
3.1​ Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data
ware- house systems to support highly efficient cube computation techniques, access
methods, and query processing techniques. In this section, we present an overview of
methods for the efficient implementation of data warehouse systems.

3.1.1​ Efficient Computation of Data Cubes

At the core of multidimensional data analysis is the efficient computation of
aggregations across many sets of dimensions. In SQL terms, these aggregations are
referred to as group-by’s. Each group-by can be represented by a cuboid, where the
set of group-by’s forms a lattice of cuboids defining a data cube. In this section, we
explore issues relating to the efficient computation of data cubes.

The compute cube Operator and the

Curse of Dimensionality

One approach to cube computation extends SQL so as to include a compute cube

oper- ator. The compute cube operator computes aggregates over all subsets of the
dimensions specified in the operation. This can require excessive storage space,
especially for large numbers of dimensions. We start with an intuitive look at what is
involved in the efficient computation of data cubes.

Example 3.11 A data cube is a lattice of cuboids. Suppose that you would like to create a data
cube for AllElectronics sales that contains the following: city, item, year, and sales in
dollars. You would like to be able to analyze the data, with queries such as the
following:

“Compute the sum of sales, grouping by city and

item.” “Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”

What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales in dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: (city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), () , where () means that the group-by is empty (i.e., the dimensions are not

grouped). These group-by’s form a lattice of cuboids for the data cube, as shown in
Figure 3.14. The base cuboid contains all three dimensions, city, item, and year. It
can return the total sales for any combination of the three dimensions. The apex
cuboid, or 0-D cuboid, refers to the case where the group-by is empty. It contains the
total sum of all sales. The base cuboid is the least generalized (most specific) of the
cuboids. The apex cuboid is the most generalized (least specific) of the cuboids, and is
often denoted as all. If we start at the apex cuboid and explore downward in the
lattice, this is equivalent to drilling down within the data cube. If we start at the base
cuboid and explore upward, this is akin to rolling up.

An SQL query containing no group-by, such as “compute the sum of total sales,” is
a zero-dimensional operation. An SQL query containing one group-by, such as
“compute the sum of sales, group by city,” is a one-dimensional operation. A cube
operator on n dimensions is equivalent to a collection of group by statements, one
for each subset

()​ O-D (apex) cuboid

(city)
(item)
​

(year)

1-D cuboids

(city, item)
​
(city, year)

(city, item, year)

(item, year)

2-D cuboids

3-D​ (base) cuboid

Figure 3.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three dimensions city, item, and year.

of the n dimensions. Therefore, the cube operator is the n-dimensional generalization
of the group by operator.

Based on the syntax of DMQL introduced in Section 3.2.3, the data cube in

Example 3.11 could be defined as

define cube sales cube [city, item, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the base
cuboid. A statement such as

compute cube sales cube

would explicitly instruct the system to compute the sales aggregate cuboids for all of
the eight subsets of the set city, item, year , including the empty subset. A cube
computation operator was first proposed and studied by Gray et al. [GCB+97].

On-line analytical processing may need to access different cuboids for different
queries. Therefore, it may seem like a good idea to compute all or at least some of the
cuboids in a data cube in advance. Precomputation leads to fast response time and
avoids some redundant computation. Most, if not all, OLAP products resort to some
degree of pre- computation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required
storage space may explode if all of the cuboids in a data cube are precomputed,
especially when the cube has many dimensions. The storage requirements are even
more excessive when many of the dimensions have associated concept hierarchies,
each with multiple levels. This problem is referred to as the curse of dimensionality.
The extent of the curse of dimensionality is illustrated below.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for an
n-dimensional data cube, as we have seen above, is 2n. However, in practice, many
dimensions do have hierarchies. For example, the dimension time is usually not
explored at only one conceptual level, such as year, but rather at multiple conceptual
levels, such as in the hierarchy “day < month < quarter < year”. For an
n-dimensional data cube, the total number of cuboids that can be generated
(including the cuboids generated by climbing up the hierarchies along each
dimension) is

n

Total number o f cuboids = ∏(Li + 1),​ (3.1)

i=1

where Li is the number of levels associated with dimension i. One is added to Li in
Equation (3.1) to include the virtual top level, all. (Note that generalizing to all is
equiv- alent to the removal of the dimension.) This formula is based on the fact that,
at most, one abstraction level in each dimension will appear in a cuboid. For example,
the time dimension as specified above has 4 conceptual levels, or 5 if we include the
virtual level all. If the cube has 10 dimensions and each dimension has 5 levels
(including all), the total number of cuboids that can be generated is 510 9.8 106.
The size of each cuboid also depends on the cardinality (i.e., number of distinct
values) of each dimension. For example, if the AllElectronics branch in each city sold
every item, there would be

city item tuples in the city-item group-by alone. As the number of dimensions,
number of conceptual hierarchies, or cardinality increases, the storage space
required for many of the group-by’s will grossly exceed the (fixed) size of the input
relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (or from a base cuboid).
If there are many cuboids, and these cuboids are large in size, a more reasonable
option is partial materialization, that is, to materialize only some of the possible
cuboids that can be generated.

Partial Materialization: Selected

Computation of Cuboids

There are three choices for data cube materialization given a base cuboid:

1.​ No materialization: Do not precompute any of the “nonbase” cuboids. This leads
to computing expensive multidimensional aggregates on the fly, which can be
extremely slow.

2.​ Full materialization: Precompute all of the cuboids. The resulting lattice of
computed cuboids is referred to as the full cube. This choice typically requires
huge amounts of memory space in order to store all of the precomputed cuboids.

3.​ Partial materialization: Selectively compute a proper subset of the whole set of
possi- ble cuboids. Alternatively, we may compute a subset of the cube, which
contains only those cells that satisfy some user-specified criterion, such as where
the tuple count of each cell is above some threshold. We will use the term
subcube to refer to the latter case, where only some of the cells may be
precomputed for various cuboids. Partial materi- alization represents an
interesting trade-off between storage space and response time.

The partial materialization of cuboids or subcubes should consider three factors:
(1)​ identify the subset of cuboids or subcubes to materialize; (2) exploit the
mate- rialized cuboids or subcubes during query processing; and (3) efficiently update
the materialized cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In
addi- tion, it should consider workload characteristics, the cost for incremental
updates, and the total storage requirements. The selection must also consider the
broad context of physical database design, such as the generation and selection of
indices. Several OLAP products have adopted heuristic approaches for cuboid and
subcube selection. A popular approach is to materialize the set of cuboids on which
other frequently referenced cuboids are based. Alternatively, we can compute an
iceberg cube, which is a data cube that stores only those cube cells whose aggregate
value (e.g., count) is above some minimum support threshold. Another common

strategy is to materialize a shell cube. This involves precomputing the cuboids for only
a small number of dimensions (such as 3 to 5) of a data cube. Queries on additional
combinations of the dimensions can be computed on-the-fly. Because our

aim in this chapter is to provide a solid introduction and overview of data warehousing
for data mining, we defer our detailed discussion of cuboid selection and computation

to Chapter 4, which studies data warehouse and OLAP implementation in greater
depth. Once the selected cuboids have been materialized, it is important to take

advantage of them during query processing. This involves several issues, such as how
to determine the relevant cuboid(s) from among the candidate materialized cuboids,

how to use available index structures on the materialized cuboids, and how to
transform the OLAP opera- tions onto the selected cuboid(s). These issues are

discussed in Section 3.4.3 as well as in
Chapter 4.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

3.1.2​ Indexing OLAP Data

To facilitate efficient data accessing, most data warehouse systems support index
struc- tures and materialized views (using cuboids). General methods to select
cuboids for materialization were discussed in the previous section. In this section, we
examine how to index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, Bv, for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in the bitmap
index (i.e., there are n bit vectors). If the attribute has the value v for a given row in
the data table, then the bit representing that value is set to 1 in the corresponding
row of the bitmap index. All other bits for that row are set to 0.

Example 3.12 Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item
at the top level has four values (representing item types): “home entertainment,”
“computer,” “phone,” and “security.” Each value (e.g., “computer”) is represented by a
bit vector in the bitmap index table for item. Suppose that the cube is stored as a
relation table with 100,000 rows. Because the domain of item consists of four values,
the bitmap index table requires four bit vectors (or lists), each with 100,000 bits.
Figure 3.15 shows a base (data) table containing the dimensions item and city, and its
mapping to bitmap index tables for each of the dimensions.

Bitmap indexing is advantageous compared to hash and tree indices. It is
especially useful for low-cardinality domains because comparison, join, and
aggregation opera- tions are then reduced to bit arithmetic, which substantially
reduces the processing time. Bitmap indexing leads to significant reductions in space
and I/O since a string of charac- ters can be represented by a single bit. For
higher-cardinality domains, the method can be adapted using compression
techniques.

The join indexing method gained popularity from its use in relational database
query processing. Traditional indexing maps the value in a given column to a list of
rows having

RID item city

R1 H V
R2 C V
R3 P V
R4 S V
R5 H T
R6 C T
R7 P T

R8 S T

RID H C P S

R1 1 0 0 0
R2 0 1 0 0
R3 0 0 1 0
R4 0 0 0 1
R5 1 0 0 0
R6 0 1 0 0
R7 0 0 1 0

R8 0 0 0 1

RID V T

R1 1 0
R2 1 0
R3 1 0
R4 1 0
R5 0 1
R6 0 1
R7 0 1

R8 0 1

Base table​ Item bitmap index table​ City bitmap index table

Note: H for “home entertainment, ” C for “computer, ” P for “phone, ” S for “security, ” V
for “Vancouver, ” T for “Toronto.”

Figure 3.15 Indexing OLAP data using bitmap indices.

that value. In contrast, join indexing registers the joinable rows of two relations from
a relational database. For example, if two relations R(RID, A) and S(B, SID) join on
the attributes A and B, then the join index record contains the pair (RID, SID),
where RID and SID are record identifiers from the R and S relations, respectively.
Hence, the join index records can identify joinable tuples without performing costly
join operations. Join indexing is especially useful for maintaining the relationship

between a foreign key3 and its matching primary keys, from the joinable relation.
The star schema model of data warehouses makes join indexing attractive for

cross- table search, because the linkage between a fact table and its corresponding
dimension tables comprises the foreign key of the fact table and the primary key of
the dimen- sion table. Join indexing maintains relationships between attribute values
of a dimension (e.g., within a dimension table) and the corresponding rows in the
fact table. Join indices may span multiple dimensions to form composite join indices.
We can use join indices to identify subcubes that are of interest.

Example 3.13 Join indexing. In Example 3.4, we defined a star schema for AllElectronics of the

form “sales star [time, item, branch, location]: dollars sold = sum (sales in dollars)”.
An exam- ple of a join index relationship between the sales fact table and the
dimension tables for location and item is shown in Figure 3.16. For example, the
“Main Street” value in the location dimension table joins with tuples T57, T238, and
T884 of the sales fact table. Similarly, the “Sony-TV” value in the item dimension table
joins with tuples T57 and T459 of the sales fact table. The corresponding join index
tables are shown in Figure 3.17.

3A set of attributes in a relation schema that forms a primary key for another relation schema is
called a foreign key.

location

sales

T57

T238

T459

T884

item

Main Street

​

Sony-TV

Figure 3.16 Linkages between a sales fact table and dimension tables for location and item.

​

Figure 3.17 Join index tables based on the linkages between the sales fact table and dimension tables
for

location and item shown in Figure 3.16.

Suppose that there are 360 time values, 100 items, 50 branches, 30 locations, and
10 million sales tuples in the sales star data cube. If the sales fact table has recorded
sales for only 30 items, the remaining 70 items will obviously not participate in joins.
If join indices are not used, additional I/Os have to be performed to bring the joining
portions of the fact table and dimension tables together.

To further speed up query processing, the join indexing and bitmap indexing
methods can be integrated to form bitmapped join indices.

3.1.3​ Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures is to
speed up query processing in data cubes. Given materialized views, query processing
should proceed as follows:

1.​ Determine which operations should be performed on the available cuboids:
This involves transforming any selection, projection, roll-up (group-by), and
drill-down operations specified in the query into corresponding SQL and/or OLAP
operations. For example, slicing and dicing a data cube may correspond to
selection and/or pro- jection operations on a materialized cuboid.

2.​ Determinetowhichmaterializedcuboid(s)
therelevantoperationsshouldbeapplied: This involves identifying all of the
materialized cuboids that may potentially be used to answer the query, pruning
the above set using knowledge of “dominance” relation- ships among the cuboids,
estimating the costs of using the remaining materialized cuboids, and selecting the
cuboid with the least cost.

Example 3.14 OLAP query processing. Suppose that we define a data cube for AllElectronics of

the form “sales cube [time, item, location]: sum(sales in dollars)”. The dimension
hierarchies used are “day < month < quarter < year” for time, “item name <
brand < type” for item, and “street < city < province or state < country” for
location.

Suppose that the query to be processed is on brand, province or state , with the
selection constant “year = 2004”. Also, suppose that there are four materialized
cuboids available, as follows:

cuboid 1: {year, item name, city}

cuboid 2: {year, brand, country}

cuboid 3: {year, brand, province or state}

cuboid 4: {item name, province or state} where year = 2004

“Which of the above four cuboids should be selected to process the query?” Finer-
granularity data cannot be generated from coarser-granularity data. Therefore,
cuboid 2 cannot be used because country is a more general concept than province or
state. Cuboids 1, 3, and 4 can be used to process the query because (1) they have the
same set or a superset of the dimensions in the query, (2) the selection clause in the
query can imply the selection in the cuboid, and (3) the abstraction levels for the
item and loca- tion dimensions in these cuboids are at a finer level than brand and
province or state, respectively.

“How would the costs of each cuboid compare if used to process the query?” It is
likely that using cuboid 1 would cost the most because both item name and city are

at a lower level than the brand and province or state concepts specified in the query.
If there are not many year values associated with items in the cube, but there are
several item names for each brand, then cuboid 3 will be smaller than cuboid 4, and
thus cuboid 3 should be chosen to process the query. However, if efficient indices are
available for cuboid 4, then cuboid 4 may be a better choice. Therefore, some
cost-based estimation is required in order to decide which set of cuboids should be
selected for query processing.

Because the storage model of a MOLAP server is an n-dimensional array, the front-
end multidimensional queries are mapped directly to server storage structures, which
provide direct addressing capabilities. The straightforward array representation of the
data cube has good indexing properties, but has poor storage utilization when the
data are sparse. For efficient storage and processing, sparse matrix and data
compression tech- niques should therefore be applied. The details of several such
methods of cube compu- tation are presented in Chapter 4.

The storage structures used by dense and sparse arrays may differ, making it
advan- tageous to adopt a two-level approach to MOLAP query processing: use array
structures for dense arrays, and sparse matrix structures for sparse arrays. The
two-dimensional dense arrays can be indexed by B-trees.

To process a query in MOLAP, the dense one- and two-dimensional arrays must
first be identified. Indices are then built to these arrays using traditional indexing
structures. The two-level approach increases storage utilization without sacrificing
direct addressing capabilities.

“Arethereanyotherstrategiesforansweringqueriesquickly?”
Somestrategiesforanswer- ing queries quickly concentrate on providing intermediate
feedback to the users. For exam- ple, in on-line aggregation, a data miningsystemcan
display “what itknows so far” instead of waiting until the query is fully processed.
Such an approximate answer to the given data mining query is periodically refreshed
and refined as the computation process continues. Confidence intervals are
associated with each estimate, providing the user with additional feedback regarding
the reliability of the answer so far. This promotes interactivity with the system—the
user gains insight as to whether or not he or she is probing in the “right” direction
without having to wait until the end of the query. While on-line aggregation does not
improve the total time to answer a query, the overall data mining process should be
quicker due to the increased interactivity with the system.

Another approach is to employ top N queries. Suppose that you are interested in
find- ing only the best-selling items among the millions of items sold at AllElectronics.
Rather than waiting to obtain a list of all store items, sorted in decreasing order of
sales, you would like to see only the top N. Using statistics, query processing can be
optimized to return the top N items, rather than the whole sorted list. This results in
faster response time while helping to promote user interactivity and reduce wasted
resources.

The goal of this section was to provide an overview of data warehouse
implementa- tion. Chapter 4 presents a more advanced treatment of this topic. It

examines the efficient computation of data cubes and processing of OLAP queries in
greater depth, providing detailed algorithms.

3.2​ Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data
ware- house systems to support highly efficient cube computation techniques, access
methods, and query processing techniques. In this section, we present an overview of
methods for the efficient implementation of data warehouse systems.

3.2.1​ Efficient Computation of Data Cubes

At the core of multidimensional data analysis is the efficient computation of
aggregations across many sets of dimensions. In SQL terms, these aggregations are
referred to as group-by’s. Each group-by can be represented by a cuboid, where the
set of group-by’s forms a lattice of cuboids defining a data cube. In this section, we
explore issues relating to the efficient computation of data cubes.

The compute cube Operator and the

Curse of Dimensionality

One approach to cube computation extends SQL so as to include a compute cube

oper- ator. The compute cube operator computes aggregates over all subsets of the
dimensions specified in the operation. This can require excessive storage space,
especially for large numbers of dimensions. We start with an intuitive look at what is
involved in the efficient computation of data cubes.

Example 3.11 A data cube is a lattice of cuboids. Suppose that you would like to create a data
cube for AllElectronics sales that contains the following: city, item, year, and sales in
dollars. You would like to be able to analyze the data, with queries such as the
following:

“Compute the sum of sales, grouping by city and

item.” “Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”

What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales in dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: (city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), () , where () means that the group-by is empty (i.e., the dimensions are not
grouped). These group-by’s form a lattice of cuboids for the data cube, as shown in
Figure 3.14. The base cuboid contains all three dimensions, city, item, and year. It
can return the total sales for any combination of the three dimensions. The apex
cuboid, or 0-D cuboid, refers to the case where the group-by is empty. It contains the
total sum of all sales. The base cuboid is the least generalized (most specific) of the
cuboids. The apex cuboid is the most generalized (least specific) of the cuboids, and is
often denoted as all. If we start at the apex cuboid and explore downward in the
lattice, this is equivalent to drilling down within the data cube. If we start at the base
cuboid and explore upward, this is akin to rolling up.

An SQL query containing no group-by, such as “compute the sum of total sales,” is
a zero-dimensional operation. An SQL query containing one group-by, such as
“compute the sum of sales, group by city,” is a one-dimensional operation. A cube
operator on n dimensions is equivalent to a collection of group by statements, one
for each subset

()​ O-D (apex) cuboid

(city)
(item)
​

(year)

1-D cuboids

(city, item)
​
(city, year)

(city, item, year)

(item, year)

2-D cuboids

3-E​ (base) cuboid

Figure 3.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three dimensions city, item, and year.

of the n dimensions. Therefore, the cube operator is the n-dimensional generalization
of the group by operator.

Based on the syntax of DMQL introduced in Section 3.2.3, the data cube in
Example 3.11 could be defined as

define cube sales cube [city, item, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the base
cuboid. A statement such as

compute cube sales cube

would explicitly instruct the system to compute the sales aggregate cuboids for all of
the eight subsets of the set city, item, year , including the empty subset. A cube
computation operator was first proposed and studied by Gray et al. [GCB+97].

On-line analytical processing may need to access different cuboids for different
queries. Therefore, it may seem like a good idea to compute all or at least some of the
cuboids in a data cube in advance. Precomputation leads to fast response time and
avoids some redundant computation. Most, if not all, OLAP products resort to some
degree of pre- computation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required
storage space may explode if all of the cuboids in a data cube are precomputed,
especially when the cube has many dimensions. The storage requirements are even
more excessive when many of the dimensions have associated concept hierarchies,
each with multiple levels. This problem is referred to as the curse of dimensionality.
The extent of the curse of dimensionality is illustrated below.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for an
n-dimensional data cube, as we have seen above, is 2n. However, in practice, many
dimensions do have hierarchies. For example, the dimension time is usually not
explored at only one conceptual level, such as year, but rather at multiple conceptual
levels, such as in the hierarchy “day < month < quarter < year”. For an
n-dimensional data cube, the total number of cuboids that can be generated
(including the cuboids generated by climbing up the hierarchies along each
dimension) is

n

Total number o f cuboids = ∏(Li + 1),​ (3.1)

i=1

where Li is the number of levels associated with dimension i. One is added to Li in
Equation (3.1) to include the virtual top level, all. (Note that generalizing to all is
equiv- alent to the removal of the dimension.) This formula is based on the fact that,
at most, one abstraction level in each dimension will appear in a cuboid. For example,
the time dimension as specified above has 4 conceptual levels, or 5 if we include the
virtual level all. If the cube has 10 dimensions and each dimension has 5 levels
(including all), the total number of cuboids that can be generated is 510 9.8 106.

The size of each cuboid also depends on the cardinality (i.e., number of distinct
values) of each dimension. For example, if the AllElectronics branch in each city sold
every item, there would be

city item tuples in the city-item group-by alone. As the number of dimensions,
number of conceptual hierarchies, or cardinality increases, the storage space
required for many of the group-by’s will grossly exceed the (fixed) size of the input
relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (or from a base cuboid).
If there are many cuboids, and these cuboids are large in size, a more reasonable
option is partial materialization, that is, to materialize only some of the possible
cuboids that can be generated.

Partial Materialization: Selected

Computation of Cuboids

There are three choices for data cube materialization given a base cuboid:

1.​ No materialization: Do not precompute any of the “nonbase” cuboids. This leads
to computing expensive multidimensional aggregates on the fly, which can be
extremely slow.

2.​ Full materialization: Precompute all of the cuboids. The resulting lattice of
computed cuboids is referred to as the full cube. This choice typically requires
huge amounts of memory space in order to store all of the precomputed cuboids.

3.​ Partial materialization: Selectively compute a proper subset of the whole set of
possi- ble cuboids. Alternatively, we may compute a subset of the cube, which
contains only those cells that satisfy some user-specified criterion, such as where
the tuple count of each cell is above some threshold. We will use the term
subcube to refer to the latter case, where only some of the cells may be
precomputed for various cuboids. Partial materi- alization represents an
interesting trade-off between storage space and response time.

The partial materialization of cuboids or subcubes should consider three factors:
(2)​ identify the subset of cuboids or subcubes to materialize; (2) exploit the
mate- rialized cuboids or subcubes during query processing; and (3) efficiently update
the materialized cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In
addi- tion, it should consider workload characteristics, the cost for incremental
updates, and the total storage requirements. The selection must also consider the
broad context of physical database design, such as the generation and selection of
indices. Several OLAP products have adopted heuristic approaches for cuboid and
subcube selection. A popular approach is to materialize the set of cuboids on which
other frequently referenced cuboids are based. Alternatively, we can compute an
iceberg cube, which is a data cube that stores only those cube cells whose aggregate
value (e.g., count) is above some minimum support threshold. Another common

strategy is to materialize a shell cube. This involves precomputing the cuboids for only
a small number of dimensions (such as 3 to 5) of a data cube. Queries on additional
combinations of the dimensions can be computed on-the-fly. Because our

aim in this chapter is to provide a solid introduction and overview of data warehousing
for data mining, we defer our detailed discussion of cuboid selection and computation

to Chapter 4, which studies data warehouse and OLAP implementation in greater
depth. Once the selected cuboids have been materialized, it is important to take

advantage of them during query processing. This involves several issues, such as how
to determine the relevant cuboid(s) from among the candidate materialized cuboids,

how to use available index structures on the materialized cuboids, and how to
transform the OLAP opera- tions onto the selected cuboid(s). These issues are

discussed in Section 3.4.3 as well as in
Chapter 4.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

3.2.2​ Indexing OLAP Data

To facilitate efficient data accessing, most data warehouse systems support index
struc- tures and materialized views (using cuboids). General methods to select
cuboids for materialization were discussed in the previous section. In this section, we
examine how to index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, Bv, for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in the bitmap
index (i.e., there are n bit vectors). If the attribute has the value v for a given row in
the data table, then the bit representing that value is set to 1 in the corresponding
row of the bitmap index. All other bits for that row are set to 0.

Example 3.12 Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item
at the top level has four values (representing item types): “home entertainment,”
“computer,” “phone,” and “security.” Each value (e.g., “computer”) is represented by a
bit vector in the bitmap index table for item. Suppose that the cube is stored as a
relation table with 100,000 rows. Because the domain of item consists of four values,
the bitmap index table requires four bit vectors (or lists), each with 100,000 bits.
Figure 3.15 shows a base (data) table containing the dimensions item and city, and its
mapping to bitmap index tables for each of the dimensions.

Bitmap indexing is advantageous compared to hash and tree indices. It is
especially useful for low-cardinality domains because comparison, join, and
aggregation opera- tions are then reduced to bit arithmetic, which substantially
reduces the processing time. Bitmap indexing leads to significant reductions in space
and I/O since a string of charac- ters can be represented by a single bit. For
higher-cardinality domains, the method can be adapted using compression
techniques.

The join indexing method gained popularity from its use in relational database
query processing. Traditional indexing maps the value in a given column to a list of
rows having

RID item city

R1 H V
R2 C V
R3 P V
R4 S V
R5 H T
R6 C T
R7 P T

R8 S T

RID H C P S

R1 1 0 0 0
R2 0 1 0 0
R3 0 0 1 0
R4 0 0 0 1
R5 1 0 0 0
R6 0 1 0 0
R7 0 0 1 0

R8 0 0 0 1

RID V T

R1 1 0
R2 1 0
R3 1 0
R4 1 0
R5 0 1
R6 0 1
R7 0 1

R8 0 1

Base table​ Item bitmap index table​ City bitmap index table

Note: H for “home entertainment, ” C for “computer, ” P for “phone, ” S for “security, ” V
for “Vancouver, ” T for “Toronto.”

Figure 3.15 Indexing OLAP data using bitmap indices.

that value. In contrast, join indexing registers the joinable rows of two relations from
a relational database. For example, if two relations R(RID, A) and S(B, SID) join on
the attributes A and B, then the join index record contains the pair (RID, SID),
where RID and SID are record identifiers from the R and S relations, respectively.
Hence, the join index records can identify joinable tuples without performing costly
join operations. Join indexing is especially useful for maintaining the relationship

between a foreign key3 and its matching primary keys, from the joinable relation.
The star schema model of data warehouses makes join indexing attractive for

cross- table search, because the linkage between a fact table and its corresponding
dimension tables comprises the foreign key of the fact table and the primary key of
the dimen- sion table. Join indexing maintains relationships between attribute values
of a dimension (e.g., within a dimension table) and the corresponding rows in the
fact table. Join indices may span multiple dimensions to form composite join indices.
We can use join indices to identify subcubes that are of interest.

Example 3.13 Join indexing. In Example 3.4, we defined a star schema for AllElectronics of the

form “sales star [time, item, branch, location]: dollars sold = sum (sales in dollars)”.
An exam- ple of a join index relationship between the sales fact table and the
dimension tables for location and item is shown in Figure 3.16. For example, the
“Main Street” value in the location dimension table joins with tuples T57, T238, and
T884 of the sales fact table. Similarly, the “Sony-TV” value in the item dimension table
joins with tuples T57 and T459 of the sales fact table. The corresponding join index
tables are shown in Figure 3.17.

3A set of attributes in a relation schema that forms a primary key for another relation schema is
called a foreign key.

location

sales

T57

T238

T459

T884

item

Main Street

​

Sony-TV

Figure 3.16 Linkages between a sales fact table and dimension tables for location and item.

​

Figure 3.17 Join index tables based on the linkages between the sales fact table and dimension tables
for

location and item shown in Figure 3.16.

Suppose that there are 360 time values, 100 items, 50 branches, 30 locations, and
10 million sales tuples in the sales star data cube. If the sales fact table has recorded
sales for only 30 items, the remaining 70 items will obviously not participate in joins.
If join indices are not used, additional I/Os have to be performed to bring the joining
portions of the fact table and dimension tables together.

To further speed up query processing, the join indexing and bitmap indexing
methods can be integrated to form bitmapped join indices.

3.2.3​ Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures is to
speed up query processing in data cubes. Given materialized views, query processing
should proceed as follows:

3.​ Determine which operations should be performed on the available cuboids:
This involves transforming any selection, projection, roll-up (group-by), and
drill-down operations specified in the query into corresponding SQL and/or OLAP
operations. For example, slicing and dicing a data cube may correspond to
selection and/or pro- jection operations on a materialized cuboid.

4.​ Determinetowhichmaterializedcuboid(s)
therelevantoperationsshouldbeapplied: This involves identifying all of the
materialized cuboids that may potentially be used to answer the query, pruning
the above set using knowledge of “dominance” relation- ships among the cuboids,
estimating the costs of using the remaining materialized cuboids, and selecting the
cuboid with the least cost.

Example 3.14 OLAP query processing. Suppose that we define a data cube for AllElectronics of

the form “sales cube [time, item, location]: sum(sales in dollars)”. The dimension
hierarchies used are “day < month < quarter < year” for time, “item name <
brand < type” for item, and “street < city < province or state < country” for
location.

Suppose that the query to be processed is on brand, province or state , with the
selection constant “year = 2004”. Also, suppose that there are four materialized
cuboids available, as follows:

cuboid 1: {year, item name, city}

cuboid 2: {year, brand, country}

cuboid 3: {year, brand, province or state}

cuboid 4: {item name, province or state} where year = 2004

“Which of the above four cuboids should be selected to process the query?” Finer-
granularity data cannot be generated from coarser-granularity data. Therefore,
cuboid 2 cannot be used because country is a more general concept than province or
state. Cuboids 1, 3, and 4 can be used to process the query because (1) they have the
same set or a superset of the dimensions in the query, (2) the selection clause in the
query can imply the selection in the cuboid, and (3) the abstraction levels for the
item and loca- tion dimensions in these cuboids are at a finer level than brand and
province or state, respectively.

“How would the costs of each cuboid compare if used to process the query?” It is
likely that using cuboid 1 would cost the most because both item name and city are

at a lower level than the brand and province or state concepts specified in the query.
If there are not many year values associated with items in the cube, but there are
several item names for each brand, then cuboid 3 will be smaller than cuboid 4, and
thus cuboid 3 should be chosen to process the query. However, if efficient indices are
available for cuboid 4, then cuboid 4 may be a better choice. Therefore, some
cost-based estimation is required in order to decide which set of cuboids should be
selected for query processing.

Because the storage model of a MOLAP server is an n-dimensional array, the front-
end multidimensional queries are mapped directly to server storage structures, which
provide direct addressing capabilities. The straightforward array representation of the
data cube has good indexing properties, but has poor storage utilization when the
data are sparse. For efficient storage and processing, sparse matrix and data
compression tech- niques should therefore be applied. The details of several such
methods of cube compu- tation are presented in Chapter 4.

The storage structures used by dense and sparse arrays may differ, making it
advan- tageous to adopt a two-level approach to MOLAP query processing: use array
structures for dense arrays, and sparse matrix structures for sparse arrays. The
two-dimensional dense arrays can be indexed by B-trees.

To process a query in MOLAP, the dense one- and two-dimensional arrays must
first be identified. Indices are then built to these arrays using traditional indexing
structures. The two-level approach increases storage utilization without sacrificing
direct addressing capabilities.

“Arethereanyotherstrategiesforansweringqueriesquickly?”
Somestrategiesforanswer- ing queries quickly concentrate on providing intermediate
feedback to the users. For exam- ple, in on-line aggregation, a data miningsystemcan
display “what itknows so far” instead of waiting until the query is fully processed.
Such an approximate answer to the given data mining query is periodically refreshed
and refined as the computation process continues. Confidence intervals are
associated with each estimate, providing the user with additional feedback regarding
the reliability of the answer so far. This promotes interactivity with the system—the
user gains insight as to whether or not he or she is probing in the “right” direction
without having to wait until the end of the query. While on-line aggregation does not
improve the total time to answer a query, the overall data mining process should be
quicker due to the increased interactivity with the system.

Another approach is to employ top N queries. Suppose that you are interested in
find- ing only the best-selling items among the millions of items sold at AllElectronics.
Rather than waiting to obtain a list of all store items, sorted in decreasing order of
sales, you would like to see only the top N. Using statistics, query processing can be
optimized to return the top N items, rather than the whole sorted list. This results in
faster response time while helping to promote user interactivity and reduce wasted
resources.

The goal of this section was to provide an overview of data warehouse
implementa- tion. Chapter 4 presents a more advanced treatment of this topic. It

examines the efficient computation of data cubes and processing of OLAP queries in
greater depth, providing detailed algorithms.

3.3​ From Data Warehousing to Data Mining

“How do data warehousing and OLAP relate to data mining?” In this section, we
study the usage of data warehousing for information processing, analytical
processing, and data mining. We also introduce on-line analytical mining (OLAM), a
powerful paradigm that integrates OLAP with data mining technology.

3.3.1​ Data Warehouse Usage

Data warehouses and data marts are used in a wide range of applications. Business
executives use the data in data warehouses and data marts to perform data analysis
and make strategic decisions. In many firms, data warehouses are used as an integral
part of a plan-execute-assess “closed-loop” feedback system for enterprise
management. Data warehouses are used extensively in banking and financial
services, consumer goods and retail distribution sectors, and controlled
manufacturing, such as demand- based production.

Typically, the longer a data warehouse has been in use, the more it will have
evolved. This evolution takes place throughout a number of phases. Initially, the data
warehouse is mainly used for generating reports and answering predefined queries.
Progressively, it is used to analyze summarized and detailed data, where the results
are presented in the form of reports and charts. Later, the data warehouse is used for
strategic purposes, per- forming multidimensional analysis and sophisticated
slice-and-dice operations. Finally, the data warehouse may be employed for
knowledge discovery and strategic decision making using data mining tools. In this
context, the tools for data warehousing can be categorized into access and retrieval
tools, database reporting tools, data analysis tools, and data mining tools.

Business users need to have the means to know what exists in the data warehouse
(through metadata), how to access the contents of the data warehouse, how to
examine the contents using analysis tools, and how to present the results of such
analysis.

There are three kinds of data warehouse applications: information processing,
analyt- ical processing, and data mining:

Information processing supports querying, basic statistical analysis, and
reporting using crosstabs, tables, charts, or graphs. A current trend in data
warehouse infor- mation processing is to construct low-cost Web-based accessing
tools that are then integrated with Web browsers.

Analytical processing supports basic OLAP operations, including slice-and-dice,
drill-down, roll-up, and pivoting. It generally operates on historical data in both
sum- marized and detailed forms. The major strength of on-line analytical
processing over information processing is the multidimensional data analysis of

data warehouse data.

Data mining supports knowledge discovery by finding hidden patterns and
associa- tions, constructing analytical models, performing classification and
prediction, and presenting the mining results using visualization tools.

“How does data mining relate to information processing and on-line analytical
processing?” Information processing, based on queries, can find useful information.
How- ever, answers to such queries reflect the information directly stored in
databases or com- putable by aggregate functions. They do not reflect sophisticated
patterns or regularities buried in the database. Therefore, information processing is
not data mining.

On-line analytical processing comes a step closer to data mining because it can
derive information summarized at multiple granularities from user-specified subsets
of a data warehouse. Such descriptions are equivalent to the class/concept descrip-
tions discussed in Chapter 1. Because data mining systems can also mine generalized
class/concept descriptions, this raises some interesting questions: “Do OLAP systems
perform data mining? Are OLAP systems actually data mining systems?”

The functionalities of OLAP and data mining can be viewed as disjoint: OLAP is a
data summarization/aggregation tool that helps simplify data analysis, while data
mining allows the automated discovery of implicit patterns and interesting knowledge
hidden in large amounts of data. OLAP tools are targeted toward simplifying and
supporting interactive data analysis, whereas the goal of data mining tools is to
automate as much of the process as possible, while still allowing users to guide the
process. In this sense, data mining goes one step beyond traditional on-line analytical
processing.

An alternative and broader view of data mining may be adopted in which data
mining covers both data description and data modeling. Because OLAP systems can
present general descriptions of data from data warehouses, OLAP functions are
essen- tially for user-directed data summary and comparison (by drilling, pivoting,
slicing, dicing, and other operations). These are, though limited, data mining
functionalities. Yet according to this view, data mining covers a much broader
spectrum than simple OLAP operations because it performs not only data summary
and comparison but also association, classification, prediction, clustering, time-series
analysis, and other data analysis tasks.

Data mining is not confined to the analysis of data stored in data warehouses. It
may analyze data existing at more detailed granularities than the summarized data
provided in a data warehouse. It may also analyze transactional, spatial, textual, and
multimedia data that are difficult to model with current multidimensional database
technology. In this context, data mining covers a broader spectrum than OLAP with
respect to data mining functionality and the complexity of the data handled.

Because data mining involves more automated and deeper analysis than OLAP,
data mining is expected to have broader applications. Data mining can help busi- ness
managers find and reach more suitable customers, as well as gain critical business
insights that may help drive market share and raise profits. In addi- tion, data mining
can help managers understand customer group characteristics and develop optimal
pricing strategies accordingly, correct item bundling based not on intuition but on
actual item groups derived from customer purchase pat- terns, reduce promotional
spending, and at the same time increase the overall net effectiveness of promotions.

3.3.2​ From On-Line Analytical

Processing to On-Line Analytical

Mining

In the field of data mining, substantial research has been performed for data mining
on various platforms, including transaction databases, relational databases, spatial
databases, text databases, time-series databases, flat files, data warehouses, and so
on.

On-line analytical mining (OLAM) (also called OLAP mining) integrates
on-line analytical processing (OLAP) with data mining and mining knowledge in
multidi- mensional databases. Among the many different paradigms and
architectures of data mining systems, OLAM is particularly important for the
following reasons:

High quality of data in data warehouses: Most data mining tools need to work
on integrated, consistent, and cleaned data, which requires costly data clean- ing,
data integration, and data transformation as preprocessing steps. A data
warehouse constructed by such preprocessing serves as a valuable source of high-
quality data for OLAP as well as for data mining. Notice that data mining may also
serve as a valuable tool for data cleaning and data integration as well.

Available information processing infrastructure surrounding data
warehouses: Comprehensive information processing and data analysis
infrastructures have been or will be systematically constructed surrounding data
warehouses, which include accessing, integration, consolidation, and
transformation of multiple heterogeneous databases, ODBC/OLE DB connections,
Web-accessing and service facilities, and reporting and OLAP analysis tools. It is
prudent to make the best use of the available infrastructures rather than
constructing everything from scratch.

OLAP-based exploratory data analysis: Effective data mining needs exploratory
data analysis. A user will often want to traverse through a database, select por-
tions of relevant data, analyze them at different granularities, and present knowl-
edge/results in different forms. On-line analytical mining provides facilities for
data mining on different subsets of data and at different levels of abstraction, by
drilling, pivoting, filtering, dicing, and slicing on a data cube and on some
intermediate data mining results. This, together with data/knowledge visualization
tools, will greatly enhance the power and flexibility of exploratory data mining.

On-line selection of data mining functions: Often a user may not know what
kinds of knowledge she would like to mine. By integrating OLAP with multiple data
mining functions, on-line analytical mining provides users with the flexibility to
select desired data mining functions and swap data mining tasks dynamically.

Architecture for On-Line Analytical Mining

An OLAM server performs analytical mining in data cubes in a similar manner as an

OLAP server performs on-line analytical processing. An integrated OLAM and OLAP
architecture is shown in Figure 3.18, where the OLAM and OLAP servers both accept
user on-line queries (or commands) via a graphical user interface API and work with
the data cube in the data analysis via a cube API. A metadata directory is used to

Figure 3.18 An integrated OLAM and OLAP architecture.

guide the access of the data cube. The data cube can be constructed by accessing
and/or integrating multiple databases via an MDDB API and/or by filtering a data
warehouse via a database API that may support OLE DB or ODBC connections. Since
an OLAM server may perform multiple data mining tasks, such as concept
description, association, classification, prediction, clustering, time-series analysis, and
so on, it usually consists of multiple integrated data mining modules and is more
sophisticated than an OLAP server.

Chapter 4 describes data warehouses on a finer level by exploring implementation
issues such as data cube computation, OLAP query answering strategies, and
methods of generalization. The chapters following it are devoted to the study of data
min- ing techniques. As we have seen, the introduction to data warehousing and
OLAP technology presented in this chapter is essential to our study of data mining.
This is because data warehousing provides users with large amounts of clean,
organized, and summarized data, which greatly facilitates data mining. For example,
rather than storing the details of each sales transaction, a data warehouse may store
a summary of the transactions per item type for each branch or, summarized to a
higher level, for each country. The capability of OLAP to provide multiple and
dynamic views of summarized data in a data warehouse sets a solid foundation for
successful data mining.

Moreover, we also believe that data mining should be a human-centered process.
Rather than asking a data mining system to generate patterns and knowledge
automat- ically, a user will often need to interact with the system to perform
exploratory data analysis. OLAPsets agoodexample for interactive data analysis and
provides the necessary preparations for exploratory data mining. Consider the
discovery of association patterns, for example. Instead of mining associations at a
primitive (i.e., low) data level among transactions, users should be allowed to specify
roll-up operations along any dimension. For example, a user may like to roll up on the
item dimension to go from viewing the data for particular TV sets that were
purchased to viewing the brands of these TVs, such as SONY or Panasonic. Users may
also navigate from the transaction level to the customer level or customer-type level
in the search for interesting associations. Such an OLAP- style of data mining is
characteristic of OLAP mining. In our study of the principles of data mining in this
book, we place particular emphasis on OLAP mining, that is, on the integration of
data mining and OLAP technology.

3.4​ Summary

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile
collection of data organized in support of management decision making. Several
factors distinguish data warehouses from operational databases. Because the two
systems provide quite different functionalities and require different kinds of data,
it is necessary to maintain data warehouses separately from operational
databases.

A multidimensional data model is typically used for the design of corporate data
warehouses and departmental data marts. Such a model can adopt a star schema,
snowflake schema, or fact constellation schema. The core of the multidimensional
model is the data cube, which consists of a large set of facts (or measures) and a

number of dimensions. Dimensions are the entities or perspectives with respect to
which an organization wants to keep records and are hierarchical in nature.

A data cube consists of a lattice of cuboids, each corresponding to a different
degree of summarization of the given multidimensional data.

Concept hierarchies organize the values of attributes or dimensions into gradual
levels of abstraction. They are useful in mining at multiple levels of abstraction.

On-line analytical processing (OLAP) can be performed in data
warehouses/marts using the multidimensional data model. Typical OLAP
operations include roll- up, drill-(down, across, through), slice-and-dice, pivot
(rotate), as well as statistical operations such as ranking and computing moving
averages and growth rates. OLAP operations can be implemented efficiently using
the data cube structure.

Data warehouses often adopt a three-tier architecture. The bottom tier is a
warehouse database server, which is typically a relational database system. The
middle tier is an OLAP server, and the top tier is a client, containing query and
reporting tools.

A data warehouse contains back-end tools and utilities for populating and
refresh- ing the warehouse. These cover data extraction, data cleaning, data
transformation, loading, refreshing, and warehouse management.

Data warehouse metadata are data defining the warehouse objects. A metadata
repository provides details regarding the warehouse structure, data history, the
algorithms used for summarization, mappings from the source data to warehouse
form, system performance, and business terms and issues.

OLAP servers may use relational OLAP (ROLAP), or multidimensional OLAP
(MOLAP), or hybrid OLAP (HOLAP). A ROLAP server uses an extended rela-
tional DBMS that maps OLAP operations on multidimensional data to standard
relational operations. A MOLAP server maps multidimensional data views directly
to array structures. A HOLAP server combines ROLAP and MOLAP. For example, it
may use ROLAP for historical data while maintaining frequently accessed data in a
separate MOLAP store.

Full materialization refers to the computation of all of the cuboids in the lattice
defin- ing a data cube. It typically requires an excessive amount of storage space,
particularly as the number of dimensions and size of associated concept
hierarchies grow. This problem is known as the curse of dimensionality.
Alternatively, partial materializa- tion is the selective computation of a subset of
the cuboids or subcubes in the lattice. For example, an iceberg cube is a data cube
that stores only those cube cells whose aggregate value (e.g., count) is above
some minimum support threshold.

OLAP query processing can be made more efficient with the use of indexing tech-
niques. In bitmap indexing, each attribute has its own bitmap index table. Bitmap
indexing reduces join, aggregation, and comparison operations to bit arithmetic.
Join indexing registers the joinable rows of two or more relations from a rela-
tional database, reducing the overall cost of OLAP join operations. Bitmapped
join indexing, which combines the bitmap and join index methods, can be used to
further speed up OLAP query processing.

Data warehouses are used for information processing (querying and reporting),
ana- lytical processing (which allows users to navigate through summarized and
detailed

data by OLAP operations), and data mining (which supports knowledge discovery).
OLAP-based data mining is referred to as OLAP mining, or on-line analytical
mining (OLAM), which emphasizes the interactive and exploratory nature of
OLAP mining.

	3.1​Data Warehouse Implementation
	3.1.1​Efficient Computation of Data Cubes

	Partial Materialization: Selected Computation of Cuboids
	3.1.2​Indexing OLAP Data
	3.1.3​Efficient Processing of OLAP Queries

	3.2​Data Warehouse Implementation
	3.2.1​Efficient Computation of Data Cubes

	Partial Materialization: Selected Computation of Cuboids
	3.2.2​Indexing OLAP Data
	3.2.3​Efficient Processing of OLAP Queries

	3.3​From Data Warehousing to Data Mining
	3.3.1​Data Warehouse Usage
	3.3.2​From On-Line Analytical Processing to On-Line Analytical Mining

	Architecture for On-Line Analytical Mining
	3.4​Summary

