have the SHA-1 code, we go to Firebase according to the link assigned in 2.1 and
add it as follows:

¥ Firebase Finder App = Project settings —

A Project Overview o Your apps

Add app

Authentication

Firestore Database ghE SDK setup and configuration

Storage =) chat.app (anroid)

Messaging
Finder app
= hat,

Close]

@ Ssee SDKinstructions 2 google-servicesjson

Build
g chalapp (os) A

Release & Monitor example chata 1:32003398845 android:6132674bdbBe3fd1943edd
Analytics App nickname

Finder app 4
Engage

ackage name

Allproducts com.polynchat_app
ificate fingerprints @ e @

Customize your navi

us your console
stomizing your

‘Add fingerprint

2.6, Note: When publishing the app on Google Store, you need to retrieve the SHA-1 code of your
project from the Google Play Console and input it into the "SDK setup and configuration™ section on
Firebase

e To get the SHA-1 code from Google Play Console:

= P Google PlayConsole Q Timkiém trén Play @ (@) Finder-MatchandChat %
v 1, Pham vi tiép can va thiét
Tinh tos Ja iing d
inh toan ven cua ung dung
Téng quan Béo vé (ing dung va ngudi diing clia ban Xem thém

Danh myc thist bj
Dang tit tinh nang phan hdi ciia API Tinh toan ven - @ Google Play d ky cac ban phat hanh
() Trinh kham pha géi ing

dung
@ API Tinh toan ven Ky ting dung
- Thist 13p
Ky (ng dung
Churng chi khoa ky Ung dung Tai chiing chi xusng &

Bdo cao API Tinh toan ven o - R . . -~ . B,
ay la chimg chi cong khai cho khoa ky ing dung ma Google Play st dung dé ky timg ban phat hanh cua ban. Hay sif dung chimg chinay 48

Chias8 ting dung ndi b dang ky khoa ciia ban voi cdc nha cung cép API. Khoa ky ting dung khang thé truy cap duge va duge luu tr trén mot mdy chi bdo mat cua

Google
Cai dit nang cao
Tép tham chiéu ching chi MD5 \g
Phat trién K
-~ B SuhiéndiéntrongCita Tép tham chiéu chung chi SHA-1 I}
hang Play
Tréﬂa théng tin chinh trén Tép tham chiéu chiing chi SHA-256 \g
Cia hang Play
Trang théng tin tuy chinh
trén Clfa hang Play Nang cap khoa ky ing dung

Thi nghiém trén trang)
thong tin cira hang @ 20 manh mé hod khod ky (g dung hién tai cia ban dap ing hogc vuot tiéu chudn tGi thiéu
do Google Play d& xugt

Cai dt clra hang

Ban 6 thé nang cap khod ky ing dung dé chuyén ngudi dung sang khoa moi mdi nam mot fan. Tim higu thém
Dich vu dich

. B N N Yéu cau cap nhat khoa
» AA Hiéu sudt trén cira hang

G Lignkétsau

e Add code into Firebase:

B Firebase Finder App v Project settings QB

A Project Overview

a% Authentication
S Firestore Database
Storage

Messaging

Build
Release & Monitor
Analytics

Engage

5 Allproducts

Android app:

SDK setup and configuration

(=) chat_app (android)
=) com.example.chat_app

S‘ =) Finder app

=) com.polyvn.chat_app

Apple app:
(g, chat_app (ios) AppiD ®
= CINEE LG 1:32903398845:android:6 13a674bdb8e3fd1943ed4
App nickname
Finderapp "
ackage name
com.polyvn.chat_app

rificate fingerprints @ Type @

!

‘Add fingerprint

. SCREENSHOT AND DETAILED CODE OF EACH SCREEN (Source copk)
3.1, ReGISTRATION AND LOGIN

3.1.1, Registration and Login with Google

e This feature allows users to register and login to the Finder app using their Google
account.

a)

b)

Registration: When users access the app for the first time, the Finder app
requests their permission to access their Google account information (e.g:
name, profile picture). After successful authentication, the app retrieves the
user's Google account information and creates a new account in the Firebase
database. The user is then redirected to the app's home screen with the
registered account.

Login: Users who have registered with their Google accounts can log in. If they
are already logged into Google on their device, the Finder app automatically
authenticates the user's account and logs them in. If not already logged in, the
app prompts the user to authenticate their Google account again. After
successful authentication, the user is redirected to the app's home screen with
the logged-in account.

3.1.1, Registration and Login with Phone Number

e This feature allows users to register and log in to the Finder app using their mobile
phone numbers..

c) Registration: When users access the app for the first time, the Finder app
sends a verification code via SMS to the provided phone number. Users enter
the verification code from the message to complete the account registration
process. After successfully entering the verification code, the user's account is
created and stored in the Firebase database. The user is then redirected to
the app's home screen with the registered account.

d) Login: Users who have registered with their phone numbers can log in. The
user enters the registered mobile phone number into the app. The Finder app

https://github.com/lonbgddd/chat_app

sends a verification code via SMS to the provided phone number. Users enter
the verification code from the message to log in to their account. After

successfully entering the verification code, the user is redirected to the app's
home screen with the logged-in account.

o This is the screenshots:

When you click Sign in, you agree to our
Terms. Learn more about how we handle
your data in our Privacy Policy.

a

Chon tai khoan
dé tiép tuc sir dung Finder - Match
and Chat
=% Tailuc Anh

% taibeoass@gmail.com

Q; LycAnh TaiPH26 495
tailaph26495@fptedun

~% LucAnhTai
W lucanhtai1504@gmail.com

&+ Thém tai khoén khac

22:04 TR n®D

My phone number is

v EN e 0931265994

When you click Continue, Finder will send you
a message containing a verification code.
standard messaging and data rates may
apply. The verified phone number will be used
for logging in. Learn what happens when your

phone number changes.
Quéng céo thir nghiém
Nice job! This is a 320x50 test ad. ci

2204 (AT)

e
My code is

0931265994 Resend the code 56

Nice job! This is a 468x60 testad.)

G signin with Google
@ signin with Phone number

Test Ad
Thisis a 468x60 testad. €}

D& 1iép tuc, Google s& chia sé tén, dia chi
email va ar) (i i Fir

ind Chat. True khi st dung tng
m lai chinh séch béo mat
h vu ctia tng dung.

Nice job!

e Related Code Sections (Referenced in each heading's link):

a) Registration and Login Screen: This screen displays functions to start using the
App, including the following sections:

- WithGoogle:

+, Choose to register and use the app with Google

+, Provider man with |

- With Phone number

+, Phone number registration screen

https://github.com/lonbgddd/chat_app/blob/main/lib/Auth/login_home_screen.dart
https://github.com/lonbgddd/chat_app/blob/main/lib/config/changedNotify/login_google.dart
https://github.com/lonbgddd/chat_app/blob/main/lib/Auth/login_phone_screen.dart

Widget build(Buil
inal appLocal
final adProvider = P (context,listen: fal
adProvider.loadBannerAd(context);

>(builder: (context, myProvider, _)

extendBo I
backgroundColor:
appBar
elevation:
backgroundColor:
leading: I

)s
onPressed: () {
context.pop(
15
Y
)s
bottomNavigationBar
elevati
color:
chil :applocal. textNextButton,
transparent v grey,

it myProvider.onSubmitPhone(context)

style:
fontWeight

symmetric(horizontal: 15),

decoration:

counterText:

initialCountryCode: y
onCountryChanged: (phone} {
myProvider.selectedCountry (' +${phone.fullCountry:

controller: context
~watch< one
.textEditingController

, 128, 100,),
lack, fontWeight: FontWeight.w5@@,fontSize: 18),
coration: T

contentPadding: Edgelnsets.symmetric(horizontal: 18)
hintText: applocal.hintTextPhone,
hintStyle: T (.grey,fontSize: 14
enabledBorder erlin) der(

borderSide: { or: ors.grey,width: 1.5),
)
focusedBor

borderSide: 3 0 H o} 64, 128, 100,),width: 2),
)

The code snippet above represents the login or registration interface based on the phone
number, with an input field for the phone number and a country selection. Users can enter their
phone number and choose the country before pressing the "Continue" button to proceed with

login or registration. The Consumer from the Provider package is used to listen to changes and
rebuild related child widgets accordingly.

+, The Code Verification Screen:

https://github.com/lonbgddd/chat_app/blob/main/lib/Auth/screen/verify_OTP.dart

t build(Buil ntext context) {
applocal =
adProvider C der>(context,listen:
adProvider.loadBannerAd(context);

Scaffold(
extendBody: 0
backgroundColor:
appBar:)

elevation: @,

backgroundColor

onPressed: () {
context.pop();
I
)
),
bottomNavigationBar
elevation: @,

child: n V /(text:applocal.textNextButton
i inp i >(context, 1i).smsCode.length
s.grey,
onPressed: ()
it Provi] h d >(context, listen:).verify(context);

ilds
child: Column(
crossAxisAlignment: gnment.start,
children:

padding: d .symmetric(horizontal: 15),
child:
crossAxisAlignment:
children: [
Text(appLocal.titleEnteroTP,
style: T (
fontWeight: Fo
fontSize: 35

height:

Provider.of¢ inPhoneProvider>(context, listen
EditingController.text
style: T
fontWeight:
fontSize: 2@

child: context
.watch r>()
.resend ? resend(context) : countDown(context)

appContext: context,
cursorColor: 2 64, 128, 1ee,),
length: 6,
keyboardType:
inputFormatter ext u digitsOnly],
pinTheme: PinTheme(

borderWidth: 2

shape: P underline,

borderRadius .circular(1e),

inactiveColor: s.grey,

selectedColor: : .fromRGBO(234, 64, 128, 1@0,),
)s
onChanged: (value) {

r>(context, listen:

- The above code snippet is the OTP verification input interface for the login or registration process
in the app. It allows users to enter the OTP code and verify it to complete the login or registration
process.

+, Provider manages usage with Phone Number

der ifier {
auth = Fir u instance;
ng textEditingController =
isTextFieldEmpty =
isErrorText
isErrorSms
country
codeVerify
~ing smsCode
resend =

onTextFieldChanged() {
isTextFieldEmpty = textEditingController.text.isEmpty;
notifylListeners();

onTextFieldError() {
isErrorText = !isErrorText;
notifylListeners();

¥

selectedCountry(i newValue) {
country = newValue;
notifylListeners();

inputCode(String newvalue) {
smsCode = newValue;
notifyListeners();

value) {
resend
notifylListeners();
}
smsError (b 1 wvalue){
isErrorsms value;
notifyListeners();

onSubmitPhone (Bui context)

lidz s.isValidPhoneNumber (textEditingController.text)){
onTextFieldError();
isTextFieldEmpty = R
textEditingController.clear();

instance.verifyPhoneNumber (

phoneNumber country textEditingController.text
verificationCompleted: (P neA hCr n 1 credential) {},
verificationFailed: (Fireba

print(’ e.message}");
3,
codeSent: verificationId, int? resendToken) {

codeVerify = wverificationlId;

context.go(" /1¢ / nP ~ify_otp');
3,

codeAutoRetrievalTimeout: (String verificationId) {});

> verify(Builc ntext context)

\uthCredential credential = £ hp .credential(
verificationId: codeVerify,
smsCode: smsCode,

ential userCredential E it auth.signInWithCredential(credential);

String? uid uid;
b 1 check ait D L) .checkUserExists(uid);
if(check
textEditingController.text = "";
saveldUserSharedPreference(uid!
context.go("
}else{
textEditingController.text
context.go("

n (e) {
smsError(¥
print('Ldi xac minh

https://github.com/lonbgddd/chat_app/blob/main/lib/config/changedNotify/login_phone.dart

3.2, CoNFIRMATION AND USER INFORMATION REGISTRATION:

e This feature allows users to register basic information about themselves to be displayed
when using the App. After completing the required steps, the user's database is created,
and they are directed to the main screen of the app to start using it.

® This is the screenshots

22:52 © il 5%

© W vmD

&«

What is your name ?

)

2

Welcome to Finder

Please adhere to these general rules.

levanal

This will be the content displayed on your profile.
Please enter your actual name.

Be yourself.

Ensure your photos, age, and biography are all

Prioritize safety.

Avoid hastily sharing personal information.Practice
safe dating,

Behave respectfully.

Respect others and treat them the way you want to
be treated.

Stay proactive.

Always report any inappropriate behavior.

D GEETED

your date of birth

=)

2206 [CECIREY 5 22:06 AL L 2206 O Wl
« & «
What is your date of What is your gender ? Who are you interested in
birth ? seeing ?
Mal
1 5/0 4/200 3 (e))
Male
(Female)
Your profile will display your age , not

(Other

aYaYe

Everybody)

22:07 TR o@D 22:06 [oRCTIEILT) 22:07 R eED 22:07 B =@
<« ¢« skip & Skip «
Now | am looking for... What is your sexual What are your interests ? Add re;:fent photos of
yourse

Share your purpose for finding ‘The one’!

Selectupto 3

.
29
@ - b
Long-term Anything is N
tover dating possible Straight
Gay
: o)
& - Lesbian
Casual
relationship e friends Not sure yet
Bisexual
Ansexual
Demissexual
Pansexual

orientation ?

You have your own unique interests. Let
others know!

— ——
('shopping) ("Football Table tenms

N
Cars)

{ Art exhlb\t\uns \ \ T\kTok

\ Parties \ ((Cosp\ay

\ Modern musm Classical music

Self care)

((Fashion) (Motorcycles))

((Phu(ography)
p E——
(Bubbetea) ((sneakers)

o ™ [~ N\
{ i 1
7 ((oniine garming) ((Wine and beer)

- 7 N
((oyeling) (Karaoke) (Romantic movies)

Continue 5/5

o Related code items.(In the link attached to each title) :

Upload 2 photos to start finding like-minded
individuals. Adding more photos will make
your profile stand out to others.

The user verification screen after completing registration will display various pages for
entering basic information such as name, date of birth, gender, the person they want to
meet, sexual orientation, interests, purposes, and uploaded photos...

s ConfirmProfile extends Statel idget {
t ConfirmProfile({Key? key}) : er(key: key);
@override
Widget build(BuildContext context) {
pageProvider = Provider.of<PageDataConfirmProfileProvider>(context);
return WillPopScope(
onWillPop: () async {
if (pageProvider.currentPageIndex > @) {
pageProvider.previousPage();
return false;
} else {
pageProvider.showCustomDialog(context);
return true;
}
|5
child: Scaffold(
body: Container(
padding: EdgeInsets.only(top: MediaQuery.of(context).padding.top),

height: 1e,
child: LinearPrc ndicator(
valueColor: A StoppedAnimation<Color>(Color.fromRGBO(234, 64, 128, 1)),
backgroundColor: Colors.grey.shade20e,
value: (pageProvider.currentPageIndex + 1) / 9,
)s
)s
Expanded(
child: IndexedStack(
index: pageProvider.currentPagelIndex,
children: [
RulesPageSection(),
AddName eSection(),
AddBirthda Ssection(),
AddGender on(),
AddRequestToSt geSection(),
AddSexualOrientationListPageSection(),
AddDatingPur ction(),
AddInte PageSection(),
AddPhotolListPageSection(),

The "ConfirmProfile" screen utilizes an "IndexedStack" to sequentially display each widget for
user information input on the screen, managed by the "currentPagelndex" variable of
"PageDataConfirmProfileProvider."

The information entered into the input widgets is managed through the state provided by
PageDataConfirmProfileProvider. The input data will be stored in variables within the provider.
The input fields (TextFields) will be controlled using controllers created in the provider. Once all
the information is entered into the widgets, including the widget for adding an image, when the
user presses the confirmation button, the data will be saved through a function within the
PageDataConfirmProfileProvider provider.

Future< > confirmUser(BuildContext context) async
if(FirebaseApi.enablePermission){
await save(context);
context.go('/home");
}else{
context.goNamed('location-screen’);

}

}

Future< > save(BuildContext context) async {
islLoading = 3
print('S6 lugng anh: ${photosList.length}');

signUp = context.read<CallDataProvider>();

signUp.confirmProfile(

nameController.text,

selectedGender,

selectedRequestToShow,

birthday,

newInterestslList,

newDatingPurpose!,

photoslList,

newSexualOrientationList,

['21.07302', '105.7703283'])

.whenComplete(() => isloading =

If the user grants permission to access their location, they will be redirected to the home
screen; otherwise, they will be redirected to the LocationScreen to input their address.

To view the detailed code, please access the following links.

-, Main screen and confirm information pages

-, Constructor Widgets

-, Verification Management Provider

3.3, MaAIN ScREEN OF THE APPLICATION

e This function includes a user interface featuring cards of other users, along with basic
information such as their name, interests, and a list of display pictures. Users can swipe to
send a "Match" to the other person, view detailed profiles of others, and highlight their
own profile to increase compatibility and make friends. Additionally, the page also includes
sections such as a notification screen to display updates on new matches, incoming
messages, and app-related notifications. There is also a filtering screen to sort users' data
based on location, age, and gender to cater to users' specific preferences.

e Screenshots

https://github.com/lonbgddd/chat_app/tree/main/lib/Auth/screen/pageConfirm
https://github.com/lonbgddd/chat_app/tree/main/lib/Auth/widget
https://github.com/lonbgddd/chat_app/blob/main/lib/config/changedNotify/confirm_profile_watch.dart

a9

Search Settings Done

Priority distance 2km

Show only people within this range

Show me Female >

Preferred age 18-22

Show only people within this range

UL C 0 céo ihir nghicm JEE—

Nice job! This is a 468x60 testad. ()

PREMIUM SEARCH Finder Gold™

The criteria options help display people who match
your preferences, but they won't limit you from seeing
others - you can still match with people outside of your
criteria choices.

Minimum Number of Photos 1

Do you have a bio?

Introduc X el

ig: dahlieih

< Notification

Stand out
Promote your profile to increase compatibility I} hivang sentyou s messageko
with potential matches! e
(AT (_Feedback)
BOOST FOR 20 MINUTES You've matched with someone.

A8 Go ahead and start getting to
300.000 d/rate ﬁ know each other!

Quéng cdo thir nghiém

Nice job! This is a 320x50 test ad. c_

e Related code items.(In the link attached to each title) :
a) The screen displays user cards for sending Match invitations, notifications when a
Match is successful, viewing detailed user profiles, and highlighting.

-, BinderPage main screen

The main content of the BinderPage screen is a FutureBuilder, which renders the interface
based on the value of the future obtained from the allUserBinder function of the
BinderWatch provider. The parameters passed to the allUserBinder function are the filtering
conditions, which are also received from the BinderWatch provider.

Specifically, the BinderPage screen will display data related to user binders (such as
information or a list) based on the filtering conditions received from the BinderWatch
provider. These filtering conditions will be processed on the filter settings screen.

https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_page/binder_page.dart

FutureBuilder(
future: context
.read<BinderiWatch>()
.allUserBinder(context, gender, age, isInDistanceRange, kilometres),
builder: (context, snapshot) => snapshot.hasData
? Container(
padding: EdgeInsets.all(1@),
decoration: BoxDecoration(
boxShadow: [
BoxShadow(
color: Colors.grey.shade200,
spreadRadius: 3,
blurRadius: 3,
offset: Offset(0, 3),
)
1,
)
child: Stack(
alignment: Alignment.center,
children: context
.watch<BinderWatch>()
.listcard
.reversed
.map((e) => ProfileCard(
targetUser: e,
isDetail: () => context.goNamed(
"home-detail-others”,
quer‘yPar‘ameter‘s: {
‘uid': e.uid.toString(),
1
onHighlight: () => context.goNamed(
"home-highlight-page"',
queryParameters: {
‘currentUserID': context
.read<ProfileWatch>()
.currentUser
.uid
.toString(),
‘targetUserID': e.uid.toString(),
1
isFront:
context.watch<BinderWatch>().listCard.first ==
e,
)
.toList()),

)
: Center(
child: LoadingAnimationWidget.dotsTriangle(
color: Color.fromRGBO(234, 64, 128,
size: 70,

)s

allUserBinder function of provider BinderWatch:

Future<List<UserModel>> allUserBinder(BuildContext context, int gender,
List<double> age, bool isInDistanceRange, double kilometres) async {
try {

final uid =
await HelpersFunctions().getUserIdUserSharedPreference() as String;
final List<UserModel> users;
if (isInDistanceRange) {

users = await DatabaseMethods()

.getUserHasFilterKm(uid, gender, [age.first, age.last], kilometres);

} else {

users = await DatabaseMethods()

.getUserHasFilter(uid, gender, [age.first, age.last]);

}

_listCard = users;

shuffleUsers(_listCard);

await Provider.of<HighlightUserNotify>(context, listen:
.sortUsers(_listCard);

return _listCard;
catch (e) {
throw Exception(e);

The function takes parameters as filter conditions and a query to retrieve a list of users who
meet the filtering conditions through the getUserHasFilterKm or getUserHasFilter function
from the DatabaseMethods class. After obtaining the list of users, it uses the shuffleUsers
function to shuffle the positions of the users.

The obtained list of users will be displayed on the BinderPage screen as a stack of ProfileCard
widgets. The ProfileCard widget displays user information in the form of a card. If it's the first
card, it returns the buildCard function; otherwise, it returns the cardProfile function.
Additionally, there are functional buttons created from the buildFloatingButton function:

.isDetail, .isFront, .onHighlight}))

el? targetUser;
1? isFront;
? isDetail;
? onHighlight;

@override
build(BuildContext context) {
children: [
% . expand(
: isFront! ? buildCard(context) : cardProfile(context))

bottom: @,

left: @,

right: @,

child: Container
padding:
decoration: Decoration(
child:

mainAxisAlignment: MainAxisAlignment.spaceAround,
children: [

buildFloatingButton

buildFloatingButton

buildFloatingButton

buildFloatingButton

buildFloatingButton

The function buildCard contains a GestureDetector widget and a LayoutBuilder to handle
swipe events when users swipe. When a user swipes, it will call functions from the
BinderWatch provider to handle the events.

LN

Widget buildCard(context) => GestureDetector(
onPanStart: (details) {
provider = Provider.of<BinderWatch>(context, listen:
provider.startPosition(details);
})
onPanUpdate: (details) {
provider = Provider.of<BinderWatch>(context, listen:
provider.updatePosition(details);
}s
onPanEnd: (details) {
provider = Provider.of<BinderWatch>(context, listen:
provider.endPosition(AppLocalizations.of(context)
.notificationScreenTitle2, ApplLocalizations.of(context)
.notificationScreenContent);
})
child: LayoutBuilder(builder: (context, constraints) {
provider = Provider.of<BinderWatch>(context);
position = provider.position;
milliseconds = provider.isDragging ? @ : 400;

center = constraints.smallest.center(Offset.zero);
angle = provider.angle * pi / 180;
rotatedMatrix = Matrix4.identity()
..translate(center.dx, center.dy)
..rotatez(angle)
..translate(-center.dx, -center.dy);

return AnimatedContainer(
curve: Curves.easeInOut,
transform: rotatedMatrix..translate(position.dx, position.dy),
duration: Duration(milliseconds: milliseconds),
child: Stack(
children: [
cardProfile(context),
buildStamps(context),
1,
)s
)
1,
)s

The function cardProfile displays the user information of the card.:

cardProfile(BuildContext context) => Stack(
children: [
ClipRRect(
borderRadius: BorderRadius.circular(10),
child: Stack(
children: [

PhotoGallery(
targetUser: targetUser!,

photoList: targetUser!.photolList,

isDetail: isDetail,

scrollPhysics: const NeverScrollableScrollPhysics(),
isShowInfo: true,

The event handling functions in the provider will process based on the direction of the user's
swipe. If the swipe is to the left, the getStatus function will return StatusCard.dislike, and if it's
to the right, it will return StatusCard.like. After the swipe, it will trigger the endPosition
function, which will check the status returned by the getStatus function. If it's a like, it will call
the like function; if it's a dislike, it will call the dislike function.

startPosition(D tartDetails details) {
_isDragging = 3
notifylListeners();

¥

updatePosition(Draz
_offset += details.delta;
x = _offset.dx;
_angle = 45 * x / _size,width;
notifylListeners();
}

endPosition
_isDragging =
notifylListeners();
status = getStatus(focus:

vitch (status) {
dike:
like(title, body);

efaul
resetPosition();

resetPosition()
_isDragging
_offset = Off
_angle = @;
notifylListeners();
}
rd? getStatus({b
x = _offset.dx;

if (focus) {
delta = 1@8;
if (x >= delta) {
g rn StatusCard.like;
if (x -delta) {
n StatusCard.dislike;

if (x >= delta
turn tu rd.like;
if (x <= -delta) {

like(1g title, Str body) {
_angle = 28@;
_offset (2 * _size.width, ©);
addFollow(_listCard.first.uid, _listCard.first.token, title, body);
_nextCard();

notifylListeners();

}

disLike()
_angle = -20;
_offset 3 t(2 * _size.width, ©);
_nextCard();

notifylListeners();

}

Future _nextCard() nc {
it Future.delayed(Duration(milliseconds: 20@));
if (tempList.isEmpty) {
templist = List.from(_listCard);
tempList.shuffle();
¥
tempList.removeAt(9);
_listCard = List.from(tempList);

resetPosition();

}

-, Highlight Page Screen : Push your profile to the top of someone else's.

https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_page/highlight_page.dart

wid,

get build(BuildContext context) {
inal EdgeInsets padding
1 adProvider = P
inal appLocal =

MediaQuery.of (context).padding;
ider.of<AdMobProviders(context);
izations.of(context);

olors.white,
body: Container(
padding: Edgelnsets.only(top: padding.top),
decoration: BoxDecoration(eolor: Colors.white),
child: Column(
mainAxisAlignment: MainAxisAlignment.start,
crossAxisAlignment: CrossAxisAlignment.start,
children: [
Padding(
padding: gelnsets.only(top: 16.8, le
child: InkWell
tor.pop(context),
icture.asset(
sets.iconDelete,
width: 20,
colorFilter: ColorfFilter.mode(Colors.grey, BlendMode.srcln),

)
Container(
alignment: Alignment.center,
padding: EdgeInsets.symmetric(horizontal: 25),
child: Column(
crossAxisAlignment: CrossAxisAlig
children: [

Text(
applocal.highlightPageTitle,
style: TextStyle(

calor ors.black,
fontSize: 23,
fontWeight: Fontheight.w7@8,

ment.center,

)i

textAlign: TextAlign.center,
)

st SizedBox(

height: 1@,

),

Text(
applocal.highlightPageContent,
style: TextStyle(

olors.black,
fontSize: 15,
),
textAlign: TextAlign.center,
),
1.

color:

),
)s
Expanded(
flex: 3,
child: PageView.builder(
controller: PageController(viewportFraction: ©.76),
onPageChanged: (index) {
setState(() {
_selectedIndex = index;
I H
L
scrollbirection: Axis.horizontal,
itemCount: HelpersUserAndValidators.highlightPricelist.length,
itemBuilder: (context, index) {
_scale = _selectedIndex == index ? 1.8 : 0.8;

return TweenAnimationBuilder(
duration: t Duration(milliseconds: 358),

tueen: Tween(begin: _scale, end: _scale),

curve: Curves.ease,

child: buildTtemPageView(

HelpersUserAndValidators.highlightAppbarTitleList(context)[index].toUppercase(),

HelpersUserAndValidators.highlightTitleTimelist(context)[index].toUpperCase(),
Helpers Andvalidators.highlightPricelist[index],
HelpersUserandvalidators.highlightTimelist[index]),

builder: (context, value, child) {
return Transform.scale(
scale: value,
child: child,

)
Row(
crossAxisAlignment: CrossAxisAlignment.center,
mainAxisAlignment: MainAxisAlignment.center,
children: [
...List.generate(
erAndValidators.highlightPricelist.length,
Indicator(

: _selectedIndex == index ?

Expanded(flex: 4, child: Container(}),

adProvider.isloaded & adProvider.bannerAd
Align(

alignment: Alignment.bottomCenter,

child: sizedBox(
width: adProvider.bannerAd?.size.width.toDouble(),
height: adProvider.bannerAd?.size.height.toDouble(),
child: AdwWidget(ad: adProvider.bannerAd!),

),

class HighlightUserNotify extends ChangeNotifier {

bool _highlightedUser = false;
late Timer _countdownTimer;

String idHighlighteddelete = '';
bool get highlightedUser = _highlightedUser;

set highlightedUser(bool value) {
_highlightedUser = value;

¥

Goverride

void dispose() {

super.dispose();

Timer get countdownTimer = _countdownTimer;
set countdownTimer (Timer value) {

_countdownTimer = value;

void starthighlight(UserModel currentUser, UserModel targetUser, int time) {
activateHighlight(currentUser, tar

idHighlightedDelete = currentUser.uid;

print (*1d x6a: SidHighlightedDelete"

_highlightedUser = currentuser.ishighlighted;
_countdownTimer = Tiner(Duration(minutes: time), () async {
await resetHighlight(currentUser);

cancelHighlight();

i
¥
void cancelkighlight() {

_highlighteduser = false;

_countdownTimer .cance1();

notifylisteners();

id> activateHighl

4 Usertodel targetuser) async {
final currentTime = DatcTime.non();
currentUser.isHighlighted = true;
currentUser.highlightTine = currentTime. toString();
awsit FirebaseFirestore.instance.collection(users'). doc(currentuser. uid) .update({
‘ishighlighted': true,

“highlightTine': currentTime.toString(),
i

anait
FirebaseFirestore.instance.collection(‘users').doc(targetUser.uid). collection(*highlights') .doc(currentUser.uid)
*highlightTime': currentTime.toString(),

i

notifylisteners();

]

Lset({

List<Userodel> sortUsers(List<Usertodel> users) {
users.sort((a, b) {
if (a.ishighlighted 55 1b.isHighlighted) {
return -1;
(1a.isHighlighted 55 b.isHighlighted) {
return 1;
} else if (a.isHighlighted 5 b.isHighlighted) {

return b.hi c Tol

}else £
return 0;
3
i
return users;

¥

Future<void> resetHighlight(Useriodel currentUser) async {

if (currentUser.i

6 currentUser.hi ime - null) {

currentUser. isHighlighted = fa
currentUser.highlightTime = '';

await FirebaseFirestore.instance.collection(users').doc(currentUser.uid).update({
*ishighlighted': false,
highlightTine': '
i

await FirebaseFirestore.instance. collection(users').doc(currentUser.uid).

ection('highlights').doc (idHighlightedDelete) .delete();
notifyListeners();

The code snippet above displays a list of popular packages over time and allows users to view
and select packages for use in an application. It also includes a Provider to store and display
the popular packages.

-, Profile Screen

s DetailProfileOthersScreen extends StatefulWidget {
nal String? wid;
nst DetailProfileCthersScreen({Key? key, this.uid}) : super(key: key);
{@override
State<DetailProfileOthersScreeny> createState() => DetailProfileOthersScreenState();

s _DetailProfileOthersScreenState ext
int tappedButtonIndex = -1;
bool showFulllist = false;
Future<void>» handleTap(int buttonIndex,Function onTap) async {
setState(() {
tappedButtonIndex = buttonIndex;
¥
await Future.delayed(const Duration(milliseconds: 188));
setState(() {
tappedButtonIndex = -1;

{@override
void initState() {
super.initState();
Provider.of<ProfileWatch>(context, listen: false).getUser();
{@override
Widget build(BuildContext context) f{
final applocal = Applocalizations.of(context);
final adProvider = Provider.of<AdMobProvider>(context,listen: false
adProvider.loadBannerAd(context);
final Edgelnsets padding = MediaQuery.of(context).padding;
return Scaffold
extendBody: true,
body: FutureBuilder<UserModel>(
future: context.read<ProfileWatch>().getDetailOthers(widget.uid),
builder: (context, snapshot) {

»

return snapshot.hasData
? SingleChildScrollView
child: Padding(// Padding
SingleChildsS 11Vie
Container();
1, FutureBuilder

bottomNavigationBar: BottomAppBar(// BottomAppBar

More details about the code, please see the links.

https://github.com/lonbgddd/chat_app/blob/main/lib/home/profile/detail_profile_others.dart

-, Children Widgets

-, Providers and Data Connections management.

b) The screen displays user filtering settings based on criteria such as location, gender,
and age.

s DiscoverySetting extends StatelessWidget {
t DiscoverySetting({Key? key}) : super(key: key);

@override

Widget build(BuildContext context) {
final provider = context.read<BinderWatch>();
final appLocal = ApplLocalizations.of(context);

final adProvider = Provider.of<AdMobProvider>(context,listen: false);
adProvider.loadBannerAd(context);
return Scaffold(
appBar: AppBar(
backgroundColor: Colors.white,
elevation: 0.4,
title: Center(
child: Text(
appLocal.settingPageSearchText,
style: TextStyle(color: Colors.black),
)J
)
actions: [
TextButton(
onPressed: () async {
await provider.updateRequestToShow();
context.pop(“refresh");
1,
child: Text(
applLocal.discoverySettingConfirmText,
style: TextStyle(color: Colors.blue[700]),
)J
)s
]J
)s
backgroundColor: Colors.grey[200],
body: SingleChildScrollView(
padding: EdgeInsets.only(bottom:2e),
child: Column(
children: [
BodyDiscoverySetting(isGlobal: false),

(adProvider.islLoaded && adProvider.bannerAd !=
Container(
width: MediaQuery.of(context).size.width,
margin: EdgelInsets.symmetric(vertical: 18),
child: SizedBox(
width: adProvider.bannerAd?.size.width.toDouble(),
height: adProvider.bannerAd?.size.height.toDouble(),
child: AdWidget(ad: adProvider.bannerAd!),
))
) : SizedBox.shrink(),
BodyHighSearch()

-, The main filtering screen

https://github.com/lonbgddd/chat_app/tree/main/lib/home/binder_page/components
https://github.com/lonbgddd/chat_app/tree/main/lib/config
https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_page/components/discovery_setting.dart

-, Providers and Data Connections management.

c) The notification screen is designed to display a list of push notifications whenever
there is a new update or change.

Notification main screen and widgets

https://github.com/lonbgddd/chat_app/tree/main/lib/config
https://github.com/lonbgddd/chat_app/tree/main/lib/home/notification

NotificationScreen extends StatefulWidget {
onst NotificationScreen({super.key});

@override
State<NotificationScreen> createState() => _NotificationScreensState();

ass _NotificationScreenState extends State<NotificationScreen> {
@override

ate() {

per.initState();
context.read<NotificationWatch>().getNotification();

}

@override
t build(BuildContext context) {
fold(
AppBar(
elevation: 1,
backgroundColor: Colors.white,
title: Text(
AppLocalizations.of(context).notificationScreenTitle,
style: TextStyle(
col Colors.black,
fontWeight: FontWeight.bold,
fontSize: 22),
)s
leading: IconButton(
onPressed: () => context.pop(),
icon: const Icon(Icons.arrow_back_outlined, color: Colors.red,)),
),
backgroundColor: Colors.white,
primary: true,
body: Fu Builder(
future: context.watch<NotificationWatch>().getNotification(),
builder: (context, snapshot) => snapshot.hasData
? snapshot.connectionState == ConnectionState.waiting
? Listvi builder(
physics: con ScrollPhysics(),
shrinkWrap: true,
reverse: ue,
itemCount: context
.watch<NotificationwWatch>()
.listNotification
.length,
itemBuilder: (context, index) {
return ItemNotification(
title: snapshot.data[index]['type'],
mess: snapshot.data[index][‘mess'],
imageUrl: snapshot.data[index]['avatar'],
idUser: snapshot.data[index][‘uid'],
status: snapshot.data[index][status'],
time: snapshot.data[index]['time’],
chatRoomId: snapshot.data[index]['c mId'],
name: snapshot.data[index]['n B

: Ce (
child: CircularPr ssIndicator(),

: Center(
child: CircularProgressIndicator(),

)s

-, Notification main screen and widgets

-, Providers and Data Connections management.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/notification
https://github.com/lonbgddd/chat_app/tree/main/lib/config

3.4, MESSAGES SCREEN, WHO LIKE YOU

e This feature includes the first interface which is a list of users when both parties have
matched each other. Below that, there is a message list where users can exchange
messages, send text, images, or emojis. The chat interface allows users to have
conversations with each other.

e The second interface displays a list of people who have sent Match requests to the user.
The user can choose to accept or decline these requests. If they accept, they can start
sending messages to each other as usual.

® Screenshots

& Finder <« @ htrang &) Finder

This is a list of people
”
a s

who have liked you and your matches
Quéng céo thir nghiém!

Nice job! This is a 468x60 testad. (C}) .

@ htrang
\ 20E

htrang 22

&
»

L +] Type something o m >‘

e Related code items.(In the link attached to each title) :
a) The screen displaying "Who Likes You" and the functionalities to accept or reject.
- Who like you main screen
- Providers and Data Connections management.
- Below is the general layout of the "Who Like You" screen.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/group_chat
https://github.com/lonbgddd/chat_app/tree/main/lib/config

WholikePage StatefulWidget {
WholikePage({Key? key}) : (key: key);

[@override
State<WholikePage> createState() => _WholikePageState();

_WholLikePageState State<WholLikePage> (|
[@override
initState() {

.initState();

[@override
Widget build(BuildContext context) {
applLocal = Applocalizations.of(context);

return Scaffold
appBar: AppBar(AppBar
backgroundColor: B Colors.white,
body: SingleChildScrollView(
child: Column Column

):

Inside the Column widget, there are several widgets that configure the interface and widgets
that contain the main content:

FutureBuilder(
future: context.watch<FollowNotify>().userFollowYou(),
builder: (context, AsyncSnapshot<List<UserModel>> snapshot) {
if (snapshot.data == null) {
return Container();
} else {
return snapshot.hasData
? GridView.builder(
itemCount: snapshot.data!.length,
shrinkWrap: true,
addAutomaticKeepAlives: false,
physics: const ScrollPhysics(),
padding: const EdgeInsets.all(10),
gridDelegate:
onst SliverGridDelegateWithFixedCrossAxisCount(
crossAxisCount: 2,
mainAxisSpacing: 10,
crossAxisSpacing: 10,
mainAxisExtent: 260),
itemBuilder: (context, index) {
UserModel user = snapshot.data![index];
return LikedUserCard(
user: user,
)s
1,

const Center(
child: CircularProgressIndicator(),

The code uses FutureBuilder to handle a future obtained from the userFollowYou function of
the FollowNotify provider. Based on the result of the future, it displays a GridView containing
a list of LikedUserCards or a circular progress indicator (CircularProgressindicator) while
loading the data.

Provider FollowNotify:

FollowNotify e> is ChangeNotifier {
Future<List<UserModel>> userFollowYou() async {
try {
String uid =
await HelpersFunctions().getUserIdUserSharedPreference() as String;
List<UserModel> userFollow = await DatabaseMethods().getUserFollow(uid);

notifyListeners();

return userFollow;
} catch (e) {

throw Exception(e);

Widget LikedUserCard :

Statelessh
rd(-key,

UserModel? user;

@override
{
n Ge
onTap: () {
context
.goNamed('home-detail-ot ', queryParameters: {'uid’: user!.uid});
b
child:
decoration:
borderRadius dius.circular(15),
)»
child: s (children:

decoration: BoxDecoration(
Container(
decoration: BoxDecoration(//
)

FutureB

.checkMatche
builder

return snapshot.hasData
? Positioned
: Positioned

The code utilizes GestureDetector and FutureBuilder to handle futures and display user
information in the form of a card with an image and options to send messages or perform
other actions. Based on the future obtained from the checkMatched function of the

LikeUserCardProvider provider, it checks for matches to determine which functional buttons
should be displayed. When tapping on a LikedUserCard item, it navigates to another user's
profile information (DetailProfileOthersScreen) using the context.goNamed method.

Provider LikeUserCardProvider:

s LikedUserCardProvider extends ChangeNotifier {
Future<ChatRoom?> checkMatched(String otherUid) async {
try {
final uid =
ait HelpersFunctions().getUserIdUserSharedPreference() as Str
firstCheckString
t DatabaseM ().checkFollow(uid, otherUid);
if (firstCheckString low") {
ChatRoom? chatRoom = ait DatabaseMethods().getChatRoom(otheruid);
notifylListeners();
return chatRoom;
}
return null;
} catch (e) {
throw Exception(e);
¥
}

Future addFollow(String followId) async {
try {
final uid =
await HelpersFunctions().getUserIdUserSharedPreference() as String;
await DatabaseMethods().addFollow(uid, followId);
String check = await DatabaseMethods().checkFollow(uid, followId);
DateTime currentTime = await NTP.now();
String time = currentTime.toString();
if (check ollow") {
List<String> users = [uid, followId];
String chatRoomId = getChatRoomId(uid, followId);
List<dynamic> userTimes = [UserTime(uid: uid, time: time).toJson(),
UserTime(uid: followId, time: time).toJson()];
Map<String, dynamic> chatRoom = {
': users,
: chatRoomId,
: userTimes,

WChatRoom": []

t DatabaseMethods().addChatRoom(chatRoom, chatRoomId);
notifylListeners();
}
} catch (e) {
xception(e);

Future removeFollow(String followId) async {
try {
inal uid =
await HelpersFunctions().getUserIdUserSharedPreference() as String;
await Databa ethods().removeFollow(uid, followId);

} catch (e) {
throw Exception(e);
}
}

getChatRoomId(String a, String b) {
if (a.substring(@, 1).codeUnitAt(@) > b.substring(®, 1).codeUnitAt(@)) {
return "${b}_%$a";
} else {
return "${a}_$b";

The functions "addFollow" and "removeFollow" are used for feature buttons when there is
no match yet. The function "getChatRoomId" is used to retrieve the chat room ID for use
when pressing feature buttons after a match has been made.

b) The main messaging screen and the chat screen for conversing with each other.

-, Main Messages Screen, Message details

- Below is the general layout of the conversation list screen:

MyMessageScreen StatelessWidget {
MyMessageScreen({ .key});

Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
backgroundColor: Colors.transparent,
elevation: O,
title: Row(
children: [
SvgPicture.asset(
AppAssets.iconTinder,
width: 30,
height: 3@,
fit: BoxFit.cover,
)J
SizedBox(
width: 5,
) I
Text(
"Finder",
style: TextStyle(
fontFamily: 'Grandista“,
fontSize: 24,
color: Color.fromRGBO(223, 54, 64,
)J
)s
]J
)s
actions: [
IconButton(
onPressed: () {1},
icon: Image.asset(
AppAssets.iconShield,
color: Colors.grey,
width: 25,
)s
)J
1,
)
body: _buildBody(context),
);

https://github.com/lonbgddd/chat_app/tree/main/lib/home/group_chat

_buildBody(BuildContext context) {
final adProvider = Provider.of<AdMobProvider>(context,listen: false);
adProvider.loadBannerAd(context);
return BlocBuilder<M geBloc, tate>(
builder: (context, state) {
if (state is Cha

return t C o ild: CircularProg

return
child:
color [s.transparent,
child: umn (
crossAxisAlignment: C sAlignment.start,
children: [

Container(
margin: t Edge .only(left: 20, top: 20, bottom:
chil
App E ions.of(context) .messageScreenTitlel,
style: Tex
fontSiz
fontWeight: FontWeight.bold,
color: Color.fromRGBO(229, 58, 69, 160)),

height: 160,
child: _buildNewChatRoomsList(state.newChatRoomsStream,
state.currentUserld, state.user),

)s

(adProvider.isLoaded && adProvider.bannerAd != 11) ?
Container(
widt Query.of(context).size.width,
child: SizedBox(
width: adProvider.bannerAd?.size.width.toDouble(),
height: adProvider.bannerAd?.size.height.toDouble(),
child: AdWidget(ad: adProvider.bannerAd!),

5 zedBox.shrink(),
Container(
margin:
child:
JiYs]s] Mol
style: T
fontSiz
fontWeight: FontWeight.bold,
color: Color.fromRGBO(229, 58, 69, 1@0)),

ChildScrollView(
child: _buildChatRoomsList(
state.chatRoomsStream, state.currentUserId, state.user),

return st SizedBox();

This screen utilizes "BlocBuilder" to manage the state and build the interface based on
events and states provided by "MessageBloc," "MessageEvent," and "MessageState." If the
state is "ChatRoomsLoading," it will display a centered header with a
"CircularProgressindicator" to let the user know that data is being loaded. If the state is

"ChatRoomsLoaded," it will display the interface with a list of new conversations and a list of
previously joined user conversations.

- Message Bloc

_getChatRoomsUseCase;
_getMyInfoUseCase;
_getNewChatRoomsUseCase;

this._getChatRoomsUseCase,this._getMyInfoUseCase,this._getNewChatRoomsUseCase) : super(const eInitial()) {
ChatRoomsLoading());

tRooms>(getChatRooms) ;

r<void> getChatRooms(Ge ooms event, Emitter<Mes State> emit) async {
ring? uid = it HelpersFur () .getUserIdUserSharedPreference();
UserEntity user = await _getMyInfoUseCase(uid!);
emit(Ch _getChatRoomsUseCase(uid!),uid!,user,_getNewChatRoomsUseCase(uid!)));
¥
}

-Message State

3 MessageState extends Equatable {
sageState();

t props => [1;

essageInitial
MessageInitial();

ChatRoomsLoading extends MessageState {
ChatRoomsLoading();

ChatRoomsLoaded ex MessageState {
String currentUserId;
UserEntity user;
Stream<List<ChatRoomEntity>> chatRoomsStream;
Stream<List<ChatRoomEntity>> newChatRoomsStream;
ChatRoomsLoaded(thi hatRoomsStream, th currentUserId, thi .newChatRoomsStream);

- Message Event

ass MessageEvent nds Equatable {
MessageEvent();

de

List<Object> get props => [];

GetChatRooms tends MessageEvent {
nst GetChatRooms() ;

- The list of conversations is divided into two parts: the section of new conversations and the
section of previously joined user conversations.

s StatelessWidget {
.uid, re .chatRoomId});

String uid;
String chatRoomId;

build(BuildContext context) {
return BlocConsumer<ChatItemBloc, ChatItemState>(
listenWhen: (previous, current) => current is ChatItemActionState,
buildwhen: (previous, current) => current is! ChatItemActionState,
listener: (context, state) {
if (state is ChatItemClicked) {
context.goNamed('detail-me ,queryParameters: {
‘uid': uid,
mId':chatRoomId,
state.user.fullName,
avatar': state.user.avatar,
‘token': state.user.token
s
BlocProvider.of<ChatItemBloc>(context)
.add(GetChatItem(uid!, chatRoomId!));
}
b
builder: (context, state) {
if (state is ChatItemlLo
return Gesturel
onTa

child: Container(
margin: const EdgeInsets.only(left: 20),
child: Column(
children: [
newChatRoom(state.user.avatar!, AppAssets.iconStar2, state.isNewChatRoom),
Container(
margin: EdgeInsets.only(top: 5),
child: Text(
state.user.fullName ?? "",
style: const TextStyle(
fontSize: 14,
fontWeight: Fo
)

maxLines: 1,

overflow: TextOverflow.ellipsis,

SizedBox();

- The code above is used to display information about each new conversation, including the
avatar and name. It utilizes "BlocConsumer" to manage the state and build the interface
based on events and states provided by "ChatltemBloc," "ChatltemState," and
"ChatltemEvent."

- ChatltemState

abstract class ChatItemState extends Equatable {
st ChatItemState();
ride
List<Object> get props => [];

ChatItemActionState extends ChatItemState {
onst ChatItemActionState();

ChatItemInitial e nds ChatItemState {
st ChatItemInitial();

ChatItemLoaded extends ChatItemState {
final UserEntity user;
final bool isNewChatRoom;
final Stream<ChatMessageEntity> lastMessageStream;
const ChatItemLoaded(this.user, this.lastMessageStream,this.isNewChatRoom);

- ChatltemEvent

class ChatItemEvent e s Equatable {
const ChatItemEvent();

‘ride
List<Object> get props => [];

GetChatItem extends ChatItemEvent {

final String uid;
final String chatRoomId;
const GetChatItem(this.uid, this.chatRoomId);

ShowDetail extends ChatItemEvent {
final UserEntity user;
const ShowDetail(this.user);

- ChatltemBloc

ChatItemB. ds Bloc<ChatItemE t, ChatItemState> {
se _getlLastMessageUseCase;
e se _getUserInformationUserCase;
se _getNewChatRoomUseCase;
getlLastMessageUseCase, this._getUserInformationUserCase,this._getNewChatRoomUseCase)
8 onst ChatItemInitial()) {
on<GetChatItem>(getChatItem);
on<ShowD: il>(showDetail);

FutureOr<void> getChatItem(GetChatItem event, Emitter<ChatItemState> emit) async {
UserEntity user = await _getUserInformationUserCase(event.uid);
geEntity> lastMessageStream = _getlLastMessageUseCase(event.chatRoomId);
chatRoom await _getNewChatRoomUseCase(event.chatRoomId);
= chatRoom.newChatRoom;
bool isNewChatRoom = t 8
t Help unctions().getUserIdUserSharedPreference();
index in newUsers!){
if(index == myUid){
isNewChatRoom

}

emit(ChatItemLoaded(user, lastMessageStream, isNewChatRoom));

FutureOr<void> showDetail(ShowDetail event, Emitter<ChatItemState> emit) {
emit(ChatItemClicked(event.user));

tring? uid;
chatRoomId;

const MyItem ({super.key, t .uid, this.chatRoomId});

ide
Widget build(BuildCo t context) {
urn Futu uil (
future: Provider.of<ItemMessage >(context,listen: f) .getUserInformation(uid!),
builder: (Bu ntext context, apshc y c> snapshot) {
if (!snapshot.hasData) C .shrink();
ntity user = snapshot.data;
turn snapshot.hasData

r(

context.goNamed('detail-m ', queryParameters: {
': user.uid,
mId®: chatRoomId,
user.,fullName,
: user.avatar,

tainer(
.transparent,
margin: st EdgeInsets.only(left: 20, bottom: 20),
width: 70,
height: 7@,

satar(
radius: 35,
backgroundImage: (Image(user?.avatar 2? ""),
child: user?.activeStatus == “online
? Stack(children: [
c Align(
alignment: Alignment.bottomRight,
child: Ci
radius: 10,
backgroundColor:
),
),
Align(
alignment

ation(
shape: B .circle,
border: Border.all(
color: .white,
width: 2,
)s
)s
child: const Circ
backgroundColor:

)5

decoration

border: Bord
bottom: Bo
color:
width: 1.0,
),

The code above is used to display information about the conversation between a user and
another user in a list of conversations. This includes the avatar, username, and the content of

the last message. The code utilizes a FutureBuilder to handle a future obtained from the
getUserInformation function in ltemMessageProvider. If the future contains data, it displays
the information on the screen.

ltemMessageProvider

ItemMessageProvider ChangeNotifier{
GetLastMessageUseCase _getlLastMessageUseCase;
GetUserInformationUserCase _getUserInformationUserCase;

ItemMessageProvider(._getlLastMessageUseCase, ._getUserInformationUserCase);

getUserInformation(String uid) async {
UserEntity? user = await _getUserInformationUserCase(uid);
return user;

}

getlLassMessage(String chatRoomId){
Stream<ChatMessageEntity> lastMessageStream = _getlLastMessageUseCase(chatRoomId);
return lastMessageStream;

}

}

- When users tap on a conversation, they will be taken to the messaging screen. Below
is an overview of the messaging screen used to display detailed conversations
between two users in a chat application. This widget allows users to view and send
text and image messages. It utilizes "BlocBuilder" to manage the state and build the
interface based on events and states provided by "DetailMessageBloc,"
"DetailMessageState," and "DetailMessageEvent."

atefulWid

is.chatRoomId, this.name, this.avatar});

chatRoomId;
name;
avatar;

1 Te
keyuid = *°
» isShowEmoj

«tEditingController();

~ watchTime =

Futur id> getKeyUid()
keyUid = awai C unctions().getUserIdUserSharedPreference() as String;

"ride
t build(BuildContext context) {
getKeyUid();

return BlocCo e DetailMessageState>(

titleSpacing: @,

elevation: 1,

backgroundColor: Colors.white,

title: state is Messag Lc
? head(state.user)

: const CircularProg Indicator(),
leading: InkWell(
O A{

ator.pop(context);

),
),
)5
backgroundColor: Col
body: Cont r
padding: const Ed 5 .symmetric(horizontal: 8),
decoration: co JoxDecoration(color: Colors.white),
child: Buil builder: (context) {
gelistLoaded) {
return Column(
children: [
Expanded(
child: listMessage(state.messagesList, state.chatRoom,
state.watchTime)),
controlMessage(context, state.showEmoji, state.image),
state.showEmoji ==
2 emoji(context)
2 (2 .shrink()

DetailMessageBloc

DetailMessageBloc extends Bloc<DetailMessageEvent, DetailMessageState> {
GetMessagesUseCase _getMessagesUseCase;
AddMessageUseCase _addMessageUseCase;
CompareUserTimeUseCase _compareUserTimeUseCase;
GetChatRoomUseCase _getChatRoomUserCase;
final GetInfoUserUseCase _getInfoUserUseCase;

DetailMessageBloc(
s._getMessagesUseCase,
_addMessageUseCase,
._compareUserTimeUseCase,
_getChatRoomUserCase,
_getInfoUserUseCase)
is st DetailMessageInitial()) {

on<GetMessagelist>(getMessagelist);

on<AddMessage>(addMessage);

on<CompareUserTime>(compareUserTime);

}

FutureOr<void> getMessagelist(
GetMessagelList event, Emitter<DetailMessageState> emit) async {
emit(const MessagelistlLoading());

emit(MessagelistlLoaded(
_getChatRoomUserCase(event.uid,event.chatRoomId),
_getMessagesUseCase(event.chatRoomId),
_getInfoUserUseCase(event.uid),
event.showEmoji,
event.image,
event.watchTime));

FutureOr<void> addMessage(
AddMessage event, Emitter<DetailMessageState> emit) {
_addMessageUseCase(event.uid, event.chatRoomId, event.content,
event.image, event.avatar, event.name);

FutureOr<void> compareUserTime (
CompareUserTime event, Emitter<DetailMessageState> emit) {
_compareUserTimeUseCase(event.uid, event.chatRoomId);

}

DetailMessageState

s DetailMessageState ends Equatable {
IMessageState();

props => [1;

DetailM geActionState ex sageState {
DetailMessageActionState();

s DetailMessageState {
ssageInitial();

agelistlLoading extends DetailMessageState {
t MessagelListLoading();

agelistlLoaded e DetailM geState {
bool showEmojij;
String watchTime;
File? image;
Stream<List<ChatMessageEntity>> messagesList;
Stream<ChatRoomEntity> chatRoom;
m<U Entity> user;
agelistLoaded(th this.messagesList,this.user,this.showEmoji,this.image,this.watchTime);

- DetailMessageEvent

class DetailMessageEvent e s Equatable {
DetailMessageEvent();

override
List<Object> get props => [];

GetMessagelList extends DetailMessageEvent {
String watchTime;
bool showEmoji;
File? image;
String uid;
String chatRoomId;
GetMessagelist(this.uid ,this.chatRoomId,thi is.i this.watchTime);

AddMessage extends DetailMessageEvent {
String uid;
String chatRoomId;
String content;
File? image;
String avatar;
String name;

AddMessage(thi this.chatRoomId,
.avatar,

CompareUserTime N DetailMessageEvent {
String uid;
String chatRoomId;

const CompareUserTime(this c .chatRoomId);

-, Providers and Data Connections management.

https://github.com/lonbgddd/chat_app/tree/main/lib/features/message

3.5, Top Picks DispLAY SCREEN

e This feature includes a user interface that shows a list of users filtered according to various
criteria such as most active, recently online, highly prominent, etc. When clicking on a user,

it will display detailed information about that user, while still sending a match request as
usual.

® ScreenShot

&) Finder

Upgrade to Finder Gold™ for even more Top Picks!

Q@ miooking for
Lover

Hobbies

(‘Photogra ot es

e Related code items.(In the link attached to each title) :
a) Top Picks Display Screen

-, MainScreen

-, Providers and Data Connections management.

Screenshots:

https://github.com/lonbgddd/chat_app/tree/main/lib/home/binder_selection
https://github.com/lonbgddd/chat_app/tree/main/lib/config

BinderSelection.dart

class BinderSelection extends StatelessWidget {
const BinderSelection({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) {

return Scaffold(
backgroundColor: Colors.white,
appBar: AppBar(
backgroundColor: Colors.white,
elevation: 0,
title: Align(
alignment: Alignment.center,
child: Row(
mainAxisAlignment: MainAxisAlignment.center,
children: [
SvgPicture.asset(
AppAssets.iconTinder,
width: 30,
height: 30,
fit: BoxFit.cover,
)J
const SizedBox(
width: 5,
)s
const Text(
"Finder",
style: TextStyle(
fontFamily: ‘Grandista’,
fontSize: 24,
color: Color.fromRGBO(225, 72, 890, 1.9),
)J
))
]J
)s
)J
)J
body: BodySelection(),
);
}
}

The Body widget of this code snippet has been extracted into a separate file to improve
readability and maintainability.

Body.dart

s BodySelection e ds StatelessWidget {
final _scrollController = ScrollController();

BodySelection({Key? key}) : super(key: key);

_scrolllListener(BuildContext context) {
if (_scrollController.offset >
_scrollController.position.maxScrollExtent) {
_showBottomModal(

context: context,

color: Colors.yellow,

title: “Binder”

isHaveIcon: false,

packageModel : packageBinderGoldList(context),
assetsBanner: AppAssets.iconTinderGoldBanner,
assetsIcon: AppAssets.iconTinderGold,
isHaveColor: true,

subTitle: AppLocalizations.of(context).selectionPageSubTitle,

equi Color color,
Color? iconColor,
isHaveColor,
bool? isHaveIcon,
bool? isSuperLike,
IconData? iconData,
String? assetsBanner,
String? assetsIcon,
List<PackageModel>? packageModel,
ui String subTitle,
uired String title,

showModalBottomSheet(
context: context,
isScrollControlled: true,
isDismissible: true,
builder: (BuildContext context) {
return BottomModalFullScreen(
packageModel : packageModel ,
color: color,
assetsBanner: assetsBanner,
assetsIcon: assetsIcon,
title: title,
subTitle: subTitle,
iconColor: iconColor,
isHaveColor: isHaveColor ?? fa
isHaveIcon: isHaveIcon ?? false,
iconData: iconData,
isSuperlLike: isSuperlike ?? false,

In this code snippet, there are two private functions to display modals and one function to
handle the event when the user scrolls the screen. When the user reaches the bottom,
the _showBottomModal function will be called to display the modal. Now, let's continue
with the content of the code inside the build function:

@override
Widget build(BuildContext context) {
_scrollController.addListener(() => _scrolllListener(context));
al appLocal = ApplLocalizations.of(context);
'n Scaffold(
backgroundColor: Colors.white,
body: Stack(
children: [
SingleChildScrollView(
con LLer: _scrollController,
child: Padding(
padding: EdgelInsets.only(top: 15),
child: Column(
mainAxisAlignment: MainAxisAlignment.start,
cr AxisAlignment: CrossAxisAlignment.stretch,
children: [
Text(
appLocal.selectionPageContentl,
textAlign: TextAlign.center,
style: TextStyle(
fontsize: 15,
fontWeight: FontWeight.wS0@,
color: Colors.grey[
)s
),
SizedBox(
height: 15,
),

getBody(context),
1,
),
)s
)s
Align(
alignment: Alignment.bottomCenter,
child: Padding(
padding: c t Edgelnsets.only(bottom:
child: ElevatedButton(
onPressed: () => _showBottomModal(
context: context,
color: Colors.yellow,
isHavelIcon: false,
assetsBanner: AppAssets.iconTinderGoldBanner,
as con: AppAssets.iconTinderGold,
title: “"Binder”,
isHaveColor: true,
iconData: null,
packageModel : packageBinderGoldList(context),
subTitle: applLocal.selectionPageContent2,
)s
style: ElevatedButton.styleFrom(
shadowColor: Colors.grey,
fixedSize: Size(2

3 3
backgroundColor: Colors.yellow[
shape: RoundedRectangleBorder(
borderRadius: BorderRadius.circular
)s
)s
child: Text(
applLocal.selectionPageContent3,
style: TextStyle(
color: Colors.black,
fontiWeight: FontWeight.bold,
LetterSpacing: 1
)s
)
)s
)5
),
1,
)s
)5

>

Widget getBody(BuildContext context) {
return FutureBuilder(
future: context.read<BinderWatch>().allBinderSelectionUser(),
builder: (context, snapshot) =>
snapshot.hasData ?
Padding(
padding: const EdgeInsets.all(190),
child: GridView.builder(
shrinkWrap: true,
physics: NeverScrollableScrollPhysics(),
gridDelegate: SliverGridDelegateWithFixedCrossAxisCount(
crossAxisCount:
crossAxisSpacin
mainAxisSpacing
mainAxisExtent: 2
)>
itemCount: context.watch<BinderWatch>().listCard.length,
itemBuilder: (context, index) {
return ItemSelectionCard(
onTap: () {
Provider.of<LikedUserCardProvider>(context, Listen: false)
.addFollow(
context.read<BinderWatch>().listCard[index].uid);
context.read<BinderWatch>().removeCardAtIndex(index);
1
user: context.read<BinderWatch>().listCard[index],
isDetail: () => context.goNamed(
‘home-detail-others’,
queryParameters: {

2
<>

‘uid': context
.read<BinderWatch>()
.listCard[index]
.uid
.toString()

1,
)s
);
b
)>
): Center(

child: LoadingAnimationWidget.fallingDot(
color: Color.fromRGBO(234, 64, 128, 100),
size: 60,

After initializing the interface, the allUserSelectionBinder() function will be used to filter
out individuals with the same interests and gender. The filtered results will be displayed
on a GridView based on the ItemSelectionCard.

You can access the following link to view this code snippet: item_selection_card

3.6, THE PROFILE DISPLAY SCREEN

This function includes a user interface displaying personal information and editable details,

with multiple diverse fields to customize and make the profile more appealing and
outstanding.

Screenshots:

https://github.com/lonbgddd/chat_app/blob/main/lib/home/binder_selection/components/item_selection_card.dart

r Nr h

© Editprofile X v xual orientation
Do you smoke ? Sexual orientatio
About me Additional information —_— Selectupto 3
('smoke with friends)
about me S —
Dev Mobile N
(' smoke while drinking) Straight
— Add more information about yourself to let
others know more about the amazing person o N .
e ((smoke regutarty) (Trying to quit smoking) Gay
Hobbies N .
What is your zodiac sign ? Lesbian Now I'm Iooklng for...
TikTok, E-sports, Motorcycles, Classical mu... >) Do you exercise ?
(ermem)i (i) Share your purpose to find ‘the one't
\ J \ # — ~ /- Bisexual
e enm— = (o) () .
(‘aries) (Taurus) (‘Gemini) (cancer)) - [] 9% -
— Z % \ Ansexual =
© @ Lover > — . N (Do not exercise)
teo) (virgo) (Libra) (scorpio) : s R |
P h : Demissexual V|
Languages | know (oot) @
SAatadls) Your dietary preferences ?
Bp Addlanguage > P o . Pansexual = 5
(vegetarian) (Vvegan) & ool
What is your educational b . g »
ic i i - Transgender
Basic information background ? ((eat seafood and \ Wb New friends Not sure yet
, i i 7 =
1€, Zodiac Pisces Bachelor's degree) (Bachelor's degree (camivore (eatmeat) Undetermined or not sure about orientation
< Education High school > High school) (Doctorate) (N specific dietary restrictions) (On a diet)
D) Future family Empty > "Postgraduate studies) (Master's degree (‘other)
(Vocational school)
575 Personality type ENFJ > — R S S PR T

X Done X Done
Interests souors Languages
| know

Ooutof 5

Q_ search

) Q_ search language
('shopping) (Football) (Table tennis)

(‘Afghanistan) (Albania) (Algeria)

(Art exhibitions

(' American Samoa) (Andorra ngola)

(‘Parties) (Cosplay) (cars)

N (Anguilla) Antarcti
(Modern music Classical music £90

("Antigua and Barbuda

/ Argentina)
(Fashion ¢ J

; S (‘Amenia) (‘Aruba) (‘Australia)
(Netlix \ NN J

(‘Austria) (‘Azerbaijan) (Bahamas)

Arche Sneakers |

(‘Bahrain) (Bangladesh)

(‘online gaming) (Wine and beer

N N N (' Belarus) (Belgium) (Belize) (Benin)
(‘cyeling) (Karaoke) (Romantic movies) : /- /N /N

N (‘Bermuda) (Bhutan) (Bolivia
Surfing : G g

('Bosnia and Herzegovina) (Botswana

(Brazil)

N N \ ('Bouvet Island)

e Related code items(In the link attached to each title.) :
a) The screen displays the details of one's personal profile, and the tabs to update
personal information such as photos, biography, interests, lifestyle, objectives,
language, and location.

The general layout of the screen for displaying and updating user information would be
implemented as a StatefulWidget, using the provider UpdateNotify to manage the state.

UpdateProfileScreen StatefulWidget {
teProfileScreen(.key});
@override
State<UpdateProfileScreen> createState() => _UpdateProfileScreenStat

_UpdateProfileScreenState State<UpdateProfileS
@override
initState() {
.initState();
er.of<UpdateNotify>(context, listen:

@override
W t build ildContext context) {
aQuery.of(context).size;
ble itemHeight = (size.height - 210) / 2;
double itemWidth = e.width / 2;
updateProvider
appLocal = Applocali

return WillPopSc
onWillPop: () async {
await Future.delayed(Duration(seconds: 3)).then((value

1
I

child: Scaffold(

appBar:
body: ac
SingleChil
child: Column(
)s
if (updateProvider.islo
Positioned.fill({ //
))s

Use the WillPopScope widget to handle the event when the user presses the back button to
save the changed information. The Stack widget will contain two child widgets: one is
SingleChildScrollView to display the main content, and the other is a widget to display
loading while data is being loaded (when the isLoading variable of the UpdateNotify provider
is true).

The main content is contained within a Column widget, which includes various widgets to
display and edit user information.

User information is retrieved from the getUser function of the UpdateNotify provider:

Future<void> getUser(bool initTextController) async {
userLoaded = true;
uid = await HelpersFunctions().getUserIdUserSharedPreference();
UserModel user = await DatabaseServices(uid).getUserInfo();
gender = user.gender;
datingPurpose = user.datingPurpose;
photoList = user.photolist;
interestsList = user.interestsList;
fluentLanguagelist = user.fluentLanguagelist;
sexualOrientationList = user.sexualOrientationList;

zodiac = user.zodiac!;

academiclLever = user.academiclLever!;
communicateStyle = user.communicateStyle!;
languageOfLove = user.languageOfLove!;
familyStyle = user.familyStyle!;
personalityType = user.personalityType!;

myPet = user.myPet!;

drinkingStatus = user.drinkingStatus!;

smokingStatus = user.smokingStatus!;

sportsStatus = user.sportsStatus!;

eatingStatus = user.eatingStatus!;

socialNetworkStatus = user.socialNetworkStatus!;

sleepingHabits = user.sleepingHabits!;

if (initTextController) {
introduceYourselfController.text = user.introduceYourself!;
companyController.text = user.company!;
schoolController.text = user.school!;
currentAddressController.text = user.currentAddress!;

}

isLoading = false;

isInterestSearching = false;

await fetchLanguages();

notifyListeners();

The information is stored in variables within UpdateNotify and is utilized on the
UpdateProfile screen.

Widget to update a list of images:

UpdateImage(
itemWidth: itemWidth,

itemHeight: itemHeight,
)

LdtemWidth,
.itemHeight,

itemWidth;
double itemHeight;
foverride
Widget build{BuildContext context
| ist<String> photolist = context.watch<UpdateNotify»().photolList!;
® return Container
color: BColors.grey.shade2@e,
padding: EdgeInsets.symmetric(horizontal: 16.8, vertical: 8§.8),
child: Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: [
GridView.builder
physics: MeverscrollableScrollPhysics(),
shrinkWrap:

¥
gridDelegate: SliverGridDelegateWithFixedCrossAxisCount(

crossAxisCount: 3,
mainAxisSpacing: 5,
crossAxisSpacing: 5,
childAspectRatio: itemWidth / itemHeight,
)s
itemCount: 9,
itemBuilder: (BuildContext context, int index) {
if (index < photolist.length) {
return Stack(children: [
ClipRRect({ // ClipRRect
Positioned{ f/ Positioned
H
lze {
return InkWell
onTap: () {
Provider.of<UpdateNotify>{context, listen:
.pickImages();
¥
child: ClipRRect(

The Widget Updatelmage retrieves a list of images from the photolist variable of the
UpdateNotify provider and displays them in a GridView, limited to 9 items. For items that
already have an image, the image will be shown. However, for elements without an image, a

replacement widget will be displayed instead. When the user taps on this replacement
widget, it will call the picklmages function of UpdateNotify to select images.

The functions picklmages and _croplmage:

Future<void> pickImages() async {
List<XFile>? resultlList = await ImagePicker().pickMultiImage();
List<File> selectedImages =
resultList.map((xFile) => File(xFile.path)).toList();
if (photoList!.length + selectedImages.length <= 9) {
for (var imageFile in selectedImages) {
await _cropImage(imageFile: imageFile);
}
notifylListeners();

} else {

¥
¥

Future<void> _cropImage({required File imageFile}) async {
CroppedFile? croppedFile = await ImageCropper().cropImage(
sourcePath: imageFile.path,
aspectRatioPresets: [
CropAspectRatioPreset.square,
CropAspectRatioPreset.ratio3x2,
CropAspectRatioPreset.original,
CropAspectRatioPreset.ratio4x3,
CropAspectRatioPreset.ratiol6x9
])
compressQuality: 100,
maxWidth: 500,
maxHeight: 500,
uiSettings: [
AndroidUiSettings(
toolbarTitle: 'Cat anh’,
toolbarColor: Colors.blue,
toolbarWidgetColor: Colors.white,
statusBarColor: Colors.blue,
backgroundColor: Colors.white,
)J
I0SUiSettings(
title: 'cat anh’',
),
1,

)

if (croppedFile != null) {
File? croppedImage = File(croppedFile.path);
if (croppedImage.existsSync()) {
String fileUrl = await DatabaseMethods().pushImage(croppedImage,
photoList!.add(fileUrl);
notifyListeners();
updatePhotoList();

The "ImagePicker" library is used to allow users to select images from their device's memory
or gallery. After selecting an image, the "ImageCropper" library comes into play, allowing
users to edit or crop the selected image as desired.

After selecting and editing, the data will be passed to the UpdatePhotolist function to save
the information to Firestore. The function will handle the process of storing the edited image
data in the Firestore database.

updatePhotoList() {
FirebaseFirestore.instance
.collection("users™)

.doc(uid)
.update({"photolList"”: photoList});

Next up are the widgets for editing descriptions, company names, school names, and
addresses. These widgets use TextFields for data entry:

Container(
padding: const EdgeInsets.only(
righ 16.0, left: 16.0, bottom: 16.0),
color: Colors.white,
child: Column(
children: [
TextField(
controller:
updateProvider.introduceYourselfController,
keyboardType: TextInputType.multiline,
maxLength: 500,
textInputAction: TextInputAction.newline,
maxLines: null,
decoration: InputDecoration(
contentPadding:
EdgeInsets.symmetric(vertical: 16.9),
border: InputBorder.none,
hintText: appLocal.updateProfileAboutMeText,
)s
style: const TextStyle(
fontSize: 16,
color: Colors.black,
fontWeight: FontWeight.normal),

A TextField has a controller that is managed by a provider. The information entered will be
saved when the user exits the update screen by calling a function in the provider:

Future< > updateInputField() async {

userLoaded = lse;

await FirebaseFirestore.instance.collection("users").doc(uid).update({
"introduceYourself": introduceYourselfController.text,
"company": companyController.text,
"school”: schoolController.text,
"currentAddress”: currentAddressController.text,

1)

notifylListeners();

}

The remaining widgets follow a similar logic. They will display user information, and when
the user taps on them, a BottomSheet will open for editing. After the editing is completed,
the updated information will be saved using functions provided by the Provider.

Example, widget of gender information:

InkWell(
splashColor: Color.fromRGBO(229, 58, 69,
onTap: () {
showModalBottomSheet(
isScrollControlled:
isDismissible:
useSafeArea: 5
context: context,
builder: (context) {
return GenderBottomSheet();
s
) .whenComplete(() {
updateProvider.getUser(DE
1
}s
child: Container(
width: MediaQuery.of(context).size.width,
padding: EdgeInsets.all(16.0),
decoration: BoxDecoration(),
child: Text(
HelpersUserAndValidators.getItemFromIndex(
context,
HelpersUserAndValidators.genderList(context),
updateProvider.gender!),
style: TextStyle(
fontSize: 16,
color: Colors.black,
fontWeight: FontWeight.normal),

Save Gender Function:

Future<void> updateGender() async {
await FirebaseFirestore.instance.collection("users").doc(uid).update({

"gender": gender,
s
}

Detailed information about the remaining widgets and BottomSheet can be found at the link
below:

-, Main screen, profile update, and sub-widgets.

-, Provider and data connection management.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/profile
https://github.com/lonbgddd/chat_app/tree/main/lib/config

3.7, THE SETTINGS SCREEN AND ADVANCED PAID PAGES.

e This functionality includes the general app settings interface such as search settings,

filtering, language preferences, and logout option.

e Screenshots

& Finder

Tai, 20 &
* 4 Ry
0 Super Likes My Boosts Subscription
package
BUY MORE BUY MORE

|Quing céo thir nghiém

Nice job! Thisis a 468x60 testad. ()

(9).' Get Finder Plus®

Get unlimited Likes, Passport & more!

Done

Setting

ﬂ, Finder CESITY

Preferred Likes, See Who Likes You & More

Finder fso

See who Likes you & more!

ﬂ Finder +

Unlimited Likes & More Benefits!

* 4

Get Super Likes Buy Speed Up

[N

Use incognito mode

Quéng céo thir nghiém

Nicejob! Thisisa320x50testad. ()

Search Settings

Priority distance 2km
X & Findermmm
Upgrade your Likes and
Super Likes with the
Platinum package.
Choose a package
Popular
1 Month 6 Mc
189.000 d/Month 93.167

Included in Finder

+/ Unlimited likes
/5 Super Likes per month

When you click Continue, you will be charged, and your
subscription will automatically renew at the same price and
duration until you cancel, anytime, through the Google Play
settings, and you agree to our Terms.

Continue

Setting Done
Quang cdo thir nghiém|
Nicejob! Thisisa320x50 testad. (C
s

Search Settings
Priority distance 2km
Show only people within this range
Show me Female >
Preferred age 1822

Show only people within this range

Change language

Current language = English >

Log out

X) Binder -

Infinite Likes. Unlimited
Returns. Unlimited
Passports. No Ads.

Choose a package

Popular
1 Month 6 Mc
189.000 d/Month 93.167

Included in Finder

v/ Unlimited likes
+/ 5 Super Likes per month

When you click Continue, you will be charged, and your
subscription will automaticaly renew at the same price and
duration until you cancel, anytime, through the Google Play
settings, and you agree to our Terms

Continue

e Related code items.(In the link attached to each title) :
a) The main settings screen with an avatar and navigation buttons, as well as

advertisements.

-, Main Screen

X Finder/coio

Stand out with Super Likes
and 3x compatibility.

Choose a package

Popular
1 Month 6 Mc
189.000 d/Month 93.167

Included in Finder

+/ Unlimited likes
+/ 5 Super Likes per month

When you click Continue, you will be charged, and your
subscription will automatically renew at the same price and
duration until you cancel, anytime, through the Google Play
settings, and you agree to our Terms.

Continue

user

https://github.com/lonbgddd/chat_app/blob/main/lib/home/profile/profile.dart

ProfileScreen StatelessWidget {
ProfileScreen({Key? key}) : (key:
_showBottomModal (BuildContext context)
showModalBottomSheet
context: context,
isScrollControlled: R
builder: (BuildContext context) {
return SettingScreen();

¥

2

@override
Widget build(BuildContext context) ¢
Provider.of<ProfileWatch>(context, listen:
return Safefrea
child: Scaffold(
appBar: AppBar(// AppBar
backgroundColor: B Colors.white,
body: getBody(context),
), Scaffold
; // Safehrea

-

Widget getBody(BuildContext context)

return StreamBuilder<UserModel>
stream: context.watch<ProfilelWatch>().getUserStream(),
builder: (context, smapshot) {
if (snapshot.hasData) {
String fullName = snapshot.data!.fullName;
List<String> splitMame = fullName.split(" "
return SingleChildScrollView

2

child: Column(// Column

»

return Container();

The ProfileScreen contains a primary content that is a StreamBuilder listening to a stream
obtained from the context.watch<ProfileWatch>().getUserStream() function. It holds
information about the current user to display their name, age, and avatar in the
ProfileScreen. Additionally, the screen includes several Ul elements for premium features,
which you can find more details about in the link above.

The widget displaying the avatar is interactive and triggers a navigation event to switch to the
UpdateProfileScreen when tapped.

b) The SettingScreen includes various functionalities as described:

SettingScreen extends StatelessWidget {
const SettingScreen({super.key});

@override
Widget build(BuildContext context) {
final provider = context.read<BinderWatch>();
final padding = MediaQuery.of(context).padding;
return Container(
color: Colors.white,
padding: EdgeInsets.only(top: 30),
child: Scaffold(
appBar: AppBar(
elevation: 0.3,
backgroundColor: Colors.white,
title: Center(
child: Text(
AppLocalizations.of(context).settingPageSubTitleAppBar,
style: TextStyle(color: Colors.black, fontWeight: FontWeight
))
)s
actions: [
TextButton(
onPressed: () async{
await provider.updateRequestToShow();
context.pop();} ,
child: Text(
AppLocalizations.of(context).settingPageSubDoneText,
style: TextStyle(color: Colors.blueAccent),
))
1,
automaticallyImplylLeading: fa
leading: Text(""),
)J
backgroundColor: Colors.grey[200],
body: Body()

)s

-, The main settings screen

-, The data for changing the language.

-, The providers and data connections manage the settings and logout functionalities.

https://github.com/lonbgddd/chat_app/tree/main/lib/home/setting
https://github.com/lonbgddd/chat_app/tree/main/lib/l10n
https://github.com/lonbgddd/chat_app/tree/main/lib/features/message

V. GUIDE TO APP INTERFACE CUSTOMIZATION (RESKIN APP)

1 . CHANGE THE APP'S BACKGROUND COLOR.

1.1 GREETINGS:
Change background color:

e Open the file named "welcome.dart".
e Find the "build" widget as shown in the image below.
e Modify the LinearGradient in BoxDecoration with the desired color.

stream:

build <User?> snapshot) {

go('/login-home-screen') : context.go('/home’

decoration:
gradient:
begin: o

i H ent.bottomCenter,
color Color.fromRGBO(

1.2 LOGIN SCREEN:
Change background color:

e Open the file named "login_home_screen.dart".
e Find the "build" widget as shown in the image below.
e Modify the LinearGradient in BoxDecoration with the desired color.

‘ride
Widget build(BuildContext context) {
final appLocal = Applocalizations.of(context);
final adProvider = Provider.of<AdMobProvider>(context);

return Scaffold(
body: islLoading
? Center(
child: LoadingAnimationWidget.threeArchedCircle(
color: Color.fromRGBO(234, 64, 128, 1),
size: 100,

)5

Container(
decoration: BoxDecoration(
gradient: « st LinearGradient(

begin: Alignment.topCenter,

end: Alignment.bottomCenter,

colors: [
t Color.fromRGBO(238, 128, 95, 1),
t Color.fromRGBO(234, 64, 128, 1)

1.3 CHANGE THE COLOR OF THE BotTom NAVIGATION:
e Open the file named "home.dart".
e Find the widget named "BottomNavigationBar" as shown in the image below.
e Change the "backgroundColor" to the color you want.

BottomNavigationBar _bottomNavigation() {
return BottomNavigationBar(

backgroundColor: Colors.white,
elevation: 2,

1.4 SwiPE USER SCREEN:
Change the color of the AppBar:

e Open the file named "binder_page.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

Widget build(BuildContext context) {
provider = context.read<BinderWatch>();
return Scaffold(
appBar: AppBar(
backgroundColor: Colors.white,
elevation: 9,

Change the background color while loading data:

® Open the file named "binder_page.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in Scaffold to the color you want.

rride

Change the background color after having data:

® Open the file named "binder_page.dart".

e Find the "getBody" widget as shown in the image below.
® Change the "color" in BoxShadow to the color you want.

1 Widget getBody(BuildContext context, int gender, List<double> age,
bool isInDistanceRange, double kilometres) {
return FutureBuilder(
future: context.read<BinderWatch>().allUserBinder(context,gender, age, isInDistanceRange, kilometres),
builder: (context, snapshot) => snapshot.hasData
? Container(
padding: const EdgelInsets.all(19),
decoratio BoxDecoration(
boxShadow: [
BoxShadow(
color: Colors.grey.shade200,
spreadRadius: 3,
blurRadius: 3,
offset: Offset(e, 3),

1.5 ToP SELECTION SCREENS:
Change the color of the AppBar:

® Open the file named "binder_selection.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

@override
Widget build(BuildContext context) {
return Scaffold(

backgroundColor: Colors.white,
appBar: AppBar(
backgroundColor: Colors.white,
elevation: 0,

Change the background color:

e Open the file named "body.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in Scaffold to the color you want.

rride

idget build(BuildContext context) {
_scrollController.addListener(() => _scrollListener(context));

final applLocal = ApplLocalizations.of(context);
return Scaffold(

backgroundColor: Colors.white,

body: Stack(

1.6 CHAT LIST SCREEN:
Change the color of the AppBar:

® Open the file named "message_screen.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

verride
Widget build(BuildContext context) {
return Scaffold(

appBar: AppBar(
backgroundColor: Colors.transparent,
elevation: 0,

Change the background color:

e Open the file named "message_screen.dart".
e Findthe" buildBody" widget as shown in the image below.
e Change the "color" in Container to the color you want.

_buildBody(BuildContext context) {
final adProvider = Provider.of<AdMobProvider>(context,listen: false);
adProvider.loadBannerAd(context);
return BlocBuilder<MessageBloc, MessageState>(
builder: (context, state) {
if (state is ChatRoomslLoading) {

return const Center(child: CircularProgressIndicator());
}
if (state is ChatRoomsLoaded) {
return SingleChildScrollView(
child: Container(
color: Colors.transparent,
child: Column(

1.7 CHAT SCREEN:
Change the color of the AppBar:

e Open the file named "detail_message.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

00
@override
Widget build(BuildContext context) {
getKeyUid();
return BlocConsumer<DetailMessageBloc, DetailMessageState>(
listener: (context, state) {},

builder: (context, state) {
return Scaffold(
appBar: AppBar(
titleSpacing: o,
elevation: 1,
backgroundColor: Colors.white,

Change the background color:

e Open the file named "detail_message.dart".
e Find the "build" widget as shown in the image below.
e Change the "color" in BoxDecoration to the color you want.

e Then find the "listMessage" widget and change the color of the container to
transparent.

Widget listMessage(Stream<List<ChatMessageEntity==
Stream<ChatRoomEntity> chatRoom, String watchT
DateFormat timeFormat = DateFormat()
DateFormat dateFormat = DateFormat(
String userTime =
bool checkTime(DateTime dateTime)

bool checkDuration(DateTime dateTimel,K DateTime dateTime2)

StreamBuilder(
stream:
bullder:

userTime = index.time!.toString()

StreamBuilder(
stream: messagelistStream

builder:
BlocProvider.of<DetailMessageBloc>(context)

.add(CompareUserTime/(
snapshot.
? ListView.buvilder(
itemCount: snapsho
rinkWrap:
scrollDirection: Ax1s.
FEVErSE:
padding: EdgeInsets.only(top:
physics: ScrollPhysics()
itemBuilder: (context, index) {
DateTime time = DateTime.parse(
?[index]. .toString() ??
Container(
color: Colors.

padding: EdgeInsets.only(

1.8 SEE WHO LIKES YOU SCREEN:

Change the color of the AppBar:

e Open the file named "who_like_page.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

e Open the file named "who_like_page.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in Scaffold to the color you want.

oLl View

1.9 PROFILE SCREENS:
Change the color of the AppBar:

® Open the file named "profile.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

e Open the file named "profile.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in Scaffold to the color you want.

et buildl(

e Then, open the file "BodyBuyPremium.dart".
e Find the "build" widget as shown in the image below.
e Change the "color" in Container to the color you want.

Widget build(BuildContext context) {
applocal = Applocalizations.of(context);
adProvider = Provider.of<AdMobProvider>(context,listen:

adProvider.loadBannerAd(context);

return Container(
padding: EdgeInsets.only(top: 10, left: 5, right: 5, bottom: 78@),
color: Colors.grey[100],

1.10 SETTINGS SCREEN:

Change the color of the AppBar:

® Open the file named "setting_screen.dart".

e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

e Open the file named "setting_screen.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in Scaffold to the color you want.

[|-|_ |::I :-_

AppBar(

1.11 NOTIFICATION SCREENS:

Change the color of the AppBar:

e Open the file named "notification_screen.dart".
e Find the "build" widget as shown in the image below.
® Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

e Open the file named "notification_screen.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in Scaffold to the color you want.

Scaffold(
AppBar(

1.12 OTHER USER PROFILE SCREEN:
Change the background color:

Open the file named "detail_profile_others.dart".
Find the "build" widget as shown in the image below.
Change the "backgroundColor" in Scaffold to the color you want.

Widget build(BuildContext context) {
applocal = Applocalizations.of(context);
adProvider = Provider.of<AdMobProvider>(context,listen:
adProvider.loadBannerAd(context);

EdgeInsets padding = MediaQuery.of(context).padding;
return Scaffold(
backgroundColor: Colors.white,
extendBody: 5

1.13 ENTER PERSONAL INFORMATION SCREEN:
Change the background color:

e Open the files in the pageConfirm directory, such as add_birthday_page.dart.
e Find the "build" widget as shown in the image below.

e Add or modify the "backgroundColor" property in Scaffold to the color you
want.

Widget build(BuildContext context) {
pageProvider = Provider.of<PageDataConfirmProfileProvider>(context);
applLocal = Applocalizations.of(context);

return Scaffold(
backgroundColor: Colors.white,
extendBody: ,

1.14 SEARCH SETTINGS SCREEN:
Change the color of the AppBar:

® Open the file named "discovery_setting.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in AppBar to the color you want.

Change the background color:

® Open the file named "discovery_setting.dart".
e Find the "build" widget as shown in the image below.
e Change the "backgroundColor" in Scaffold to the color you want.

rride
Widget build(BuildContext context) {
final provider = context.read<BinderWatch>();
final applLocal = Applocalizations.of(context);
final adProvider = Provider.of<AdMobProvider>(context,listen:
adProvider. loadBannerAd(context);
return Scaffold(
appBar: AppBar(
backgroundColor: Colors.white,
elevation: 9.4,
title: Center(
child: Text(
applocal.settingPageSearchText,
style: TextStyle(color: Colors.black),

)

)

actions: [
TextButton(
onPressed: () async {
await provider.updateRequestToShow();
context.pop("refresh");

b
child: Text(

appLocal.discoverySettingConfirmText,
style: TextStyle(color: Colors.blue[700]),
)s
)
]J

)
backgroundColor: Colors.grey[200],

1.15 TiNDER PREMIUM SCREEN:
Change the background color:

® Open the file named "bottom_modal_fullscreen.dart".
e Find the "build" widget as shown in the image below.
e Modify the LinearGradient in BoxDecoration with the desired color.

Widget build(BuildContext context)

height = MediaQuery.of(context).size.height;
styleTextSpan = TextStyle(color: Colors.black, fontSize: 12);
appLocal = Applocalizations.of(context);
return Container(

padding: EdgeInsets.only(top: 30),

decoration: isHaveColor
? BoxDecoration(

gradient: LinearGradient(

begin: Alignment.topCenter,
end: Alignment.bottomCenter,
colors: [color, Colors.white],
stops: [©.01, ©.1],

2 . CHANGE THE APP'S ICON.
Open the “assets” folder from the root directory of your project, then right- click

and select “Reveal in File Explorer”

EXPLORER

~ CHAT_APP
> o
> g android
> B assets

A fonts
% ios Mew Folder...

MNew File...

> IR lib Reveal in File Explorer Shift+Al+R
> Il linux

> I macos

Open in Integrated Terminal

§ test Share

At this point, your computer will automatically open that folder, and what you need to do is
click on the "assets" folder, then continue clicking on the "icons" folder. This is where all the

resources of the application are located

Documents » GitHub » chat_app » assets » icons v O Search icons

CP S @

] o =

arrow-down arrow-up cheers cigarrete delete education emaoji-in-love emaji-love-arrow
. l Q ?Z‘
| G | P
K g E
\ P £ N
emaji-party-pop emaji-thinking emaji-waving-ha emaoji-wine facebook google gossip heart
per nd
Q C ‘ C —& C
heart-3-lines icon-chat icon-match icen-match icon-profile icon-star icon-tinder icon-tinder-gold
:I? e
; .
& oo
A c ¢ ¢ & 4 &
icen-tinder-plati lightning loop love moen phone pizza pram

num

You can modify resources as you wish. After that, open the Integrated Development
Environment (IDE) and find the file "app_assets.dart" located in the folder

lib\config\helpers

EXPLORER

- CHAT APP
» @ .dart_tool
» g android
» W@ assets
A fonts
i ios
- [lib
» IR Auth
= config
» I changedNotify
> B firebase
~ [helpers
app_assets.dart
enum_cal.dart

helpers_database.dart

helpers_user_and_validators.dart

After that, configure the resources for your application. Then, rebuild the application.

class AppAssets {
static const String iconPath = ‘assets/icons/’;

static String iconTinder = iconPath + ‘icon-tinder.svg';

static String iconTinderGold = iconPath + *icon-tinder-gold.svg';

static String iconTinderGoldBanner =iconPath + "tinder-gold-banner.svg';

static String iconTinderPlatinum = iconPath + "icon-tinder-platinum.svg®;

static String iconTinderPlatinumBanner = iconPath + 'tinder-platinum-banner.svg';
static String iconTinderPlusBanner = iconPath + 'tinder-plus-banner.svg’;

static String iconChatBottomBar = iconPath + 'icon-chat.svg';

static String iconLoveBottomBar = iconPath + ‘icon-star.svg';

static String iconProfileBottomBar = iconPath + ‘icon-profile.svg’;

static String iconMatch = iconPath + "icon-match.png’;

static String iconGG = iconPath + 'google.png';

static String iconShield = iconPath + 'shield.png’;
static String iconSetting = iconPath + ‘settings.png’;
static String iconPhone = iconPath + ‘phone.png’

If you want to use the icon in a particular file, navigate to that file and write
Appassets.iconExample to reference the iconExample constant from the

Appassets class.

SvgPicture.asset(

AppAssets.iconExample,
width: 120,

height: 120,
fit: BoxFit.cover,
colorFilter: ColorFilter.mode(Colors.white, BlendMode.srcIn),

If you want to add image resources, you can do the same as you did for icons.

3 . CHANGING THE APP'S LANGUAGE CONTENT
e When you want to add a new word or add a new language in the app, you can use flutter
localizations, which can be further explored here.
e After reading and understanding how to handle multiple languages, you can add, modify, or
delete new phrases or words here:

https://docs.flutter.dev/accessibility-and-localization/internationalization

potential matc you. Your exact location will not b

th 'the other

where the files in the 110n directory represent different languages customized with the 'key':'value’
pairs. The key must match accurately across all language files.

e After adding the language values, run the command 'flutter gen-110n' in the project's
terminal to synchronize the values and use them. In the main.dart function, you need to
initialize as follows to handle multiple languages.

class _MyAppState extends State<MyApp> {
Locale? _locale;
setLocale(Locale locale) {
setState(() {
_locale = locale;
3);
}
@override
void didChangeDependencies() {
getLocale().then((locale) = {setLocale(local
e)});
super .didChangeDependencies();
}
(@override
Widget build(BuildContext context) {
return MaterialApp.router(
title: 'Finder',
debugShowCheckedModeBanner: false,
theme: ThemeData (
primarySwatch: Colors.blue,
),
locale: _locale,
localizationsDelegates: ApplLocalizations.loc
alizationsDelegates,
supportedlLocales: ApplLocalizations.supported
Locales,

routerConfig: router,

Usage is as follows:

o In the file where you want to use a different language, import
'package:flutter_gen/gen_I10n/app_localizations.dart’; then initialize 'final
applocal = AppLocalizations.of(context);' inside the build method of each
Widget.

Finally, to access the text values created above, you just need to use
‘appLocal.key' to initialize the multilingual support for the app when switching
between languages.

When you want to use the language switching feature, you can do it as follows:

DropdownButton<Language>(
underline: const SizedBox(),
icon: const Icon(Icons.language,color: Color
s.white,size: 30,),
onChanged: (Language? language) async {
if (language == null) {
Locale _locale = await setlLocale(languag
e.languageCode) ;
MyApp.setLocale(context, _locale);
}
}r
items: Language.languagelist().map<DropdownMe
nultem<Language>> (
(e) = DropdownMenuItem<Language>(
value: e,
child: Row(
mainAxisAlignment: MainAxisAlignmen
t.start,

children: <Widget>[

Text(e.flag,style: const TextSty

le(fontSize:
const SizedBox(width: 5,),
Text(e.name)

1,

)
) .toList(),

	I.​INTRODUCTION
	II.​BASIC DESCRIPTION
	1.​MEET AND CONNECT
	2.​MESSAGING
	3.​PHOTOS AND PERSONAL INFORMATION
	4.​DISCOVERY SETTINGS
	5.​HIGHLIGHTS PROFILE

	III.​FUNCTIONS, TOOLS, AND TECHNOLOGY
	1.​FUNCTIONS
	2.​TOOLS AND TECHNOLOGY

	IV. CODE DESCRIPTION
	1 . INTEGRATE ADMOB ADVERTISING (TEST VERSION)
	2. FIREBASE AND DESCRIPTION
	3. SCREENSHOT AND DETAILED CODE OF EACH SCREEN (SOURCE CODE)
	3.1, REGISTRATION AND LOGIN
	3.2, CONFIRMATION AND USER INFORMATION REGISTRATION:
	3.3, MAIN SCREEN OF THE APPLICATION
	3.4, MESSAGES SCREEN, WHO LIKE YOU
	3.5, TOP PICKS DISPLAY SCREEN
	3.6, THE PROFILE DISPLAY SCREEN
	3.7, THE SETTINGS SCREEN AND ADVANCED PAID PAGES.

	V.​GUIDE TO APP INTERFACE CUSTOMIZATION (RESKIN APP)
	1 . CHANGE THE APP'S BACKGROUND COLOR.
	1.1 GREETINGS:
	1.2 LOGIN SCREEN:
	1.3 CHANGE THE COLOR OF THE BOTTOM NAVIGATION:
	1.4 SWIPE USER SCREEN:
	1.5 TOP SELECTION SCREENS:
	1.6 CHAT LIST SCREEN:
	1.7 CHAT SCREEN:
	1.8 SEE WHO LIKES YOU SCREEN:
	1.9 PROFILE SCREENS:
	1.10 SETTINGS SCREEN:
	1.11 NOTIFICATION SCREENS:
	1.12 OTHER USER PROFILE SCREEN:
	1.13 ENTER PERSONAL INFORMATION SCREEN:
	1.14 SEARCH SETTINGS SCREEN:
	1.15 TINDER PREMIUM SCREEN:

	2 . CHANGE THE APP'S ICON.
	3 . CHANGING THE APP'S LANGUAGE CONTENT

