
Support for Geometry and Tessellation Shaders In The

Processing Platform

Name: James Muir

Email: zyborgjames@gmail.com

Processing Forum: zyborg

Project Abstract
Enhance the Processing platform shader implementation by adding support for geometry and

tessellation shaders to the P2D and P3D OpenGL renderers.

Project Description

My project will enable the use of geometry and tessellation shaders when using the P2D

and P3D OpenGL renderer modes in Processing. I will create a library to wrap some existing

functionality, code new functionality, and expose the necessary OpenGL APIs to enable simpler

use of advanced shader techniques. I will test the new functionality and existing shader support

by writing several reference samples and provide end user documentation for this new

functionality.

Adding support for geometry and tessellation shaders will give greater functionality to the

current default rendering pipeline. Geometry shaders will allow users to generate scene

geometry on the graphics card itself leveraging current hardware capabilities. Tessellation

shaders will allow better Level of Detail (LoD) to be used with terrain and objects in order to

improve performance.

Basically, I plan to add to the programmable pipeline rendering capabilities and provide

advanced shader tutorials and examples for the Processing platform.

Development Process

Timeline:

●​ Before May 30:

○​ Familiarize myself with the Processing OpenGL codebase

https://github.com/processing/processing/tree/master/core/src/processing/opengl

○​ Research best methods of implementing geometry and tessellation shaders

○​ Examine examples by codeanticicode

●​ May 30 - June 26:

○​ Use a test driven development approach to create a library that adds support for

geometry and tessellation shaders

○​ Do research and experiments to understand current code implementation

○​ Define any needed new wrappers and APIs

○​ Develop and test samples to prove functionality

○​ Document

●​ June 26 - July 28:

○​ Use a test-driven development approach to create default shaders for both

geometry and tessellation

○​ Research examples of tessellation and geometry shaders (such as these by

codeanticode)

○​ Develop and test a reference implementation to prove functionality

○​ Document

●​ July 28 - August 29:

○​ Polish shaders

○​ Test

○​ Fix bugs

○​ Manage peer review of code samples and documentation

○​ Complete end user documentation (similar to the current shader tutorial)

○​ Write more sample shaders, if possible

○​ Finalize and commit all code

●​ Stretch Goals:

○​ If things go much faster than expected, I can also potentially work on adding

support for multiple rendering targets.

More about me

I will graduate this June from Bainbridge Island High School in Washington State. I am

currently a 4.0 student and National Merit finalist. My favorite subjects are Math, Physics, and

Engineering, and I have taken AP calculus, statistics, physics and chemistry and last summer I

https://github.com/codeanticode/pshader-experiments
https://github.com/codeanticode/pshader-experiments
https://processing.org/tutorials/pshader/

attended the Carnegie Mellon AP/EA program in Pittsburgh where I completed CS 15-112 (a

computer science course) for college credit. My final project there was a 3D rendering engine

for procedural terrain generation created with Python leveraging OpenGL.

I will be a freshman at the University of Washington this fall. I was accepted directly into

the Mechanical Engineering program and am interested in Mechatronics.

I currently enjoy programming as a hobby. I am particularly fascinated by 3D graphics; all

of the geometry and cool algorithms are intriguing. Most of my experience is in Python, with a bit

of OpenGL and GLSL knowledge, as well as some C#.

I think that the Processing project is a great way to dig deeper into coding, especially for

people who like visual feedback, like me. I have not personally used Processing much yet, but

since I discovered it I am sure that I will use it much more in the future. I love how quickly I can

get something on the screen with Processing. I have also used a derivative of the Processing

IDE to program an Arduino microcontroller.

I am an active beta tester and I’ve submitted many bug reports for software that I use. I

am familiar with test driven development and with the process of isolating issues when

debugging, as well as robust software documentation procedures. Of course, debugging can be

more difficult when the output is visual, but that can also be used to your advantage, by

rendering debug information to the screen itself.

My github account currently contains 2 repositories. One is my final project for my CS

course at Carnegie Mellon, where I created a 3D graphics engine from scratch, and used

OpenGL to render a basic scene that I procedurally generated using simplex noise. The 3D

engine that I created used quaternions to handle rotation, for which I wrote my own library. The

other is a very basic start to a project that aims to model the effects of genetics and selective

pressures on a population over time.

I am very motivated to work on a substantial and interesting project this summer to both

enhance my coding skills, solve some interesting problems, work with interesting people, and

contribute my own code to the open source community. I am also interested in doing some bug

fixing and sample code development in other parts of the processing platform if I am needed, I

am flexible.

https://github.com/ZyborgJames

