PUBLICLY SHARED

Flutter

Testing Code Samples

SUMMARY

A proposal to add unit testing to APl documentation
code samples.

Author: Greg Spencer (gspencergoog)

Go Link: flutter.dev/go/testing-code-samples
Created: 6/2021 / Last updated: 6/2021

OBJECTIVE

To create a way to create tests for APl documentation code samples, so that we
know that the samples have the functionality that we expect them to have, and that
they function properly on all platforms. An additional objective would be to be able
to enforce that a sample has a test as a presubmit test.

BACKGROUND

Currently, Flutter's APl documentation code samples (e.g. this one) are analyzed
and formatted, but no unit tests are run on them. There's not even a smoke test to
make sure that they don't immediately crash. This has resulted in a few cases of
samples that just don't run, as the code has changed underneath them.

The source for these samples is the APl documentation itself. We store the samples
in the /// dartdoc comments in the code, surrounded by tags that look like {@tool
dartpad --template=material_scaffold}...{@end-tool}. This location is part of
what makes it difficult (currently impossible) to write unit tests for: they are only
comments, not code in separate files. They are stored in the comments because it
has been seen to be quite beneficial to have the samples next to the code that they
illustrate: it puts them front and center when reading the comments in the code,
and it makes it easier to search/replace terms in a file and also catch the ones in
the sample code. The IDEs don't recognize them as code, however, so renaming

PUBLICLY SHARED


https://flutter.dev/go/testing-code-samples
https://api.flutter.dev/flutter/widgets/Actions-class.html#widgets.Actions.1

PUBLICLY SHARED
symbols doesn’t carry into the samples.

Glossary

e Code Sample - A piece of code connected with the APl documentation meant
to illustrate a concept or mechanism in the codebase.

OVERVIEW

There are several proposals in this document, and one of the goals is to reduce the
proposals to the one preferred proposal.

The presentation of the APl documentation on the APl documentation site would
not change in any of these designs.

DETAILED DESIGN/DISCUSSION

Design One: Extract and Conquer (Currently Preferred)

This design takes the sample source out of the APl documentation entirely, leaving
only a placeholder in the docs that points to their location in the repo (a path),
allowing us to run and write tests in the place where the source code is committed.

The down side of this is that the sample source is no longer visible in the API
documentation comments. Searching in the same file for symbols won't search the
sample code, although IDEs will now be able to see the sample code, so symbol
renaming will work.

Pros:

Only one source of truth for the sample source.

Unit tests are written in the same way as other unit tests.

Doesn't require any new presubmit checks or tools.

Symbol renaming and searching in IDEs will work on the sample code too.
Able to realize the goals of the Medium-Sized Sample Code proposal.
Reuse of samples in multiple places is practical.

Cons:
e Sample source is no longer visible in APl documentation comments.

Design Two: Separate But Equal

This proposal is to continue to have the comments be the source of truth for the
code, but to also commit a copy of these samples to the repository. It means that
we will need tooling which notices when a comment is changed, and updates the
checked in copy. Alternatively, we could make the one in the separate file the
source of truth, and running the tool just updates the comments.

This enables the ability to write tests alongside the checked in location for the
sample code, and run those tests as part of continuous integration (Cl) testing.

PUBLICLY SHARED


https://api.flutter.dev
https://flutter.dev/go/medium-sized-code-samples

PUBLICLY SHARED

The down side is the need to run a command whenever you update a sample, and
to have the Cl system run a check to make sure you didn't modify a sample without
running that command.

One variation of this design: The command could possibly sync both ways, allowing
you to edit the code sample on disk and place the result back into the appropriate
API doc comment, or vice versa.

Pros:
e Allows sample sources to stay in APl documentation.
e Unit tests are written in the same way as other unit tests.
e Symbol renaming and searching in IDEs will work on the sample code too,
provided the new sync tool is run afterwards to sync the comments.
e Able to realize the goals of the Medium-Sized Sample Code proposal.

e Two sources of truth for sample sources.

e More complex presubmit checking is required.

e Atoolis required to keep two copies in sync.

e Adds more procedure to checking something in.

e Adds to the learning cliff for new developers.

e Reuse of samples in multiple places is not practical.

e large samples would use a lot of space in the comments.

Design Three: Testing In Absentia

This design leaves the sample source in the APl documentation comments, and
introduces a location in the repo where we can check in unit tests for each of the
samples as separate files. To run the tests, a tool extracts the samples from the API
documentation, merges them into a temporary project with the appropriate test
file(s), and runs the tests.

Pros:
e Allows sample sources to stay in APl documentation.
e Only one source of truth for the sample source.

e Requires a tool and procedure for running sample tests.

e Requires a way of writing the sample tests that is different from the standard
way, adding more to the learning cliff, and special casing in IDE plugins.

e Symbol renaming in IDEs will not work on the sample code (which is also a
down side of the status quo).

e You couldn't run the test from within an IDE without making the IDE plugin
aware of the extraction tool.

PUBLICLY SHARED


https://flutter.dev/go/medium-sized-code-samples

PUBLICLY SHARED

OPEN QUESTIONS

e Do we have good information about the usefulness of the samples being
readable directly in the APl documentation comments?

DOCUMENTATION PLAN

The mechanism for adding unit tests to code samples will be documented as part of
the developer documentation in the Flutter wiki.

PUBLICLY SHARED



