
Lecture 2: Database Models & Architecture 

1. Database Model (Data Model) 

●​ Definition: A type of data model that determines the logical structure of 
a database. It dictates how data can be stored, organized, and 
manipulated. 

●​ Usage: Provides a framework for database designers and developers. 
The most common model is the relational model. 

2. Basic Terminologies 

●​ Entity: A tangible or intangible object (e.g., person, place, event) about 
which data is stored. 

●​ Attribute: A characteristic or property of an entity (e.g., Name, ID for 
a STUDENT entity). 

●​ Relationship: An association between two or more entities. Types 
include 1:1 (one-to-one), 1:M (one-to-many), and M:N (many-to-many). 

●​ Constraints: Rules and restrictions placed on the data to ensure its 
integrity and accuracy. 

●​ Business Rules: Precise, unambiguous descriptions of an organization's 
policies and procedures. They are crucial for identifying entities, 
attributes, relationships, and constraints. 

o​ Rule: Nouns become entities; verbs become relationships. 

 

3. Types of Database Models (Comparison) 

Model Structur
e 

Key Feature Pros Cons 

Hierarchica
l 

Tree 
(Root & 
Nodes) 

One parent per 
child (1:M) 

Conceptual 
simplicity, 
Integrity, 
Efficiency for 
large DBs 

Rigid structure, 
Can't handle 
M:N, Complex to 
manage 



Network Graph 
(Nodes 
& Links) 

Handles 
M:N relationship
s 

High-speed 
retrieval, 
Handles 
complex 
relationships 

No SQL support, 
Complex 
navigational 
access, Hard to 
modify 

Relational Tables 
(Rows & 
Columns
) 

Based on 
relational 
algebra & SQL 

Ease of use 
(SQL), Data 
sharing, 
Controls 
redundancy, 
Powerful 
DBMS 

High 
hardware/softwa
re cost, Can be 
complex, Large 
size 

Object-Ori
ented 
(OODB) 

Objects 
(Data + 
Methods
) 

Encapsulation & 
Inheritance 

Semantic 
representatio
n, Handles 
complex data 
(e.g., 
multimedia), 
Reusability 

Lack of 
standards, 
Complex design, 
Slow 
transactions, 
High overhead 

 

4. Relational Model Specifics (ER Model) 

●​ Table = Relation, Row = Tuple, Column = Attribute. 
●​ Rules: 

o​ Column values are atomic. 
o​ Each row must be unique. 
o​ Each column has a unique name and a domain (set of possible 

values). 
o​ The order of rows and columns is insignificant. 

●​ Keys: 

o​ Primary Key: A unique identifier for a row. 
o​ Foreign Key: An attribute that creates a link between two tables. 

●​ Entity-Relationship Diagram (ERD): 

o​ Entity: Rectangle (e.g., STUDENT). 
o​ Attribute: Oval, connected to its entity. 
o​ Relationship: Diamond, connecting entities. 



o​ Cardinality: Defines the numerical relationship (1:1, 1:M, M:N) 
between entities. 

o​ Degree: Number of entities participating in a relationship (Unary, 
Binary, Ternary, N-ary). 

 

5. Database Schema vs. Database State 

●​ Database Schema: 

o​ Definition: The blueprint or design of the database. It includes 
descriptions of structure, data types, and constraints. 

o​ Analogy: The structure of a variable (e.g., int count;). 
o​ Changes: Very infrequently (is intension). 

●​ Database State (Instance): 

o​ Definition: The actual data stored in the database at a specific 
moment in time. 

o​ Analogy: The value of a variable (e.g., count = 5;). 
o​ Changes: Every time the database is updated (is extension). 

●​ Valid State: A database state that satisfies all the structure and 
constraints defined in the schema. 

 

6. Three-Level Architecture (ANSI/SPARC) 

This architecture provides data independence by separating the user 
applications from the physical database. 

Level Description Focus Audience 
1. External 
Level 

User Views. Multiple 
customized views of 
the data relevant to 
specific users. 

End-User 
Needs 

Application 
programmers, 
end-users 

2. 
Conceptual 
Level 

Community View. A 
complete description 
of the entire database 
information structure 

Global, logical 
view of all 
data 

Database 
Administrators 
(DBA) 



(entities, attributes, 
relationships, 
constraints). 

3. Internal 
Level 

Physical 
View. Describes how 
the data is physically 
stored (file structures, 
indexes, compression). 

Storage 
efficiency, 
performance 

DBMS 
developers/system 
programmers 

●​ Mappings: The DBMS uses mappings to translate requests between 
levels. 

o​ External/Conceptual Mapping: Links external views to the 
conceptual schema. 

o​ Conceptual/Internal Mapping: Links the conceptual schema to 
the physical storage. 

 

7. Data Independence 

The immunity of user applications to changes made in the database structure. 
This is the primary goal of the three-level architecture. 

●​ Logical Data Independence: 

o​ Definition: The capacity to change the conceptual 
schema without having to change external schemas or 
application programs. 

o​ Example: Adding a new entity or attribute to the overall database 
without affecting existing user views. 

●​ Physical Data Independence: 

o​ Definition: The capacity to change the internal schema without 
having to change the conceptual schema. 

o​ Example: Changing the file organization (e.g., from a hash to a 
B-tree index) or adding data encryption without affecting the 
logical structure of the database. 

 


