Importing External Data in Beancount

Martin Blais, March 2016
http://furius.ca/beancount/doc/ingest

This document is about Beancount v2; Beancount v3 is in development and uses a completely different
build and installation system. For instructions on importing v3, see this document (Beangulp).

Intr ion

The Importing Process
Automating Network Downloads
Typical Downloads
Extracting Data from PDF Files
Tools
Invocation
. E._.
Configuring from an Input File
Writing an Importer
Regression Testing your Importers
Generating Test Input
Making Incremental Improvements
Running the Tests
Caching Data
In-Memory Caching
On-Disk Caching
Organizing your Files
Example Importers
Cleaning Up
Automatic Categorization
Cleaning up Payees
Future Work
—E lated Di ion Tl l
Historical

Introduction

This is the user’s manual for the library and tools in Beancount which can help you automate the
importing of external transaction data into your Beancount input file and manage the documents
you download from your financial institutions’ websites.

The Importing Process

People often wonder how we do this, so let me describe candidly and in more detail what we’re
talking about doing here.

The essence of the task at hand is to transcribe the transactions that occur in a person’s entire set of
accounts to a single text file: the Beancount input file. Having the entire set of transactions ingested
in a single system is what we need to do in order to generate comprehensive reports about one’s
wealth and expenses. Some people call this “reconciling”.

We could transcribe all the transactions manually from paper statements by typing them in.

mailto:blais@furius.ca
http://furius.ca/beancount/doc/ingest
https://docs.google.com/document/d/1hBfsHZcoHgz5rvhCdP42g2FJ5ouycIMV4H1tfgXpwBU/

However nowadays most financial institutions have a website where you can download a statement
of historical transactions in a number of data formats which you can parse to output Beancount
syntax for them.

Importing transactions from these documents involves:

e Manually reviewing the transactions for correctness or even fraud;

e Merging new transactions with previous transactions imported from another account. For
example, a payment from a bank account to pay off one’s credit card will typically be
imported from both the bank AND the credit card account. You must manually merge the
corresponding transactions together".

e Assigning the right category to an expense transaction

e Organizing your file by moving the resulting directives to the right place in your file.

e Verifying balances either visually or inserting a Balance directive which asserts what the
final account balance should be after the new transactions are inserted.

If my importers work without bugs, this is a process that takes me 30-60 minutes to update the
majority of my active accounts. Less active accounts are updated every quarter or when I feel like it.
[tend to do this on Saturday morning maybe twice per month, or sometimes weekly. If you maintain
a well-organized input file with lots of assertions, mismatches are easily found, it's a pleasant and
easy process, and after you're done generating an updated balance sheet is rewarding (I typically
re-export to a Google Finance portfolio).

Automating Network Downloads

The downloading of files is not something I automate, and Beancount provides no tools to connect
to the network and fetch your files. There is simply too great a variety of protocols out there to make
a meaningful contribution to this problem? Given the nature of today's secure websites and the
castles of JavaScript used to implement them, it would be a nightmare to implement. Web scraping
is probably too much to be a worthwhile, viable solution.

[manually log into the various websites with my usernames & passwords and click the right
buttons to generate the downloaded files | need. These files are recognized automatically by the
importers and extracting transactions and filing the documents in a well-organized directory
hierarchy is automated using the tools described in this document.

While I'm not scripting the fetching, I think it’s possible to do so on some sites. That work is left for
you to implement where you think it's worth the time.

However, today, thanks to the open banking project, we have universal APIs that allow for the quick
and reliable download of transactions from multiple bank accounts.

! There are essentially three conceptual modes of entering such transactions: (1) a user crafts a single
transaction manually, (2) another where a user inputs the two sides as a single transaction to transfer
accounts, and (3) the two separate transactions get merged into a single one automatically. These are dual
modes of each other. The twist in this story is that the same transaction often posts at different dates in each
of its accounts. Beancount currently [March 2016] does not support multiple dates for a single transaction’s
postings, but a discussion is ongoing to implement support for these input modes. See this document for more
details.

% The closest to universal downloader you will find in the free software world is ofxclient for OFX files, and in
the commercial world, Yodlee provides a service that connects to many financial institutions.

https://github.com/captin411/ofxclient
http://www.yodlee.com/
http://furius.ca/beancount/doc/proposal-settlement

Manual download
Typical Downloads

Here’s a description of the typical kinds of files involved; this describes my use case and what I've
managed to do. This should give you a qualitative sense of what’s involved.

e C(Credit cards and banks provide fairly good quality historical statement downloads in OFX
or CSV file formats but I need to categorize the other side of those transactions manually
and merge some of the transactions together.

e Investment accounts provide me with great quality of processable statements and the
extraction of purchase transactions is fully automated, but [need to manually edit sales
transactions in order to associate the correct cost basis. Some institutions for specialized
products (e.g., P2P lending) provide only PDF files and those are translated manually.

e Payroll stubs and vesting events are usually provided only as PDFs and I don't bother
trying to extract data automatically; I transcribe those manually, keeping the input very
regular and with postings in the same order as they appear on the statements. This makes it
easier.

e Cash transactions: [have to enter those by hand. I only book non-food expenses as
individual transactions directly, and for food maybe once every six months I'll count my
wallet balance and insert a summarizing transaction for each month to debit away the cash
account towards food to make it balance. If you do this, you end up with surprisingly little
transactions to type manually, maybe just a few each week (it depends on lifestyle choices,
for me this works). When I'm on the go, I just note those on my phone in Google Keep and
eventually transcribe them after they accumulate.

Extracting Data from PDF Files

['ve made some headway toward converting data from PDF files, which is a common need, but it's
incomplete; it turns out that fully automating table extraction from PDF isn't easy in the general
case. [have some code that is close to working and will release it when the time is right. Otherwise,
the best FOSS solution I've found for this is a tool called TabulaPDF but you still need to manually
identify where the tables of data are located on the page; you may be able to automate some
fetching using its sister project tabula-java.

Nevertheless, | usually have good success with my importers grepping around PDF statements
converted to ugly text in order to identify what institution they are for and extracting the date of
issuance of the document.

Finally, there are a number of different tools used to extract text from PDF documents, such as
PDFMiner, LibreOffice, the xpdf library, the poppler library® and more... but none of them works
consistently on all input documents; you will likely end up installing many and relying on different
ones for different input files. For this reason, I'm not requiring a dependency on PDF conversion
tools from within Beancount. You should test what works on your specific documents and invoke
those tools from your importer implementations.

Automatic download with open banking aggregator

3 The ‘pdftotext’ utility in poppler provides the useful ‘-layout’ flag which outputs a text file without mangling
tables, which can be helpful in the normal case of ‘transaction-per-row’

http://tabula.technology/
https://github.com/tabulapdf/tabula-java
https://pypi.python.org/pypi/pdfminer2
https://www.libreoffice.org
http://www.tutorialspoint.com/unix_commands/pdftotext.htm
https://poppler.freedesktop.org/

The open-source accounting software Firefly Il already integrates with some free open banking
APIs. For more information, you can visit Firefly [1l Documentation. An example of an open banking
aggregator that could be interesting is GoCardless. GoCardless supports many PSD2-compliant
banks in the EU and the UK, and it is free to use.

In the Beancout ecosystem, the tarioch /beancounttools project contains an importer for Nordigen
(which is the former name of the GoCardless banking api). This tool works with bean-extract.

1. Simply create and configure a Gocardless account
2. configure tarioch/beancounttools Nordigen importer: add nordigen importer in

my-smart.import and put nordigen.yaml in Downloads/
3. run: bean-extract -e database.beancount my-smart.import Download/ > new.beancount’.

This will automatically ingest the data for you.

Tools

There are three Beancount tools provided to orchestrate the three stages of importing:

1. bean-identify: Given a messy list of downloaded files (e.g. in ~/Downloads),
automatically identify which of your configured importers is able to handle them and print
them out. This is to be used for debugging and figuring out if your configuration is properly
associating a suitable importer for each of the files you downloaded;

2. bean-extract: Extracting transactions and statement date from each file, if at all possible.
This produces some Beancount input text to be moved to your input file;

3. bean-file: Filing away the downloaded files to a directory hierarchy which mirrors the
chart of accounts, for preservation, e.g. in a personal git repo. The filenames are cleaned, the
files are moved and an appropriate statement date is prepended to each of them so that
Beancount may produce corresponding Document directives.

Invocation

All tools accept the same input parameters:
bean-<tool> <config> <downloads-dir>

For example,
bean-extract blais.config ~/Downloads

The filing tool accepts an extra option that lets the user decide where to move the files, e.g.,
bean-file -0 ~/accounting/documents blais.config ~/Downloads

Its default behavior is to move the files to the same directory as that of the configuration file.

Configuration

The tools introduced previously orchestrate the processes, but they don’t do all that much of the
concrete work of groking the individual downloads themselves. They call methods on importer
objects. You must provide a list of such importers; this list is the configuration for the importing

https://docs.firefly-iii.org/how-to/data-importer/import/gocardless/
https://nordigen.medium.com/were-launching-a-free-psd2-data-api-for-europe-941f6298c0dc
https://tariochbctools.readthedocs.io/en/latest/importers.html#nordigen
https://developer.gocardless.com/bank-account-data/quick-start-guide#step-5-list-accounts
https://tariochbctools.readthedocs.io/en/latest/importers.html#nordigen
https://github.com/beancount/beancount/tree/v2/bin/bean-identify
https://github.com/beancount/beancount/tree/v2/bin/bean-extract
https://github.com/beancount/beancount/tree/v2/bin/bean-file

process (without it, those tools don’t do anything useful).

For each file found, each of the importers is called to assert whether it can or cannot handle that file.
If it deems that it can, methods can be called to produce a list of transactions, extract a date, or
produce a cleaned up filename for the downloaded file.

The configuration should be a Python3 module in which you instantiate the importers and assign
the list to the module-level “CONFIG” variable, like this:
#!/usr/bin/env python3

from myimporters.bank import acmebank
from myimporters.bank import chase

CONFIG = [
acmebank.Importer(),
chase.Importer(),

:

Of course, since you're crafting a Python script, you can insert whatever other code in there you like.
All that matters is that this “CONFIG” variable refers to a list of objects which comply with the
importer protocol (described in the next section). Their order does not matter.

In particular, it’s a good idea to write your importers as generically as possible and to parameterize
them with the particular account names you use in your input file. This helps keep your code
independent of the particular accounts and forces you to define logical accounts, and I've found that
this helps with clarity.

Or not... At the end of the day, these importer codes live in some of your own personal place, not
with Beancount. If you so desire, you can keep them as messy and unshareable as you like.

Configuring from an Input File

An interesting idea that [haven’t tested yet is to use one’s Beancount input file to infer the
configuration of importers. If you want to try this out and hack something, you can load your input
file from the import configuration Python config, by using the API's
beancount.loader.load_file() function.

Writing an Importer

Each of the importers must comply with a particular protocol and implement at least some of its
methods. The full detail of this protocol is best found in the source code itself: importer.py. The tools
above will take care of finding the downloads and invoking the appropriate methods on your
importer objects.

Here’s a brief summary of the methods you need to, or may want to, implement:

e name(): This method provides a unique id for each importer instance. It's convenient to be
able to refer to your importers with a unique name; it gets printed out by the identification
process, for instance.

e identify(): This method just returns true if this importer can handle the given file. You
must implement this method, and all the tools invoke it to figure out the list of (file,

https://github.com/beancount/beancount/tree/v2/beancount/ingest/importer.py

importer) pairs.

e extract(): Thisis called to attempt to extract some Beancount directives from the file
contents. It must create the directives by instantiating the objects defined in
beancount.core.data and return them.

e file_account(): This method returns the root account associated with this importer. This
is where the downloaded file will be moved by the filing script

e file_date(): Ifa date can be extracted from the statement’s contents, return it here. This
is useful for dated PDF statements... it's often possible using regular expressions to grep out
the date from a PDF converted to text. This allows the filing script to prepend a relevant date
instead of using the date when the file was downloaded (the default).

e file_name(): It's most convenient not to bother renaming downloaded files. Oftentimes,
the files generated from your bank all have a unique name and they end up getting renamed
by your browser when you download multiple ones and the names collide. This function is
used for the importer to provide a “nice” name to file the download under.

So basically, you create some module somewhere on your PYTHONPATH—anywhere you like,
somewhere private—and you implement a class, something like this:

from beancount.ingest import importer
class Importer(importer.ImporterProtocol):

def identify(self, file):

Override other methods...

Typically I create my importer module files in directories dedicated to each importer, so that I can
place example input files all in that directory for regression testing.

Regression Testing your Importers

['ve found over time that regression testing is key to maintaining your importer code working.
Importers are often written against file formats with no official spec and unexpected surprises
routinely occur. For example, | have XML files with some unescaped "&" characters, which require a
custom fix just for that bank®*. I've also witnessed a discount brokerage switching its dates format
between MM/DD/YY and DD/MM/YY; that importer now needs to be able to handle both types. So
you make the necessary adjustment, and eventually you find out that something else breaks; this
isn’t great. And the timing is particularly annoying: usually things break when you’re trying to
update your ledger: you have other things to do.

The easiest, laziest and most relevant way to test those importers is to use some real data files and
compare what your importer extracts from them to expected outputs. For the importers to be at
least somewhat reliable, you really need to be able to reproduce the extractions on a number of real
inputs. And since the inputs are so unpredictable and poorly defined, it’s not practical to write
exhaustive tests on what they could be. In practice, | have to make at least some fix to some of my
importers every couple of months, and with this process, it only sinks about a half-hour of my time:

* After sending them a few detailed emails about this and getting no response nor seeing any change in the
downloaded files, have given up on them fixing the issue.

https://github.com/beancount/beancount/tree/v2/beancount/core/data.py

[add the new downloaded file which causes breakage to the importer directory, I fix the code by
running it there locally as a test. And I also run the tests over all the previously downloaded test
inputs in that directory (old and new) to ensure my importer is still working as intended on the

older files.

There is some support for automating this process in beancount.ingest.regression. What we
want is some routine that will list the importer’s package directory, identify the input files which are
to be used for testing, and generate a suite of unit tests which compares the output produced by
importer methods to the contents of “expected files” placed next to the test file.

For example, given a package with an implementation of an importer and two sample input files:

/home/joe/importers/acmebank/__init__.py <- code goes here
/home/joe/importers/acmebank/samplel.csv
/home/joe/importers/acmebank/sample2.csv

You can place this code in the Python module (the __init__.py file):

from beancount.ingest import regression

def test():
importer = Importer(...)
yield from regression.compare_sample_files(importer)
If your importer overrides the extract() and file_date() methods, this will generate four unit
tests which get run automatically by pytest:

1. A test which calls extract() on samplel. csv, prints the extracted entries to a string, and
compares this string with the contents of samplel.csv.extract

2. Atestwhich calls file _date() on samplel.csv and compares the date with the one
found in the samplel.csv.file date file.

3. Atestlike (1) but on sample2.csv
4. Atestlike (2) but on sample2.csv

Generating Test Input

At first, the files containing the expected outputs do not exist. When an expected output file is

absent like this, the regression tests automatically generate those files from the extracted output.

This would result in the following list of files:
/home/joe/importers/acmebank/__init__.py <- code goes here
/home/joe/importers/acmebank/samplel.csv
/home/joe/importers/acmebank/samplel.csv.extract
/home/joe/importers/acmebank/samplel.csv.file_date
/home/joe/importers/acmebank/sample2.csv
/home/joe/importers/acmebank/sample2.csv.extract
/home/joe/importers/acmebank/sample2.csv.file_date

You should inspect the contents of the expected output files to visually assert that they represent
the contents of the downloaded files.

If you run the tests again with those files present, the expected output files will be used as inputs to
the tests. If the contents differ in the future, the test will fail and an error will be generated. (You can
test this out now if you want, by manually editing and inserting some unexpected data in one of
those files.)

https://github.com/beancount/beancount/tree/v2/beancount/ingest/regression.py
https://docs.pytest.org/en/latest/

When you edit your source code, you can always re-run the tests to make sure it still works on those
older files. When a newly downloaded file fails, you repeat the process above: You make a copy of it
in that directory, fix the importer, run it, check the expected files. That’s it®.

Making Incremental Improvements

Sometimes I make improvements to the importers that result in more or better output being
generated even in the older files, so that all the old tests will now fail. A good way to deal with this is
to keep all of these files under source control, locally delete all the expected files, run the tests to
regenerate new ones, and then diff against the most recent commit to check that the changes are as
expected.

Caching Data

Some of the data conversions for binary files can be costly and slow. This is usually the case for
converting PDF files to text®. This is particularly painful, since in the process of ingesting our
downloaded data we're typically going to run the tools multiple times—at least twice if everything
works without flaw: once to extract, twice to file—and usually many more times if there are
problems. For this reason, we want to cache these conversions, so that a painful 40 second
PDF-to-text conversion doesn’t have to be run twice, for example.

Beancount aims to provide two levels of caching for conversions on downloaded files:

1. Anin-memory caching of conversions so that multiple importers requesting the same
conversion runs them only once, and
2. An on-disk caching of conversions so that multiple invocations of the tools get reused.

In-Memory Caching
In-memory caching works like this: Your methods receive a wrapper object for a given file and
invoke the wrapper’s convert () method, providing a converter callable/function.
class MyImporter(ImporterProtocol):
def extract(self, file):

text = file.convert(slow_convert_pdf_to_text)
match = re.search(..., text)

This conversion is automatically memoized: if two importers or two different methods use the same
converter on the file, the conversion is only run once. This is a simple way of handling redundant
conversions in-memory. Make sure to always call those through the . convert() method and share
the converter functions to take advantage of this.

On-Disk Caching

At the moment. Beancount only implements (1). On-disk caching will be implemented later. Track
this ticket for status updates.

Organizing your Files

> As you can see, this process is partly why I don’t share my importers code. It requires the storage of way too
much personal data in order to keep them working.

® 1 don’t really understand why, since opening them up for viewing is almost instant, but nearly all the tools to
convert them to other formats are vastly slower.

https://github.com/beancount/beancount/issues/113

The tools described in this document are pretty flexible in terms of letting you specify

e Import configuration: The Python file which provides the list of importer objects as a
configuration;

e Importers implementation: The Python modules which implement the individual
importers and their regression testing files;

e Downloads directory: Which directory the downloaded files are to be found in;

e Filing directory: Which directory the downloaded files are intended to be filed to.

You can specify these from any location you want. Despite this, some people are often asking how to
organize their files, so I provide a template example under
beancount/examples/ingest/office, and I describe this here.

I recommend that you create a Git or Mercurial’ source-controlled repository following this
structure:

office

— documents

—— Assets

—— Liabilities
—— Income

—— Expenses
(— importers

—— __init__.py

—— __init__ .py

—— sample-download-1.csv

—— sample-download-1.extract
—— sample-download-1.file_date
—— sample-download-1.file_name
—— personal.beancount

—— personal.import

The root “office” directory is your repository. It contains your ledger file (“personal.beancount”),
your importer configuration (“personal. import”), your custom importers source code
(“importers/”) and your history of documents (“documents/”), which should be well-organized
by bean-file. You always run the commands from this root directory.

An advantage of storing your documents in the same repository as your importers source code is
that you can just symlink your regression tests to some files under the documents/ directory.

You can check your configuration by running identify:

bean-identify example.import ~/Downloads
If it works, you can extract transactions from your downloaded files at once:

bean-extract -e example.beancount example.import ~/Downloads > tmp.beancount
You then open tmp.beancount and move its contents to your personal.beancount file.

Once you're finished, you can stash away the downloaded files for posterity like this:

71 personally much prefer Mercurial for the clarity of its commands and output and its extensibility, but an
advantage of Git’s storage model is that moving files within it comes for free (no extra copy is stored). Moving
files in a Mercurial repository costs you a bit in storage space. And if you rename accounts or change how you
organize your files you will end up potentially copying many large files.

bean-file example.import ~/Downloads -o documents

If my importers work, I usually don’t even bother opening those files. You can use the --dry-run
option to test moving destinations before doing so.
To run the regression tests of the custom importers, use the following command:
pytest -v importers
Personally, [have a Makefile in my root directory with these targets to make my life easier. Note

that you will have to install “pytest”, which is a test runner; it is often packaged as “python3-pytest”
or “pytest”.

Example Importers

Beyond the documentation above, | cooked up an example importer for a made-up CSV file format
for a made-up investment account. See this directory.

There’s also an example of an importer which uses an external tool (PDFMiner2) to convert a PDF
file to text to identify it and to extract the statement date from it. See this directory.

Beancount also comes with some very basic generic importers. See this directory.

e There is a simple OFX importer that has worked for me for a long time. Though it’s pretty
simple, I've used it for years, it's good enough to pull info out of most credit card accounts.

e There are also a couple of mixin classes you can mix into your importer implementation to
make it more convenient; these are relics from the LedgerHub project—you don’t really
need to use them—which can help in the transition to it.

Eventually I plan to build and provide a generic CSV file parser in this framework, as well as a parser
for QIF files which should allow one to transition from Quicken to Beancount. (I need example
inputs to do this; if you're comfortable sharing your file I could use it to build this, as [don’t have
any real input, [don’t use Quicken.) It would also be nice to build a converter from GnuCash at some
point; this would go here as well.

Cleaning Up

Automatic Categorization

A frequently asked question and common idea from first-time users is “How do [automatically
assign a category to transactions I've imported which have only one side?” For example, importing
transactions from a credit card account usually provides only one posting, like this:

2016-03-18 * "UNION MARKET"
Liabilities:US:CreditCard -12.99 USD

For which you must manually insert an Expenses posting, like this:

2016-03-18 * "UNION MARKET"
Liabilities:US:CreditCard -12.99 USD
Expenses:Food:Grocery

People often have the impression that it is time-consuming to do this.

https://github.com/beancount/beancount/tree/v2/examples/ingest/office/importers/utrade/
https://github.com/beancount/beancount/tree/v2/examples/ingest/office/importers/acme/
https://github.com/beancount/beancount/tree/v2/beancount/ingest/importers/

My standard answer is that while it would be fun to have, if you have a text editor with account
name completion configured properly, it's a breeze to do this manually and you don’t really need it.
You wouldn’t save much time by automating this away. And personally I like to go over each of the
transactions to check what they are and sometimes add comments (e.g., who I had dinner with,
what that Amazon charge was for, etc.) and that’s when I categorize.

It's something that could eventually be solved by letting the user provide some simple rules, or by
using the history of past transactions to feed into a simple learning classifier.

Beancount does not currently provide a mechanism to automatically categorize transactions. You can
build this into your importer code. I want to provide a hook for the user to register a completion
function that could run across all the importers where you could hook that code in.

Cleaning up Payees
The payees that one can find in the downloads are usually ugly names:

e They are sometimes the legal names of the business, which often does not reflect the street
name of the place you went, for various reasons. For example, [recently ate at a restaurant
called the “Lucky Bee” in New York, and the memo from the OFX file was “KING BEE”.

e The names are sometimes abbreviated or contain some crud. In the previous example, the
actual memo was “KING BEE NEW YO”, where “NEW YO” is a truncated location string.

e The amount of ugliness is inconsistent between data sources.

It would be nice to be able to normalize the payee names by translating them at import time. I think
you can do most of it using some simple rules mapping regular expressions to names provided by
the user. There’s really no good automated way to obtain the “clean name” of the payee.

Beancount does not provide a hook for letting you do this this yet. It will eventually. You could also
build a plugin to rename those accounts when loading your ledger. I'll build that too—it’s easy and
would result in much nicer output.

Future Work

A list of things I'd really want to add, beyond fortifying what's already there:

e A generic, configurable CSV importer which you can instantiate. I plan to play with this a bit
and build a sniffer that could automatically figure out the role of each column.

e A hook to allow you to register a callback for post-processing transactions that works across
all importers.

Related Discussion Threads

e Getting started; assigning accounts to bank .csv data

e Status of LedgerHub... how can I get started?

e Rekon wants your CSV files

Historical Note

There once was a first implementation of the process described in this document. The project was

https://groups.google.com/d/msg/ledger-cli/u648SA1o-Ek/DzZmu8wVCAAJ
https://groups.google.com/d/msg/beancount/qFZvGBLuJos/WSaNY0sEc-wJ
https://groups.google.com/d/msg/ledger-cli/n_WNc-tZabU/sh09irl-C-kJ

called LedgerHub and has been decommissioned in February 2016, rewritten and the resulting code
integrated in Beancount itself, into this beancount.ingest library. The original project was
intended to include the implementation of various importers to share them with other people, but
this sharing was not very successful, and so the rewrite includes only the scaffolding for building
your own importers and invoking them, and only a very limited number of example importer
implementations.

Documents about LedgerHub are preserved, and can help you understand the origins and design
choices for Beancount’s importer support. They can be found here:

e Original design
e Original instructions & final status (the old version of this doc)
e An analysis of the reasons why it the project was terminated (post-mortem)

https://github.com/beancount/beancount/tree/v2/beancount/ingest/
http://furius.ca/beancount/doc/ledgerhub/design-doc
http://furius.ca/beancount/doc/ledgerhub/manual
http://furius.ca/beancount/doc/ledgerhub/postmortem

	Importing External Data in Beancount
	Introduction
	The Importing Process
	Automating Network Downloads
	Manual download
	Typical Downloads
	Extracting Data from PDF Files

	Automatic download with open banking aggregator

	Tools
	Invocation

	Configuration
	Configuring from an Input File

	Writing an Importer
	Regression Testing your Importers
	Generating Test Input
	Making Incremental Improvements

	Caching Data
	In-Memory Caching
	On-Disk Caching

	Organizing your Files
	Example Importers
	Cleaning Up
	Automatic Categorization
	Cleaning up Payees

	Future Work
	Related Discussion Threads
	Historical Note

