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Background 
During the course of building data exploration tools for Neuropixel data, it has become clear that 
we need a way to efficiently read segments of these files in the cloud. We want to provide an 
interface for users to conveniently read NWB files hosted on S3 (whether via DANDI or in a 
private S3 space) so that data exploration tools can efficiently read small pieces of larger data 
files. It is possible to use h5py and fusefs to read the file directly from S3, similar to how this file 
is read normally when local. This approach does work, and is straightforward to implement 
within the current pynwb API, but is very suboptimal. Opening a file in PyNWB requires many 
small read commands, and in the context of S3, this means sending requests over a network. 
The result is that even opening a modestly sized NWB file can be prohibitively long for a simple 
data exploration application.  
 
One possible solution is to use an alternative backend, such as Zarr. Zarr is a great backend, 
but it has two major problems for our application. The first problem is that there are data 
relationship primitives present in the HDF5 standard that are used by NWB and are not in the 
Zarr standard. This makes converting data from HDF5 to Zarr difficult. The second problem is 
that there is no API for Zarr in MATLAB, so a user would potentially have to convert from Zarr 
back to HDF5. Any imperfections in this round-trip (which are likely given problem 1) will cause 
issues here. 
 
In this document, we explore an alternative solution: save the file with HDF5 and read that 
HDF5 file using the Zarr API (Zarr-HDF5).  This would allow us to keep the advantages from 
both approaches: the data would remain in the exact same format, and we could have a more 
efficient data reading interface. In this approach, the metadata associated with the HDF5 file is 
stored locally in small JSON files, which minimizes the number of network calls. Preliminary 
steps for this process were provided by the NetCDF development group here, but this 
technology is still very new and not fully developed. We have assessed this technology for our 
needs and made enhancements where required to ensure that this works for our desired 
applications. 
 
First, I will discuss the obstacles of reading NWB files in this way, which motivated targeted 
development of the Zarr-HDF5 toolset to overcome these issues. Then, I will discuss 
performance analysis comparing h5py with Zarr. Finally, I will discuss the necessary steps to 
integrate the new HDF5-Zarr interface with PyNWB and NWBWidgets. 

http://dandiarchive.org/
https://medium.com/pangeo/cloud-performant-reading-of-netcdf4-hdf5-data-using-the-zarr-library-1a95c5c92314


Methods 
Zarr and HDF5 have similar capabilities, but not all data types present in HDF5 are also present 
in Zarr. Our first obstacle was that some of the data types present in the NWB standard and 
used by Neuropixel NWB files were not supported by Zarr-HDF5. 

Vectors that contain variable-length strings 
This type is used in NWB for text-based columns of a DynamicTable. In the NWB files for 
Neuropixel datasets, the manually assigned brain area acronyms that were associated with 
each electrode are stored using variable length strings. The previously developed Zarr-HDF5 
reader was not able to read this data type. To accomodate this data type, we developed a 
reader for variable-length strings and incorporated it into Zarr-HDF5. 

Object references as attributes of datasets 
This data type is commonly used in NWB’s vector index, which allows NWB to efficiently store 
ragged arrays. In the NWB files for Neuropixel datasets, the dataset representing spike times 
uses this data type to assign spike times to specific units. Without this data type, we would not 
be able to determine which spike times belong to which unit.  
 
We attended a Zarr meeting and discussed this issue with the development team. Their 
response was that Zarr intentionally decided to not support this type of data, because it has the 
possibility of introducing circular references.  
 
Our solution here was to rewrite these objects as a string where the value of that string is the 
path of the link. The advantage of this approach is that resolving this reference involves the 
exact same syntax as before: 
 
file[object_reference] => file[‘path/to/referenced/object’] 
 
However this approach does require that the user or API knows that this string represents a 
reference, not a normal string. 

Continuous datasets 
HDF5 supports datasets stored in a continuous mode, as well as datasets stored in a chunked 
mode. Zarr-HDF5 only supports datasets in chunked mode. Our first approach was to tell Zarr 
that the continuous HDF5 datasets were just one very large chunk. This did allow us to read the 
data values from the dataset, but caused a problem with reading small subregions of the 
dataset. When reading a segment of a dataset, Zarr reads all chunks in entirety that contain 
some of that data, so when reading a small segment of a 1-chunk dataset, Zarr reads the entire 
dataset. For Neuropixel data, this can take hours. Our solution was to create chunks for Zarr, 



essentially pretending that the dataset is chunked. We tested the read speed across different 
chunk sizes to find the optimal demarcation size for these chunks. 

Object references in compound datasets 
Compound datasets with object references as one of their datatype components are used in 
NWB, but they are not supported in Zarr.  IN HDF5Zarr, object references are read as uint8. They 
will be represented as object dtypes, for compound datasets as well. However, to be able to interpret 
when the object dtype is an object reference, extra data regarding the dtype is stored in zarr store, 
that will be also present in the exported json file as well. 

Result 

h5py Read Speed vs. Zarr Read Speed 
In order to compare between the Zarr and h5py data reading approaches, we compared the 
read speed of each of the entire datasets in a single Neuropixel NWB file. For h5py, the read 
operation is in two steps: Get Object (i.e. dset = file[‘path_to_dset’]) which gathers 
information about how the data is stored on the disk and Read Data (data = dset[:]) which 
reads the data values stored in the dataset into memory. h5py must perform these operations in 
sequence in order to read any dataset. The total time is indicated as Read Time. For Zarr, the 
Get Object command is very fast, because the meta-data associated with the dataset is local 
and parseable very quickly, so the Read Time is dominated by the Read Data step. 



 



Figure 1. Comparison of data read times across Neuropixel dataset. Read times are shown for 
each of the datasets, ordered by Zarr Read Time. The critical comparison is blue: Zarr Read 
Time vs. red: h5py Read Time. 
 
In analysis and visualization it is often necessary to read small portions of large datasets. For 
instance, when visualizing a small 4-second time window of an hour-long session or analyzing 
the spike times of a single unit among hundreds, it would be wasteful to read the entire dataset. 
To facilitate reading only small pieces of large datasets, large continuous HDF5 Datasets were 
recorded in the Zarrstore structure as if they were chunked. Several chunk sizes were explored 
to determine the optimal chunk size. 
 

 



Figure 2: Slice read analysis. The read time of two data read operations is compared for 
different sizes of chunks in the zarrstore (blue) against the read time for h5py (grey). 
 
Comparison of reading data segments shows that 256KB chunks are a reasonable choice for 
chunking in the zarrstore. It also demonstrates that, using this approach, reading small 
segments of data is much faster than reading the entire dataset (which is in the 1,000s of 
seconds for both of these datasets). 

Conclusion 
We have demonstrated that Zarr can be successfully used to read NWB files saved using the 
HDF5 format, and that it has the potential of addressing the performance needs to enable 
convenient exploration of Neuropixel NWB files stored in the cloud. 
 
We have integrated this approach into PyNWB so that NWBWidgets can read data through Zarr. 
This allows us to efficiently read data files stored on S3, and only read the section of the files 
that we need. 
 
 

 



Appendix 
Open access codebase: https://github.com/catalystneuro/HDF5Zarr 
 
HDF5Zarr can be used to read a local HDF5 file where the datasets are actually read using the 
Zarr library. Download example dataset from 
https://girder.dandiarchive.org/api/v1/item/5eda859399f25d97bd27985d/download 

import zarr 

from hdf5zarr import HDF5Zarr 

 

file_name = 'sub-699733573_ses-715093703.nwb' 

store = zarr.DirectoryStore('storezarr') 

hdf5_zarr = HDF5Zarr(filename = file_name, store=store, store_mode='w', 

max_chunksize=2*2**20) 

zgroup = hdf5_zarr.consolidate_metadata(metadata_key = '.zmetadata') 

Without indicating a specific zarr store, zarr uses the default zarr.MemoryStore. Alternatively, 
pass a zarr store such as: 

store = zarr.DirectoryStore('storezarr') 

hdf5_zarr = HDF5Zarr(file_name, store = store, store_mode = 'w') 

Examine structure of file using Zarr tools: 

# print dataset names 

zgroup.tree() 

# read 

arr = zgroup['units/spike_times'] 

val = arr[0:1000] 

Once you have a zgroup object, this object can be read by PyNWB using 

from hdf5zarr import NWBZARRHDF5IO 

io = NWBZARRHDF5IO(mode='r+', file=zgroup) 

Export metadata from zarr store to a single json file 

import json 

metadata_file = 'metadata' 

with open(metadata_file, 'w') as f: 

    json.dump(zgroup.store.meta_store, f) 

https://github.com/catalystneuro/HDF5Zarr
https://girder.dandiarchive.org/api/v1/item/5eda859399f25d97bd27985d/download


Open NWB file on remote S3 store. requires a local metadata_file, constructed in previous 
steps. 

import s3fs 

from hdf5zarr import NWBZARRHDF5IO 

 

 

fs = s3fs.S3FileSystem(anon=True) 

 

f = 

fs.open('dandiarchive/girder-assetstore/4f/5a/4f5a24f7608041e495c85329dba318b

7', 'rb') 

 

# import metadata from a json file 

with open(metadata_file, 'r') as f: 

    store = json.load(f) 

 

hdf5_zarr = HDF5Zarr(f, store = store, store_mode = 'r') 

zgroup = hdf5_zarr.zgroup 

io = NWBZARRHDF5IO(mode='r', file=zgroup, load_namespaces=True) 

Here is the entire workflow for opening a file remotely: 

import zarr 

import s3fs 

from hdf5zarr import HDF5Zarr, NWBZARRHDF5IO 

 

file_name = 'sub-699733573_ses-715093703.nwb' 

store = zarr.DirectoryStore('storezarr') 

hdf5_zarr = HDF5Zarr(filename = file_name, store=store, store_mode='w', 

max_chunksize=2*2**20) 

zgroup = hdf5_zarr.consolidate_metadata(metadata_key = '.zmetadata') 

 

fs = s3fs.S3FileSystem(anon=True) 

 

f = 

fs.open('dandiarchive/girder-assetstore/4f/5a/4f5a24f7608041e495c85329dba318b

7', 'rb') 

hdf5_zarr = HDF5Zarr(f, store = store, store_mode = 'r') 

zgroup = hdf5_zarr.zgroup 

io = NWBZARRHDF5IO(mode='r', file=zgroup, load_namespaces=True) 

nwb = io.read() 
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