Ответы на задания первого этапа республиканской олимпиады по учебному предмету «Химия» 2024/2025 учебный год IX класс

ТЕОРЕТИЧЕСКИЙ ТУР Задача № 1

Исследователем было взято два раствора. Первый – раствор гидрокисда натрия с массой 300 г и массовой долей растворенного вещества 5 %. Рассчитайте химическое количество (моль) растворенного вещества:

```
m(p-pa)=300 \ \Gamma; \omega=0.05; m(B-Ba)=300\cdot0.05=15 \ \Gamma-1 \ балл n(NaOH)=15:40=0.375 \ моль -1 \ балл
```

2 балла

Второй раствор – раствор серной кислоты с массой 200 г и массовой долей растворенного вещества 9,8 %. Рассчитайте химическое количество (моль) растворенного вещества:

```
\begin{array}{l} m(\text{p-pa})\!\!=\!\!200~\Gamma~;~\omega\!\!=\!\!0,\!098;\\ m(\text{в-вa})\!\!=\!\!200\!\cdot\!0,\!098\!\!=\!\!19,\!6~\Gamma-1~\text{балл}\\ n(H_2SO_4)\!\!=\!\!19,\!6:\!98\!\!=\!\!0,\!2~\text{моль}-1~\text{балл} \end{array}
```

2 балла

Два раствора слили, в результате сливания произошла химическая реакция, запишите ее уравнение в молекулярном и ионном полном и сокращенном виде:

```
2NaOH+H_2SO_4=Na_2SO_4+H_2O-\emph{1} балл 2Na^++2OH^-+2H^++SO_4^{\ 2-}=2Na^++SO_4^{\ 2-}+H_2O-\emph{0,5} балла H^++OH^-=H_2O-\emph{0,5} балла
```

2 балла

Определите, какое из веществ было взято в избытке, рассчитайте какое химическое количество (моль) вещества, оставшегося в растворе:

2NaOH + H_2 SO₄ = Na_2 SO₄ + H_2 O исходя из уравнения реакции, и выше определенных химических количеств, можно определить, что в избытке – серная кислота. – 2 балла за определение

По уравнению реакции химическое количество серной кислоты, которое ушло в эту реакцию $n(H_2SO_4)=0,1875$ моль – 1 балл

Химическое количество серной кислоты, которое осталось в растворе

 $n(H_2SO_4)=0,2-0,1875=0,8125$ моль – 1 балл

4 балла

Определите массовые доли (%) всех веществ в полученном растворе:

```
^{0,375 \, \text{моль}} ^{0,1875 \, \text{моль}} ^{0,1875 \, \text{моль}} ^{0,1875 \, \text{моль}} ^{1,8125 \, \text{моль}}
```

Смесь газов HCl и HBr объемом 400 дм^3 (н.у.) с относительной плотностью по воздуху (н.у.) 2,41 растворили в 1 дм^3 воды. Найдите массовую долю (%) HBr в полученном растворе:

За расчёт молярной массы смеси - -2 балла : $M(смеси) = 2,41\cdot29 = 69,89$ г/моль

За определение объёмной доли каждого газа – 5 баллов: $69,89 = \varphi_1 \cdot M_1 + \varphi_2 \cdot M_2$

$$69.89 = 36.5 \, \varphi_1 + 81 - 81 \, \varphi_1$$

$$\varphi(HC1) = 0.25$$
; $\varphi(HBr) = 0.75$

За расчёт объёма каждого газа по 1 баллу:

$$V(HCl) = 0.25.400 = 100 \text{ дм}^3 - 1 \text{ балл}$$

$$V(HBr) = 0.75 \cdot 400 = 300 \text{ дм}^3 - 1 \text{ балл}$$

За расчёт химического количества каждого газа по 1 баллу:

$$n (HCl) = 100:22,4=4,46 моль – 1 балл$$

$$n (HBr) = 300:22,4=13,4 моль – 1 балл$$

За расчёт массы каждого газа по 1 баллу:

m (HCl) =
$$4,46 \cdot 36,5 = 162,72 \Gamma - 1$$
 балл

m (HBr) =
$$13.4 \cdot 81 = 1085.4$$
 г – 1 балл

За определение массы воды — $m(H_2O) = 1000 \ \Gamma - 1 \ балл$

За определение массы раствора – m(pаствора) = 1000+1085,4+162,72 = 2248,19 г – 3 балла

За определение массовой доли бромоводорода - $\omega(HBr) = 1085,4:2248,19 = 0,48\cdot100\% =$

20 баллов

Задача 3

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения (реакции могут протекать не в одну стадию): $S^{2-} \ 1 \rightarrow \ S^0 \ 2 \rightarrow \ S^{+4} \ 3 \rightarrow \ S^{+6} \ ^{4\rightarrow} \ S^{+4} \ ^{5\rightarrow} \ S^0 \ 6 \rightarrow \ S^{2-} \ 7 \rightarrow \ S^{+4}$

1.
$$2H_2S + O_{2(HEJIOCTATOK)} = 2H_2O + 2S$$

2.
$$S + O_2 = SO_2$$

$$3.2SO_2 + O_2 = 2SO_3$$

4.
$$SO_3 + H_2O = H_2SO_4$$
; $Cu + 2H_2SO_4 = CuSO_4 + SO_2 + 2H_2O$

$$5. SO_2 + 2H_2S = 3S + 2H_2O$$

6.
$$S + H_2 = H_2S$$

7.
$$2H_2S + 3O_2 = 2SO_2 + 2H_2O$$

Каждое правильно составленное уравнение реакции - 2 балла

ПРАКТИЧЕСКИЙ ТУР

Признаки, которые позволили вам определить каждое вещество:

хлорид алюминия

При добавлении гидроксида натрия выпадает белый студенистый осадок, который потом исчезает при добавлении избытка гидроксида натрия.

хлорид магния

При добавлении гидроксида натрия выпадает белый осадок, который не исчезает при добавлении избытка гидроксида натрия.

хлорид аммония

При добавлении гидроксида натрия выпадает выделяется газ со специфическим запахом.

Ответы на задания этапа республиканской олимпиады по учебному предмету «Химия» 2024/2025 учебный год

Х класс (общее время выполнения олимпиады 90 мин.)

ТЕОРЕТИЧЕСКИЙ ТУР Задача № 1

Натрий массой 5,75 г растворили в 100 см³ воды и получили раствор № 1. Рассчитайте для раствора № 1 его количественные характеристики: массу раствора (г), массу растворенного вещества (г), массовую долю растворенного вещества (%). Запишите уравнение реакции, которая протекает при данном процессе:

```
2Na + 2H_2O = 2NaOH + H_2 - 1 балл n(Na) = 5,75:23=0,25 моль n(NaOH) = 0,25 \cdot 40 = 10 г m(вещества) = 10 г - 2 балла m(pacтвора) = 5,75 + 100 - 0,25 = 105,5 г - 2 балла \omega(вещества) = 10:105,5 = 0,095·100%=9,5% <math>- 2 балла 7 баллов
```

Затем к этому раствору прибавляли соляную кислоту с массовой долей растворенного вещества равной 10 %, до тех пор, пока среда не стала нейтральной, и получили раствор № 2. Запишите уравнение реакции в молекулярном, ионном полном и ионном сокращенном виде, которая протекает при данном процессе:

```
NaOH + HCl = NaCl + H_2O - 1  балл;
Na^+ + OH^- + H^+ + Cl^- = Na^+ + Cl^- + H_2O - 1  балл
H^+ + OH^- = H_2O - 1  балл 3 балла
```

Рассчитайте для раствора HCl, пошедшего на нейтрализацию раствора № 1 его количественные характеристики: массу раствора (г) массу растворенного вещества (г).

```
n(HCl) = n(NaOH) = 0,25 моль m(HCl) 0,25\cdot36,5 = 9,125 г -2 балла m(pactbopa) = 9,125:0,1 = 91,25 г -2 балла 4 балла
```

I этап 59-й Республиканской олимпиады по учебному предмету «Химия» г. Минск, 24 октября 2024 года

Какую массу (г) воды надо выпарить из раствора № 2, чтобы общее число атомов в растворе уменьшилось вдвое:

За определение общего числа атомов изначального раствора - -8 *баллов*:

 $m(pacтворa) = 105,5 + 91,25 = 196,75 \ \Gamma; \ n(NaCl) = 0,25 \ моль; \ N(NaCl) = 1,505 \cdot 10^{23} \ \Phi.E.,$

 $N(atomob) = 1,505 \cdot 10^{23} \cdot 2 = 3,01 \cdot 10^{23}$

 $m(H_2O) = 196,75 - 14,625 = 182,125$ г; $n(H_2O) = 10,118$ моль; $N(H_2O) = 61 \cdot 10^{23}$ молекул,

 $N(\text{атомов воды}) = 61 \cdot 10^{23} \cdot 3 = 182,7 \cdot 10^{23}$

 Σ atomob = 185,742 ·10²³.

За определение числа атомов нового раствора - -6 *баллов*:

 Σ атомов = 185,742 ·10²³ : 2 = 92,871 ·10²³, где из них N(атомов NaCl) = 3,01·10²³

Тогда N(атомов воды) =89,861 \cdot 10²³; N(H₂O) = 30,01 \cdot 10²³ молекул; n(H₂O) = 5 моль; m(H₂O) = 90 г

За определение ответа – 2 балла

 $m(H_2O) = 182,125 - 90 = 92,125 \text{ r.}$

16 баллов

Задача 2

При пропускании смеси пропана и ацетилена через склянку с бромной водой по завершению реакции масса склянки увеличилась на 1,3 г. Запишите уравнения реакций, протекающих при данном процессе:

$$C_3H_8 + Br_2 \neq HC \equiv CH + 2Br_2 \rightarrow HBr_2C - CBr_2H$$

1 балл

Предположите, за счет чего могло произойти увеличение массы склянки.

За счёт присоединения ацетилена

1 балл

При полном сгорании такого же количества исходной смеси углеводородов выделилось 14 дм³ (н.у.) оксида углерода (IV). Запишите уравнения реакций, протекающих при данном процессе:

$$2C_2H_2 + 3O_2 \rightarrow 4CO_2 + 2H_2O - 1$$
 балл $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O - 1$ балл

2 балла

Определите массовую доля пропана в исходной смеси.

За определение массы ацетилена – 3 балла

Так как масса склянки увеличилась за счёт присоединения ацетилена, то $m(C_2H_2) = 1.3 \text{ г}$, соответственно $n(C_2H_2) = 1,3:26 = 0,05$ моль

За определение химического количества углекислого газа – 3 балла

Зная, что объём CO₂ равен 14 дм³ можно определить его химическое количество $n(CO_2) = 14:22,4 = 0,625$ моль

За определение химического количества пропана – 4 балла

Возвращаясь к уравнениям сгорания смеси, найдём химическое количество пропана – 4 балла

$$^{0,05 \text{ моль}}_{2C_2H_2} + 3O_2 \stackrel{0,1 \text{ моль}}{\longrightarrow} 4CO_2 +$$

 $2C_2H_2 + 3O_2 \rightarrow 4CO_2 + 2H_2O_2$, тогда для следующей реакции $n(CO_2) = 0.625 - 0.1 = 0.525$ моль

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

За определение массы пропана – 4 балла

$$m(C_3H_8) = 0.175.44 = 7.7 \Gamma$$

За определение массы смеси – 1 балл

$$m(смеси) = 1,3 + 7,7 = 9 \Gamma$$

За определение массовой доли пропана – 1 балл

$$\omega(C_3H_8) = 7.7:9=0.856\cdot100\% = 85.6\%$$

15 баллов

Задача 3

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения (реакции могут протекать не в одну стадию):

$$X_{1} \xrightarrow{1} C_{2}H_{4}$$

$$2 \downarrow \qquad \qquad 3 \downarrow 4$$

$$CH_{3}CHO \xrightarrow{5} X_{2}$$

Возможные уравнения реакций:

Исходя из представленных превращений, можно предположить, что X_1 – ацетилен, а X_2 этиловый спирт, тогда

1.
$$CH \equiv CH + H_2 \xrightarrow{\kappa} CH_2 = CH_2$$

2.
$$CH_2=CH_2^{[O]} \rightarrow CH_3CHO$$

3.
$$CH_2$$
= $CH_2 + H_2O \xrightarrow{t, \kappa} C_2H_5OH$

4.
$$C_2H_5OH \xrightarrow{t, \kappa} CH_2=CH_2 + H_2O$$

5.
$$CH_3CHO + H_2 \rightarrow C_2H_5OH$$

6.
$$C_2H_5OH + CuO \rightarrow CH_3CHO + Cu + H_2O$$

Каждое правильно составленное уравнение реакции - 2 балла

ПРАКТИЧЕСКИЙ ТУР

Признаки, которые позволили вам определить каждое вещество:

гидроксид натрия

При добавлении хлорида алюминия выпадает белый студенистый осадок, количество которого увеличивается при добавлении еще AlCl₃

хлорид бария

При добавлении серной кислоты выпадает осадок белого цвета, но при добавлении $CaCO_3$ признака реакции не наблюдается.

хлорид алюминия

При добавлении гидроксида натрия выпадает белый студенистый осадок, который потом исчезает при добавлении избытка гидроксида натрия.

серная кислота

При добавлении хлорида бария выпадает белый осадок, а при добавлении мела, выделяется газ

XI класс

ТЕОРЕТИЧЕСКИЙ ТУР Задача № 1

Была взята определенная порция пропаналя. Ее разделили на две части. Одну порцию восстановили до спирта, вторую – окислили до кислоты. Запишите уравнения реакций, протекающих при данном процессе:

$$CH_3CH_2CHO + H_2 \rightarrow CH_3CH_2CH_2OH - 1$$
 балл
$$CH_3CH_2CHO \rightarrow CH_3CH_2COOH - 1$$
 балл 2 балла

Выход продукта реакции в первом случае был равен 80%, а во втором — 90%. Два образовавшихся вещества нагрели вместе с раствором концентрированной серной кислоты, в результате чего получили органическое вещество. Запишите уравнение данной химической реакции:

$$CH_3CH_2CH_2OH + CH_3CH_2COOH \rightarrow CH_3CH_2C$$
 O- $CH_2CH_2CH_3$ 1 балл

Полученное органическое вещество взвесили, масса его оказалась равна 87 г. Известно, что выход продукта реакции на этой стадии составил 75%. Рассчитайте, чему были равны массы (г) веществ, которые вступили в реакцию:

 $^{1\, \mathrm{моль}}$ $^{1\, \mathrm{моль}}$ $^{0,75\, \mathrm{моль}}$ 0

Вычислите исходную массу (г) пропаналя:

```
CH_3CH_2CHO + H_2 \rightarrow CH_3CH_2CH_2OH
1,25 \text{ моль} 1 \text{ моль} 80\%
x \text{ моль} - 100\% x = 1,25 \text{ моль}

CH_3CH_2CHO \rightarrow CH_3CH_2COOH
1,11 \text{ моль} 1 \text{ моль} - 90\%
x \text{ моль} - 100\% x = 1,11 \text{ моль}

n(\text{пропаналя}) = 1,25+1,11=2,36 \text{ моль}
n(\text{пропаналя}) = 2,36\cdot58 = 136,88 \text{ г.}
```

Задача 2

В лаборатории была взят сплав металлов цинка, магния и меди. Данную смесь поместили в ток кислорода до окончания прохождения реакций. Запишите уравнения реакций, протекающих при данном процессе:

 $2Zn + O_2 = 2ZnO$ $2Mg + O_2 = 2 MgO$ $2Cu + O_2 = 2 CuO$ 3 балла $\Pio~1~баллу~за~реакцию$

В результате данного нагревания масса смеси возросла на 9,6 г. Предположите, за счет чего могло произойти увеличение массы исходного сплава.

За счёт присоединения кислорода 1 балл

Продукт, который образовался в результате действия кислорода частично растворяется в щелочи, причем для растворения нужно 40 см 3 раствора КОН ($\omega = 40$ %, $\rho = 1,4$ г/см 3). Запишите уравнения реакций, протекающих при данном процессе, а также рассчитайте химическое количество (моль) гидроксида калия, который понадобится для такого растворения:

```
MgO + KOH \neq CuO + KOH \neq ZnO+ 2KOH + H_2O \rightarrow K_2[Zn(OH)_4] - 2 балла за составление реакции 3а расчёт химического количества KOH - 3 балла m(pactbopa) = 56 г m(bequectba) = 22,4 г n(KOH) = 22,4:56=0,4 моль 5 баллов
```

Известно, что для реакции с такой же порцией сплава нужно 0,7 моль HCl. Запишите уравнения реакций, протекающих при данном процессе:

3a каждое уравнение реакции по 0.5 баллов ${\rm Zn} + {\rm 2HCl} = {\rm ZnCl_2} + {\rm H_2}$ ${\rm Mg} + {\rm 2HCl} = {\rm MgCl_2} + {\rm H_2}$ ${\rm Cu} + {\rm HCl} \neq$ 1 балл

Используя все полученные данные рассчитайте массовые доли (%) металлов в исходной смеси:

```
За расчёт массы цинка - баллов
0,2 моль 0,4 моль
ZnO+2KOH+H_2O \rightarrow K_2[Zn(OH)_4]
n(ZnO) = 0.2 моль
                      n(Zn) = 0.2 моль
                                              m(Zn) = 13 \Gamma
За расчёт массы магния - баллов
0,2 моль 0,4 моль
Zn + 2HCl = ZnCl_2 + H_2 - исходя из уравнения реакции можно увидеть, что при
взаимодействии с цинком израсходовалось 0,4 моль соляной кислоты. Всего соляной
кислоты было 0,7 моль, то есть на взаимодействие с магнием:
n(HCI) = 0.7 - 0.4 = 0.3 моль – на взаимодействие с магнием
0,15 моль 0,3 моль
Mg + 2HCl = MgCl_2 + H_2
n(Mg) = 0.15 моль
                        m(Mg) = 3.6 \Gamma
За расчёт массы меди - баллов
Для того, чтобы рассчитать массу цинка надо вернуться к началу задачи и вспомнить, что
m(O_2) = 9.6 \Gamma
                    n(O_2) = 0.3 моль
                 0,2 моль 0,1 моль
Тогда для цинка 2Zn + O_2 = 2ZnO
                0,15 моль 0,075 моль
Тогда для магния 2Mg + O_2 = 2 MgO
Тогда n(O_2) = 0.3-0.1-0.075 = 0.125 моль – для реакции с медью
0,25 моль 0,125 моль
2Cu + O_2 = 2 CuO
n(Cu) = 0.25 моль, тогда m(Cu) = 16 г
m(cплава) = 13+3,6+16 = 32,6 г
\omega(Cu) = 16:32.6 = 0.49 \cdot 100\% = 49\%
\omega(Mg) = 3.6:32.6 = 0.11\cdot100\% = 11\%
\omega(Zn) = 40\%
                                                                                 15 баллов
```

Задача 3

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения (реакции могут протекать не в одну стадию):

CuSO₄ 1
$$\rightarrow$$
 X₁ 2 \rightarrow Cu₂O 3 \rightarrow Cu(NO₃)₂ 4 \rightarrow Cu(OH)₂ NH3 \rightarrow X₄ HBr \rightarrow X₅
 $t^{\circ} \downarrow 5 \qquad \downarrow 8$
 $X_{1-6} \rightarrow$ CuCl_{2,7} \rightarrow X₃

Возможные уравнения реакций:

1.
$$CuSO_4 + 2KOH \rightarrow K_2SO_4 + Cu(OH)_2$$

2. $Cu(OH)_2 + CH_3COH \rightarrow Cu_2O + CH_3COOH + 2H_2O$

$$3.3 Cu_2O + 14HNO_{3(\text{kohil.})} \longrightarrow 6Cu(NO_3)_2 + 2 \ NO_2 + 7H_2O$$

4.
$$Cu(NO_3)_2 + 2KOH \rightarrow 2KNO_3 + Cu(OH)_2$$

5.
$$2CuSO_4 \rightarrow 2CuO + 2SO_2 + O_2$$

$$6.~CuO + 2HCl \rightarrow CuCl_2 + H_2O$$

7.
$$CuCl_2 + Cu \rightarrow CuCl$$

8.
$$Cu_2O + 2HCl \rightarrow CuCl + H_2O$$

9. $Cu(OH)_2 + 4NH_3 \rightarrow [Cu(NH_3)_4](OH)_2$

10. $[Cu(NH_3)_4](OH)_2 + 6HBr \rightarrow 4NH_4Br + CuBr_2 + 2H_2O$

Каждое правильно составленное уравнение реакции - 2 балла

ПРАКТИЧЕСКИЙ ТУР

Признаки, которые позволили вам определить каждое вещество:

уксусная кислота

Специфический запах; при взаимодействии с Cu(OH)₂ пропадает осадок, раствор становится голубым, реакция идёт медленно, быстрее при нагревании

этиловый спирт

Специфический запах; с Cu(OH)₂ не реагирует, признаков реакции нет

<u>глицерин</u>

При добавлении $Cu(OH)_2$ пропадает осадок и образуется раствор ярко-голубого цвета, который при нагревании не меняет цвет.

<u>глюкоза</u>

При добавлении $Cu(OH)_2$ пропадает осадок и образуется раствор ярко-голубого цвета, однако при нагревании данного раствора выпадает осадок красного цвета