Lecture 2: Database Models & Architecture

1. Database Model (Data Model)

Definition: A type of data model that determines the logical structure of
a database. It dictates how data can be stored, organized, and
manipulated.

Usage: Provides a framework for database designers and developers.
The most common model is the relational model.

2. Basic Terminologies

Entity: A tangible or intangible object (e.g., person, place, event) about
which data is stored.

Attribute: A characteristic or property of an entity (e.g., Name, ID for

a STUDENT entity).

Relationship: An association between two or more entities. Types
include 1:1 (one-to-one), 1:M (one-to-many), and M:N (many-to-many).
Constraints: Rules and restrictions placed on the data to ensure its
integrity and accuracy.

Business Rules: Precise, unambiguous descriptions of an organization's
policies and procedures. They are crucial for identifying entities,
attributes, relationships, and constraints.

o Rule: Nouns become entities; verbs become relationships.

3. Types of Database Models (Comparison)

Model Structur | Key Feature Pros Cons
e
Hierarchica | Tree One parent per | Conceptual Rigid structure,
| (Root & | child (1:M) simplicity, Can't handle
Nodes) Integrity, M:N, Complex to
Efficiency for [manage
large DBs

Network Graph Handles High-speed | No SQL support,
(Nodes | M:N relationship | retrieval, Complex
& Links) |s Handles navigational
complex access, Hard to
relationships | modify
Relational | Tables Based on Ease of use High
(Rows & | relational (SQL), Data hardware/softwa
Columns | algebra & SQL | sharing, re cost, Can be
) Controls complex, Large
redundancy, |size
Powerful
DBMS
Object-Ori | Objects | Encapsulation & | Semantic Lack of
ented (Data + | Inheritance representatio |[standards,
(OODB) Methods n, Handles Complex design,
) complex data | Slow
(e.g., transactions,
multimedia), | High overhead
Reusability

4. Relational Model Specifics (ER Model)

o
o
o

0
o Keys:

o
o

Column values are atomic.
Each row must be unique.
Each column has a unique name and a domain (set of possible

values).

The order of rows and columns is insignificant.

Table = Relation, Row = Tuple, Column = Attribute.
Rules:

Primary Key: A unique identifier for a row.
Foreign Key: An attribute that creates a link between two tables.

e Entity-Relationship Diagram (ERD):

o Entity: Rectangle (e.g., STUDENT).
o Attribute: Oval, connected to its entity.
o Relationship: Diamond, connecting entities.

o Cardinality: Defines the numerical relationship (1:1, 1:M, M:N)
between entities.

o Degree: Number of entities participating in a relationship (Unary,
Binary, Ternary, N-ary).

5. Database Schema vs. Database State

e Database Schema:

o Definition: The blueprint or design of the database. It includes
descriptions of structure, data types, and constraints.
o Analogy: The structure of a variable (e.g., int count;).
o Changes: Very infrequently (is intension).
e Database State (Instance):

o Definition: The actual data stored in the database at a specific
moment in time.
o Analogy: The value of a variable (e.g., count = 5;).
o Changes: Every time the database is updated (is extension).
e Valid State: A database state that satisfies all the structure and
constraints defined in the schema.

6. Three-Level Architecture (ANSI/SPARC)

This architecture provides data independence by separating the user
applications from the physical database.

Level Description Focus Audience

1. External User Views. Multiple | End-User Application

Level customized views of | Needs programmers,
the data relevant to end-users
specific users.

2. Community View. A Global, logical | Database

Conceptual | complete description | view of all Administrators

Level of the entire database | data (DBA)
information structure

(entities, attributes,

relationships,

constraints).

3. Internal Physical Storage DBMS

Level View. Describes how | efficiency, developers/system

the data is physically | performance | programmers

stored (file structures,

indexes, compression).

e Mappings: The DBMS uses mappings to translate requests between
levels.

o External/Conceptual Mapping: Links external views to the
conceptual schema.

o Conceptual/Internal Mapping: Links the conceptual schema to
the physical storage.

7. Data Independence

The immunity of user applications to changes made in the database structure.
This is the primary goal of the three-level architecture.

e Logical Data Independence:

o Definition: The capacity to change the conceptual
schema without having to change external schemas or
application programs.
o Example: Adding a new entity or attribute to the overall database
without affecting existing user views.
e Physical Data Independence:

o Definition: The capacity to change the internal schema without
having to change the conceptual schema.

o Example: Changing the file organization (e.g., from a hash to a
B-tree index) or adding data encryption without affecting the
logical structure of the database.

