Yushen Huang

Phone • (518) 227 3828 **E-mail** • yushenhuang97@gmail.com **Address** • 75 Wells St APT325, Greenfiled, MA, 0101 **Linkedin** • https://www.linkedin.com/in/yushen-huang-75b180153/

EDUCATION

State University of New York at Stony Brook	Stony Brook, New York	2021-2025
· · · · · · · · · · · · · · · · · · ·	Stolly brook, New Tork	2021-2023
 Ph.D. in Computer Science, Cumulative GPA:4.0 		
Rensselaer Polytechnic Institute	Troy, New York	2019-2021
 M.S. in Computational and Applied Mathematics, Cumulative GPA: 3.92 		
Rensselaer Polytechnic Institute	Troy, New York	2016-2018
 B.S. in Mathematics, Cumulative GPA: 3.92 		

TECHNICAL SKILLS

- Programming Skill: R, Python (Numpy, Pandas, Sklearn, Pytorch, Scipy), MATLAB, C, C++ (Cilk, OpenMP, MPI)
- Course: Stochastic Calculus, Stochastic Process, Probability and Measure Theory, Numerical PDEs, Machine Learning

WORK EXPERIENCE

Quant Research, Castleton Commodities International

Stamford, Connecticut

2023.06 - 2023.08

- Develop and implement a Spatial Equilibrium Model to predict regional prices for metals and agricultural commodities
- Enhance model accuracy to predict copper prices, achieving a 91.3% match with actual market prices
- · Conduct sensitivity analysis for the global soybean market, aligning model outputs with real-world events
- Contribute to the development of the model that was successfully deployed in the European oil market post-internship

Quant Research Market, JPMorgan & Chase

New York, New York

2024.06 - Present

- Analyze discrepancies between Tier 27 stress results and equity desk calculations, identifying a 236% relative error due to specific instrument type
- Develop and maintain new infrastructure for calculating Tier 27 stress to replace the system from London equity desk
- Coordinate with the managing director and equity desk to ensure alignment and update risk assessment methodologies

Research Assistant, Stony Brook University

Stony Brook, New York

2022.08- Present

- Fast Option Pricing Using Nonlinear Stencils
 - Design an efficient algorithm for non-linear Stencil Computation and demonstrate that it is 1000 faster than existing algorithms
 - Apply the algorithm to American options based on the Scholes Model and Finite Difference Method
- Approximate backward differentiation of gradient flow
 - Investigate a family multi-step implicit optimization algorithm and provide convergence analysis of the algorithm
 - Implement the algorithms in deep neural networks and demonstrate that the algorithms offer stability and lower hyperparameter tuning. The normal gradient descent requires $\frac{1}{L}$ step sizes to converge, but the exact multi-step methods can converge faster without any step size restriction
- Earning Call Natural Language Processing
 - Preprocess the Earning call Transcript into question from analysts and answer from the manager
 - Use the Transformer model to get the topic switching index, which is the discrepancy between manager and analyst scripts
 - Build a Portfolio strategy that outperforms markets by 23% per year.

Research Assistant, Rensselaer Polytechnic Institute

Trov. New York

2019.01-2021.5

- Spatial parameterization of attachment processes in molecular motor-cargo systems
 - Use Stochastic-Differential Equations, Forward Kolmogorov equation and Backward Kolmogorov equation to analyze the statistical properties of the motor-cargo dynamics
 - Compare the analytical results with the simulated results and conclude that our analytical results matched with the simulated results for at least 96% accuracy

PROJECTS

Parallel Programming and Scheduler

Stony Brook, New York

2022.01 - 2022.05

- Implement 3 different ways of schedulers called: distributed randomized work-stealing, distributed randomized work-sharing and centralized work-sharing for Matrix Multiplication
- The schedulers will have 50% less cache miss rate than the normal Matrix Multiplication algorithm by tuning the parameters

Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression

Troy, New York

2020.09 - 2020.12

- Implement a distributed learning based algorithm called Stochastic Gradient Descent with Double Pass Error Compensated Compression which are 20% faster than the current benchmark
- Apply Top k Sparsification and Low Bit Quantization requiring 70% less memory usage
- Apply the above algorithm to deep neural network and image classification problem achieving 90% out of sample accuracy