Reading NWB files on S3 with Zarr-HDF5

Ben Dichter
June 25, 2020
CatalystNeuro

Background

During the course of building data exploration tools for Neuropixel data, it has become clear that
we need a way to efficiently read segments of these files in the cloud. We want to provide an
interface for users to conveniently read NWB files hosted on S3 (whether via DANDI or in a
private S3 space) so that data exploration tools can efficiently read small pieces of larger data
files. It is possible to use h5py and fusefs to read the file directly from S3, similar to how this file
is read normally when local. This approach does work, and is straightforward to implement
within the current pynwb API, but is very suboptimal. Opening a file in PyNWB requires many
small read commands, and in the context of S3, this means sending requests over a network.
The result is that even opening a modestly sized NWB file can be prohibitively long for a simple
data exploration application.

One possible solution is to use an alternative backend, such as Zarr. Zarr is a great backend,
but it has two major problems for our application. The first problem is that there are data
relationship primitives present in the HDF5 standard that are used by NWB and are not in the
Zarr standard. This makes converting data from HDF5 to Zarr difficult. The second problem is
that there is no API for Zarr in MATLAB, so a user would potentially have to convert from Zarr
back to HDF5. Any imperfections in this round-trip (which are likely given problem 1) will cause
issues here.

In this document, we explore an alternative solution: save the file with HDF5 and read that
HDF5 file using the Zarr API (Zarr-HDFS). This would allow us to keep the advantages from
both approaches: the data would remain in the exact same format, and we could have a more
efficient data reading interface. In this approach, the metadata associated with the HDF5 file is
stored locally in small JSON files, which minimizes the number of network calls. Preliminary
steps for this process were provided by the NetCDF development group here, but this
technology is still very new and not fully developed. We have assessed this technology for our
needs and made enhancements where required to ensure that this works for our desired
applications.

First, | will discuss the obstacles of reading NWB files in this way, which motivated targeted
development of the Zarr-HDF5 toolset to overcome these issues. Then, | will discuss
performance analysis comparing h5py with Zarr. Finally, | will discuss the necessary steps to
integrate the new HDF5-Zarr interface with PyNWB and NWBWidgets.

http://dandiarchive.org/
https://medium.com/pangeo/cloud-performant-reading-of-netcdf4-hdf5-data-using-the-zarr-library-1a95c5c92314

Methods

Zarr and HDF5 have similar capabilities, but not all data types present in HDF5 are also present
in Zarr. Our first obstacle was that some of the data types present in the NWB standard and
used by Neuropixel NWB files were not supported by Zarr-HDF5.

Vectors that contain variable-length strings

This type is used in NWB for text-based columns of a DynamicTable. In the NWB files for
Neuropixel datasets, the manually assigned brain area acronyms that were associated with
each electrode are stored using variable length strings. The previously developed Zarr-HDF5
reader was not able to read this data type. To accomodate this data type, we developed a
reader for variable-length strings and incorporated it into Zarr-HDF5.

Object references as attributes of datasets

This data type is commonly used in NWB'’s vector index, which allows NWB to efficiently store
ragged arrays. In the NWB files for Neuropixel datasets, the dataset representing spike times
uses this data type to assign spike times to specific units. Without this data type, we would not
be able to determine which spike times belong to which unit.

We attended a Zarr meeting and discussed this issue with the development team. Their
response was that Zarr intentionally decided to not support this type of data, because it has the
possibility of introducing circular references.

Our solution here was to rewrite these objects as a string where the value of that string is the
path of the link. The advantage of this approach is that resolving this reference involves the
exact same syntax as before:

file[object reference] => file[‘path/to/referenced/object’]

However this approach does require that the user or API knows that this string represents a
reference, not a normal string.

Continuous datasets

HDF5 supports datasets stored in a continuous mode, as well as datasets stored in a chunked
mode. Zarr-HDF5 only supports datasets in chunked mode. Our first approach was to tell Zarr
that the continuous HDF5 datasets were just one very large chunk. This did allow us to read the
data values from the dataset, but caused a problem with reading small subregions of the
dataset. When reading a segment of a dataset, Zarr reads all chunks in entirety that contain
some of that data, so when reading a small segment of a 1-chunk dataset, Zarr reads the entire
dataset. For Neuropixel data, this can take hours. Our solution was to create chunks for Zarr,

essentially pretending that the dataset is chunked. We tested the read speed across different
chunk sizes to find the optimal demarcation size for these chunks.

Object references in compound datasets

Compound datasets with object references as one of their datatype components are used in
NWB, but they are not supported in Zarr. IN HDF5Zarr, object references are read as uint8. They
will be represented as object dtypes, for compound datasets as well. However, to be able to interpret
when the object dtype is an object reference, extra data regarding the dtype is stored in zarr store,
that will be also present in the exported json file as well.

Result

h5py Read Speed vs. Zarr Read Speed

In order to compare between the Zarr and h5py data reading approaches, we compared the
read speed of each of the entire datasets in a single Neuropixel NWB file. For h5py, the read
operation is in two steps: Get Object (i.e. dset = file[‘path to dset’])which gathers
information about how the data is stored on the disk and Read Data (data = dset[:]) which
reads the data values stored in the dataset into memory. h5py must perform these operations in
sequence in order to read any dataset. The total time is indicated as Read Time. For Zarr, the
Get Object command is very fast, because the meta-data associated with the dataset is local
and parseable very quickly, so the Read Time is dominated by the Read Data step.

Neuropixel Datasets

units/spike_amplitudes

units/spike_times

units/waveform_mean
processing/raw_gaze_mapping/screen_coordinates_spherical/data
processing/raw_gaze_mapping/screen_coordinates/data
acquisition/running_wheel_signal_voltage/data
processing/running/running_speed/data
processing/running/running_wheel_rotation/data
processing/running/running_wheel_rotation/timestamps
intervals/epochs/size
acquisition/running_wheel_supply_voltage/data
acquisition/running_wheel_signal_voltage/timestamps
processing/raw_gaze_mapping/eye_area/data
processing/raw_gaze_mapping/screen_coordinates_spherical/timestamps
intervals/epochs/stimulus_block
processing/stimulus/timestamps/data
acquisition/raw_running_wheel_rotation/data
processing/eye_tracking/pupil_ellipse_fits/phi
intervals/epochs/tags_index
intervals/epochs/temporal_frequency
processing/filtered_gaze_mapping/pupil_area/data
processing/eye_tracking/eye_ellipse_fits/center_x
intervals/epochs/orientation

intervals/epochs/texRes
processing/eye_tracking/cr_ellipse_fits/phi
intervals/epochs/phase

intervals/epochs/contrast
acquisition/running_wheel_supply_voltage/timestamps
intervals/epochs/frame
processing/eye_tracking/cr_ellipse_fits/id
processing/raw_gaze_mapping/pupil_area/data
processing/eye_tracking/eye_ellipse_fits/phi
intervals/epochs/interpolate
processing/eye_tracking/cr_ellipse_fits/center_x
processing/filtered_gaze_mapping/screen_coordinates/data
intervals/epochs/start_time

intervals/epochs/mask
processing/eye_tracking/eye_ellipse_fits/id
processing/filtered_gaze_mapping/screen_coordinates_spherical/data
processing/filtered_gaze_mapping/eye_area/data
intervals/epochs/x_position

intervals/epochs/id

intervals/epochs/tex

intervals/epochs/stop_time
intervals/epochs/stimulus_index
intervals/epochs/opacity
processing/eye_tracking/pupil_ellipse_fits/center x
processing/eye_tracking/pupil_ellipse_fits/id
intervals/epochs/timeseries_index
processing/eye_tracking/pupil_ellipse_fits/timestamps
intervals/epochs/stimulus_name
intervals/epochs/flipHoriz

intervals/epochs/tags
processing/eye_tracking/pupil_ellipse_fits/width

processing/filtered_gaze_mapping/screen_coordinates_spherical/timestamps

processing/eye_tracking/eye_ellipse_fits/width
intervals/epochs/depth
processing/eye_tracking/cr_ellipse_fits/width
processing/eye_tracking/eye_ellipse_fits/timestamps
processing/eye_tracking/cr_ellipse_fits/timestamps
intervals/epochs/units

intervals/epochs/color

intervals/epochs/rgbPedestal
intervals/epochs/spatial_frequency

intervals/epochs/pos
general/extracellular_ephys/electrodes/group
intervals/epochs/colorSpace
processing/eye_tracking/eye_ellipse_fits/center_y
processing/eye_tracking/eye_ellipse_fits/height
acquisition/raw_running_wheel_rotation/timestamps
processing/running/running_speed/timestamps
processing/filtered_gaze_mapping/pupil_area/timestamps
processing/eye_tracking/cr_ellipse_fits/center_y
processing/filtered_gaze_mapping/eye_area/timestamps
processing/raw_gaze_mapping/pupil_area/timestamps
processing/filtered_gaze_mapping/screen_coordinates/timestamps
processing/raw_gaze_mapping/eye_area/timestamps
processing/raw_gaze_mapping/screen_coordinates/timestamps
processing/eye_tracking/cr_ellipse_fits/height
intervals/epochs/flipVert
processing/stimulus/timestamps/timestamps
processing/eye_tracking/pupil_ellipse_fits/center_y
processing/eye_tracking/pupil_ellipse_fits/height
intervals/epochs/y_position

Zarr Read Time
h5py: Get Object
h5py: Read Data

h5py Read Time

LN NN J

Zarr Read Time

h5py: Get Object
h5py: Read Data
h5py Read Time

0 50

100
Time (Sec)

100
Time (Sec)

150

150

il
200

200

2000

2000

4000

4000

Figure 1. Comparison of data read times across Neuropixel dataset. Read times are shown for
each of the datasets, ordered by Zarr Read Time. The critical comparison is blue: Zarr Read
Time vs. red: h5py Read Time.

In analysis and visualization it is often necessary to read small portions of large datasets. For
instance, when visualizing a small 4-second time window of an hour-long session or analyzing
the spike times of a single unit among hundreds, it would be wasteful to read the entire dataset.
To facilitate reading only small pieces of large datasets, large continuous HDF5 Datasets were
recorded in the Zarrstore structure as if they were chunked. Several chunk sizes were explored
to determine the optimal chunk size.

file['unitsfwaveform_mean'][10004000,]

120

100

time (&)
2

file['units/spike_amplitudes"[20000000: 95000000]

100

time (&)

12BKB 256K B 512KB 1B 2B
size of zarrstore chunks

Figure 2: Slice read analysis. The read time of two data read operations is compared for
different sizes of chunks in the zarrstore (blue) against the read time for h5py (grey).

Comparison of reading data segments shows that 256KB chunks are a reasonable choice for
chunking in the zarrstore. It also demonstrates that, using this approach, reading small
segments of data is much faster than reading the entire dataset (which is in the 1,000s of
seconds for both of these datasets).

Conclusion

We have demonstrated that Zarr can be successfully used to read NWB files saved using the
HDF5 format, and that it has the potential of addressing the performance needs to enable
convenient exploration of Neuropixel NWB files stored in the cloud.

We have integrated this approach into PyNWB so that NWBWidgets can read data through Zarr.
This allows us to efficiently read data files stored on S3, and only read the section of the files
that we need.

Appendix

Open access codebase: https://github.com/catalystneuro/HDF5Zarr

HDF5Zarr can be used to read a local HDF5 file where the datasets are actually read using the
Zarr library. Download example dataset from
https://girder.dandiarchive.org/api/v1/item/5eda859399f25d97bd27985d/download

import zarr
from hdf5zarr import HDF5Zarr

file name = 'sub-699733573 ses-715093703.nwb’

store = zarr.DirectoryStore('storezarr')

hdf5_ zarr = HDF5Zarr(filename = file_name, store=store, store_mode='w',
max_chunksize=2*2**20)

zgroup = hdf5_zarr.consolidate metadata(metadata_key = '.zmetadata')

Without indicating a specific zarr store, zarr uses the default zarr.MemoryStore. Alternatively,
pass a zarr store such as:

store = zarr.DirectoryStore('storezarr')
hdf5_zarr = HDF5Zarr(file_name, store = store, store_mode = 'w')

Examine structure of file using Zarr tools:

print dataset names
zgroup.tree()

read

arr = zgroup['units/spike_times']
val = arr[0:1000]

Once you have a zgroup object, this object can be read by PyNWB using

from hdf5zarr import NWBZARRHDF5IO
io = NWBZARRHDF5IO(mode="r+', file=zgroup)

Export metadata from zarr store to a single json file

import json

metadata_file = 'metadata’

with open(metadata_file, 'w') as f:
json.dump(zgroup.store.meta_store, f)

https://github.com/catalystneuro/HDF5Zarr
https://girder.dandiarchive.org/api/v1/item/5eda859399f25d97bd27985d/download

Open NWB file on remote S3 store. requires a local metadata_file, constructed in previous
steps.

import s3fs
from hdf5zarr import NWBZARRHDF5IO

fs = s3fs.S3FileSystem(anon=True)

f =
fs.open('dandiarchive/girder-assetstore/4f/5a/4f5a24f7608041e495c85329dba318b
7I, lr\bl)

import metadata from a json file
with open(metadata_file, 'r') as f:
store = json.load(f)

hdf5 zarr = HDF5Zarr(f, store = store, store_mode = 'r')
zgroup = hdf5_zarr.zgroup
io = NWBZARRHDF5IO(mode='r', file=zgroup, load_namespaces=True)

Here is the entire workflow for opening a file remotely:

import zarr
import s3fs
from hdf5zarr import HDF5Zarr, NWBZARRHDF5IO

file name = 'sub-699733573 ses-715093703.nwb’

store = zarr.DirectoryStore('storezarr')

hdf5 zarr = HDF5Zarr(filename = file_name, store=store, store_mode='w',
max_chunksize=2*2**20)

zgroup = hdf5_zarr.consolidate metadata(metadata _key = '.zmetadata')

fs = s3fs.S3FileSystem(anon=True)

f =
fs.open('dandiarchive/girder-assetstore/4f/5a/4f5a24f7608041e495c85329dba318b
7I, lr‘bl)

hdf5 zarr = HDF5Zarr(f, store = store, store _mode = 'r')

zgroup = hdf5_zarr.zgroup
io = NWBZARRHDF5IO(mode='r', file=zgroup, load_namespaces=True)
nwb = io.read()

	Reading NWB files on S3 with Zarr-HDF5
	Background
	Methods
	Vectors that contain variable-length strings
	Object references as attributes of datasets
	Continuous datasets
	Object references in compound datasets

	Result
	h5py Read Speed vs. Zarr Read Speed

	Conclusion
	
	Appendix

