رقم 1 الدراسية: الدراسية: الدراسية: الدراسية: الدراسية: الأولى المنت علوم المنت الدراسية: الأولى المنت الدراسية: علامة الأولى علامة الأستاذ: مزين عبدالاله	فيزيائي
الفيزياء (13 نقطه)	سلم التنقيط
Www.AdrarPhysic.Com (45.6,5) (25.6) التمرين الأول: $t_1 = 3,6$ (25.6) التحرين الأول: $t_1 = 3,6$ (25.6) الحدث عند اللحظة $t_1 = 3,6$ (25.6) الحرف الموجة الميكانيكية. $t_1 = 3,6$ (25.6) $t_2 = 3,6$ (25.6) الموجة الميكانيكية. $t_3 = 1,6$ (25.6) $t_4 = 3,6$ (25.6) $t_5 = 3,6$ (25.6) $t_6 = 3,6$ (1 ů 1 ů
التمرين الثاني: (6,5 نقط) اثناء حصة الأشغال التطبيقية لدرس الموجات الضوئية بإحدى الثانويات. اقترحت احدى المجموعات قياس قطر خيط نسيج العنكبوت. فأنجزت هذه المجموعة من التلاميذ التجربة الموجودة أسفله. I. ابراز ظاهرة حيود المضوء والعوامل المؤثرة عليها.	2
نضيء صفيحة بها شق رأسي عرضه λ_0 بواسطة ضوء احادي اللون تردده $\nu=4,44.10^{14}~Hz$ وطول موجته في الفراغ λ_0 توجد الصفيحة على مسافة على مسافة فنحصل على الشكل -1 . λ_0 الصفيحة على مسافة انتشار الضوء في الفراغ λ_0 الفراغ الفراغ الفراغ الفراغ الفرق النواع λ_0 وعرض الشق وطول الموجة λ_0 وعرض المقعة المركزية (نعطي λ_0 اوجد العلاقة بين λ_0 و و λ_0 المقعة المركزية (نعطي λ_0 الموجة λ_0 الموجة λ_0 الموجة λ_0 المسب طول الموجة λ_0 واستنتج عرض المشق اذا علمت ان λ_0 المسب طول الموجة λ_0 واستنتج عرض المشق اذا علمت ان λ_0 المسب طول الموجة λ_0 واستنتج عرض المشق اذا علمت ان	1 0

5. ما هي العوامل المؤثرة على طاهرة الحيود.

الفير وسط الانتشار على ظاهرة الحيود.

نضع بين الصفيحة والشاشة قطعة زجاج على شكل متوازي المستطيلات كما يبين الشكل -2-. معامل انكسار الزجاج بالنسبة للضوء المستعمل هو 1,61 = n فنلاحظ على الشاشة ان طول البقعة المركزية يأخذ قيمة L.

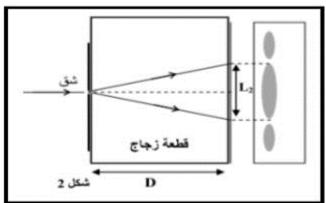
ن 0,5

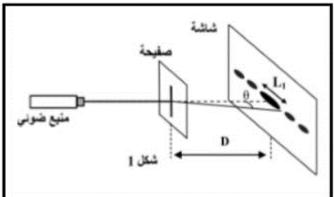
ما قيمته. اعط تعبير λ طول الموجة الضوئية في الزجاج بدلالة n و م λ ثم احسب قيمته.

ن 1

2. استنتج L_2 طول البقعة المركزية بدلالة L_1 و n ثم احسب قيمته.

ن 0,5


3. قارن $_{\rm L}$ و $_{\rm L}$ ثم استنتج عامل آخر يؤثر على ظاهرة الحيود.


الا. تحديد قطر خيط نسيج العنكبوت.

نحتفظ بنفس التركيب السابق مع إزالة القطعة الزجاجية وتعويض الشق بخيط نسيج العنكبوت وضع رأسيا. نقيس طول البقعة المركزية على الشاشة فنجد L₃ = 1 cm <u>قطر خيط نسيج العنكبوت.</u>

ن 1,5

Www.AdrarPhysic.Com

الكيمياء (7 نقط)

يهدف هذا التمرين الى تتبع تطور تفاعل ثنائي البروم مع حمض الميثانويك بقياس الضغط. ثم دراسة تأثير بعض العوامل الحركية على سرعة التفاعل.

معطيات:

ن 1

- نعتبر ان جميع الغازات كاملة.
- تمت جميع القياسات عند درجة الحرارة T= 304 K
 - معادلة الحالة للغازات الكاملة P.V= n.R.T
- ثابتة الغازات الكاملة R= 0,082 atm.L.mol⁻¹.K⁻¹

في محلول مائي يتفاعل ثنائي البروم Br_2 مع حمض الميثانويك CH_2O_2 كليا وببطء وفق المعادلة الكيميائية التالية:

$$Br_{2(aq)} + CH_2O_{2(aq)} \rightarrow 2Br_{(aq)}^- + CO_{2(g)} + 2H_{(aq)}^+$$

عند اللحظة $t_0=0$ خليطًا تفاعليا مكون من: $t_0=0$ خليطًا تفاعليا مكون من:

- $C_1 = 2,40.10^{-2} \text{ mol/L}$ تركيزه المولى Br_2 من محلول ثنائى البروم $V_1 = 50 \text{ mL}$
- $C_2 = 3.10^{-2} \text{ mol/L}$ تركيزه المولى CH_2O_2 من محلول حمض الميثانويك $V_2 = 50 \text{ mL}$
 - نعتبر ان حجم الغاز يبقى ثابت. ونهمل حجم الخليط التفاعلي ٧ امام حجم الحوجلة ٧

م 0,5 بواسطة أنبوب رقيق نصل الحوجلة بمضغاط ثم نتتبع التطور الزمني للمجموعة الكيميائية من خلال تغير الضغط الكلي داخل الحوجلة.

- 1. انقل الى ورقة تحريرك كل اقتراح صحيح من الاقتراحات التالية:
- يمكن تتبع تطور هذا التحول بقياس حجم غاز ثنائى أوكسيد الكربون.
 - خلال التحول تزداد موصلية الخليط.
 - المؤكسد نوع كيميائي قادر على اكتساب الكترون او أكثر.
 - يمكن تتبع تطور هذا التفاعل بقياس كتلة ثنائى البرومBr2.
- ن 0.5 في المعادلة الحصيلة لتفاعل اكسدة-اختزال. تعرف على المزدوجتين (Ox/Red) المتدخلتين في التفاعل.
 - n_2 . نرمز ب n_1 لكمية المادة البدئية لثنائى البروم n_2 . وب n_2 . وب n_2 لكمية المادة البدئية لحمض الميثانويك n_2 .

2/2

ن 0,5

 $m n_2$ = 1,50. 10^{-3} mol و $m n_1$ = 1,20. 10^{-3} mol تحقق ان

4. أنشئ الجدول الوصفى لتقدم التفاعل ثم حدد التقدم الأقصى Xmax

ن 1

 $P = P_0 + (\frac{R.T}{V})x$ مع $_{\mathbf{X}}$ معدلة الحالة الحالة للغازات الكاملة واستغلال الجدول الوصفي. اثبت العلاقة التالية التفاعل و P_0 الضغط الكلي عند لحظة P_0 و الضغط البدئي. ن 0,5

6. استنتج قيمة Pmax الضغط الأقصى داخل الحوجلة عند نهاية التفاعل.

7. بين ان تعبير السرعة الحجمية للتفاعل يكتب على

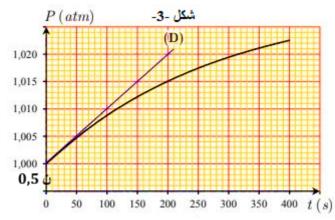
 $v = \frac{1}{V_T} \frac{V}{R.T} \frac{dP}{dt}$ الشكل

ن 1

ن 1

8. يمثل منحنى الشكل -3- تغير الضغط الكلى داخل الحوجلة بدلالة الزمنP= f(t) . يمثل المستقيم (D) مماس المنحنى عند اللحظة والمنحنى المنحنى عند اللحظة

بالوحدة mol.L-1.s-1 السرعة الحجمية للتفاعل عند


اللحظة <u>t₀= 0 .</u>

 $t_{1/2}$ حدد قيمة زمن نصف التفاعل .9

10. كيف ستتغير سرعة التفاعل في الحالتين التاليتين:

الحالة-1-: نضع الحوجلة في ماء بارد.

الحالة-2-: نضاعف تركيز حمض الميثانويك.

⊙ والله ولى التوفيق ⊙

ن 0,5