
TepesAI
Smart corruption detector

1.​Overview

TepesAI is a complex multi-component approach to detecting and combating public
figures corruption. The system leverages the fact that all people working in public institutions
in Romania have to disclose their revenue and assets every year. Using self made automatic
tools, we crawl the statements from public databases, we perform text extraction on them,
we process the text to fit our models, then we feed the data to statistical & neural network
based anomaly detectors. With this approach, we can provide an objective, unbiased
corruption detection based on publicly available data.

2.​State of the art

 TepesAI - State of the art

3.​Our solution
Our application consists of the following components:

1.​Crawler

For data gathering, we were presented with two options:

●​ Manually search & download the statements
●​ Setup an automatic tool which can download tens of statements at a time

We focused on the second approach, since for the anomaly detector to be accurate,

we need to train it using an ample amount of data. Since there aren’t any public databases
which expose API endpoints for us to make requests to, we had to develop a more
sophisticated crawler using the automation tool Selenium which is able to mimic human
behavior and thus avoids rate limitations. The developed crawler can be run from the
command line and is highly customizable, accepting parameters for each query field from
the websites that expose the asset statements. The crawler is capable of downloading
multiple pages of statements and can extract both .pdf files and .csv tables containing data
about public figures.

https://docs.google.com/document/d/1Y7tl5RLEwBVzp951lLt35fuOIm2RMJpEmJc_y_Fz06U/edit

2.​Normalizer
With the public statements gathered, we now need to extract useful information from

them. That’s where the normalizer comes in, its job being extracting data from the pdfs and
processing it. The challenge in our case with extracting the data from the pdfs is that we
have multiple types of content inside of them:

-​ Fully digital pdfs
-​ Digital pdfs which were later scanned as images then converted to pdfs
-​ Handwritten statements which were later scanned and converted to pdfs

For the purpose of this tool, we’ll limit our scope to the first two types of pdfs since

the later one needs a complex approach for handwritten text extraction in romanian
language.

The fully digital pdfs can be parsed with common pdf libraries and simply have their
content extracted through their metadata. The challenge comes from the second type, where
we have to perform ocr (optical character recognition) on the pdf, and then extract the text as
we did in the first type approach. The issue with this type is that the current ocr technology
while being quite developed is nowhere near the needed level, especially in the context of
the romanian language. As a consequence, we receive artifacts in the ocr’d text, more
exactly incomplete words which can’t be used in our models. To overcome this problem, we
implemented a spellchecker which corrects the incorrect words using Levenshtein distance
and maps them to the nearest correct word using a dictionary of romanian words for
reference.

3.​Aggregator

With the data extracted, we now need to process it further and convert it into a useful
model for training and testing our neural network based anomaly detector. The aggregator
has to be able to extract data from multiple statements formats and convert them in the
same standardized model.

4.​Anomaly Detector
​ The final challenge is to actually use the generated data and based on it decide if a
person is corrupted or not. While the task seems pretty simple at first, a simple boolean
response of true / false if the person is corrupted or not, the actual process of getting to that
result is fairly complicated. We used a multi step approach. At first, we use the generated
data as time series and put it through the pre-trained value predictor. The neural network
uses LSTM layers and predicts how a future politician statement should look. This approach
is similar to the ones used in crypto / stock price prediction. With the generated values, we
then compare them to the actual values from that year’s statement.
​ Another approach would be to assign each person a corruption score, and run a
deep neural network which trains a model for regression. Such, we would need a set of
training data with a corruption score assigned to each person - for example, we could
hand-pick training data as known corrupted individuals and assign them a corruption score.

Based on this data, we could then assign each person we want to evaluate such a number.
The factors we could take into consideration would be salary, debts and investments.

4.​Challenges and results

Workflow:

The crawler will search and download the declarations from specific popular figures

from Romania.

.

​ After that, based on an approach we decided to implement, the normalizer would

transform and fit each politician’s declaration into a model politician with the following
attributes:

Having the model built, the aggregator is merging all of them in a csv file, which will

be used as train/test data for the anomaly detector.

With the dataset built, we can now use a series of statements and predict the values

for a future statement. With the predicted values we then compare it to the values from
actual future statements.

While the components on their own don’t seem that intimidating, merging them

together and creating a complete, end to end system which is able to achieve the end goal
of detecting anomalies in personal assets statements and highlighting corruption where it’s
suspected.

Each component presents its difficulties and since the approach is built upon a
cascading system, each failure in the component chain can disrupt the whole flow.

For example, the Crawler can fall into edge cases, for example providing no found
statements based on some query parameters or finding too many statements and being
unable to display them because of internal website policies.

The next difficulty comes from the Normalizer component, which has the hard job of
extracting and processing data from non-standardized pdfs. Along with the problem
mentioned in a previous section, related to the artifacts generated by the ocr, we also need
to find an automatic pdf type detection approach. For this, we employ a chain resolver
technique where we first assume that the pdf is fully digital and we try to validate the
extracted data. If the validation fails, we perform ocr on the pdf then we extract & process
the data and we perform once again a validation. If the validation fails again, it means it’s an
unsupported pdf type and we dismiss it. The difficulty of this approach is in finding a constant
value to validate against since the pdfs have different content.

●​ We need to have time series data so that we can detect corruption (detect huge
spikes in total assets value from one year to another) and most of the corrupted
politicians aren’t elected for more than 4 years (insufficient data)

●​ Most politicians are careful with their corruption, they tend to hide their assets
through family members which adds a layer of complexity (very hard to track)

●​ Assets in the statements are declared in multiple currencies (eur, usd, ron) and while
it’s easy to convert to one single universal currency, we need to take into account the
conversion rate from that period.

●​ Another problem with the assets statements is that we have items such as cars
which don’t have an associated value (We’d need to implement a crawler which
searches for the median price of the vehicle on multiple websites)

●​ Another issue would be that the aggregator has to solve is finding a model which
actually provides useful information for training the neural network and testing its
behavior.

5.​Future work
While the current state of the project is nowhere near production phase, the

approach looks promising regarding the near-future development of the used technologies.
The main areas of improvement would be:

-​ to develop and extend the functionality of the normalizer. That would require

further improvement in the ocr approach for the pdf files, as well as
developing a more complex algorithm to generify the distinct formats of the
declarations

-​ to further investigate the anomaly detector approach on a larger dataset of
people. While the concept of corruption is still ambiguous, the deep learning
algorithms could provide a way to quantify the level of the corruption of a
politician based of his declaration

6.​Conclusion
TepesAI is a complex multi-component approach to detecting and combating public

figures corruption. The system leverages the fact that all people working in public institutions
in Romania have to disclose their revenue and assets every year. Using self made automatic
tools, we crawl the statements from public databases, we perform text extraction on them,
we process the text to fit our models, then we feed the data to statistical & neural network
based anomaly detectors. With this approach, we can provide an objective, unbiased
corruption detection based on publicly available data.

	TepesAI
	1.​Overview
	TepesAI is a complex multi-component approach to detecting and combating public figures corruption. The system leverages the fact that all people working in public institutions in Romania have to disclose their revenue and assets every year. Using self made automatic tools, we crawl the statements from public databases, we perform text extraction on them, we process the text to fit our models, then we feed the data to statistical & neural network based anomaly detectors. With this approach, we can provide an objective, unbiased corruption detection based on publicly available data.
	2.​State of the art
	 TepesAI - State of the art
	3.​Our solution
	1.​Crawler
	2.​Normalizer
	3.​Aggregator
	4.​Anomaly Detector

	4.​Challenges and results
	5.​Future work
	6.​Conclusion
	
	

