Fiche technique

Professeur : Mouad Zillou Matière : Mathématiques

Droite dans le plan

			Durée : 5 heures	Niveau : TCSF	
İ	Outils didactiques		: Tableau, livre, craie, règle, calculatrice		le des
	attendues		 Utiliser l'outil analytique dans la résolution de problèmes géométriques. Utiliser différentes méthodes pour exprimer la colinéarité de deux vecteurs. 		
	Contenus du programme		 Le repère- Les coordonnées d'un vecteur. Deux vecteurs colinéaires. Représentation paramétrique d'une droite. Équation cartésienne d'une droite 		
	Recommandations pédagogiques		•Il faudra habituer les élèves à utiliser différentes méthodes pour exprimer la colinéarité de deux vecteurs.		
	la prépa	chiers utilisés dans a préparation du Les orientations pédagogiques.+ Livre d'élève + Des sites électroniques.			
	CC	ours	Distribution périodique du programme de mathér	matiques	
	Rôle de l'	enseignant	 Ecrire l'activité au tableau + Marquer les diffice Donner une durée suffisante pour la recherche prérequis des apprenants + Noter les observat 	e individuelle + Diagonalis	
	Rôle de l	apprenant	 Ecrire les activités + Répondre aux questions de ses solutions et formuler les résultats de l'authéorème, propriété Répondre aux exercices 		ation
Et	apes		Contenu du cours		Durée
		$rac{ extit{D\'efinitio}}{ ext{Soient}}$	et J trois points distincts non alignés.	es d'un vecteur	
			(O,i,j) définie un repère du plan.		
		*Le couple	s'appelle l'origine du repère. $\binom{\overset{\bowtie}{i},\overset{\bowtie}{j}}{j}$ s'appelle base du plan.		
		*La droite	OI) s'appelle l'axe des abscisses .		

*La droite ${OJ}$ s'appelle l'axe des **ordonnés**.

*Si $(OI) \perp (OJ)$ alors le repère (O, i, j) est un repère orthogonal.

*Si $(OI) \perp (OJ)$ et $\|\vec{i}\| = \|\vec{j}\| = 1u$ alors le repère (O, \vec{i}, \vec{j}) est un repère orthonormé

2. Coordonnées d'un point - coordonnées d'un vecteur

<u>Activité</u>

Dans un repère orthonormé du plan O(i,j), on considère les points suivants : $A(1;3) \cdot B(-1;2)$ et C(-2;-1).

- 1) Déterminer les coordonnées des vecteurs suivants : $\stackrel{\sim}{AB}$; $\stackrel{\sim}{AC}$ et $\stackrel{\sim}{BC}$
- 2) Calculer les distances suivantes : AB , AC et BC .
- 3) Déterminer les coordonnées des vecteurs suivantes : $2\overset{\text{\tiny LAKMANN}}{AB}$ et $-3\overset{\text{\tiny RC}}{BC}$.
- 4) Déterminer les coordonnées des vecteurs suivantes 2AB + (-3)BC et AB + AC
- 5) Déterminer les coordonnées du point I le milieu du segment AB

a. Définitions et propriété

Soit (O, \vec{i}, \vec{j}) un repère du plan.

* Soit M un point du plan. Il existe un seul couple (x,y) tel que OM = xi + yj

Le couple (x,y) s'appelle couple de coordonnées du point M tel que x s'appelle abscisse du point M et y s'appelle ordonné du point M , et on écrit M(x,y) ou $M\binom{x}{y}$

b. Multiplication d'un vecteur par un scalaire

Soit u(x,y) un vecteur du plan et soit k un nombre réel. La multiplication du vecteur u par u est le vecteur u qui a pour coordonnées u .

c. Coordonnées d'une somme de deux vecteurs

Soient u(x,y) et v(x',y') deux vecteurs du plan. La somme des vecteurs u et v est le vecteurs u+v qui a pour coordonnées u+v(x+x'+y+y')

Exemple:

On a
$$u(2;-3)$$
 et $v(0;-1)$ donc $2u(4;-6)$ et $u+v(2;-4)$

b. Propriété:

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points dans un repère $\left(O, \stackrel{\bowtie}{i}, \stackrel{\bowtie}{j}\right)$

- * Le vecteur $\stackrel{\text{\tiny LYLMAN}}{AB}$ a pour coordonnées $\stackrel{\text{\tiny LYLMAN}}{AB}(x_{\scriptscriptstyle B}-x_{\scriptscriptstyle A};y_{\scriptscriptstyle B}-y_{\scriptscriptstyle A})$
- * Le milieu du segment $\begin{bmatrix} AB \end{bmatrix}$ a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$
- st Si le repère $\left(O, \overset{oxtime}{i,j}
 ight)$ est un repère orthonormé on a

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Exemple

On considère les points A(3;1) , B(-1;2) et soit I le milieu [AB]

- $\underline{ \bullet} \ \ \text{Les coordonnées : on a} \ \ \frac{ \ \ \, (X_B X_A; y_B y_A) }{AB} \ \ \text{donc} \ \ \frac{ \ \ \, (AB) }{AB} (-4;1)$
- $\underline{ \bullet } \ \ \, \text{Les coordonn\'ees du point } \ \, I \ \ \, : \text{on a} \ \, I \bigg(\frac{x_{\scriptscriptstyle A} + x_{\scriptscriptstyle B}}{2} ; \frac{y_{\scriptscriptstyle A} + y_{\scriptscriptstyle B}}{2} \bigg) \ \ \, \text{donc} \ \, I \bigg(1; \frac{3}{2} \bigg)$
- La distance AB: on a $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$ donc $AB = \sqrt{17}$

c. Egalité de deux vecteurs

Pronriété

Soient u(x,y) et v(x',y') deux vecteurs du plan.

On dit que $\overset{\bowtie}{u}$ et $\overset{\bowtie}{v}$ sont égaux si et seulement si x=x' et y=y'. On écrit $\overset{\bowtie}{u}=\overset{\bowtie}{v}$

Evaluation

Soient
$$u(3x+1;2)$$
 et $v(4;y-3)$ deux vecteurs.

Déterminer x et y pour que u = v.

II. Colinéarité de deux vecteurs

1. Déterminant de deux vecteurs

Soient u(x,y) et v(x',y') deux vecteurs du plan.

	Le nombre réel $xy'-x'y$ s'appelle le déterminant de vecteurs $u(x,y)$ et $v(x',y')$		
	, se note $\det \begin{pmatrix} \overset{\bowtie}{u}, \overset{\bowtie}{v} \end{pmatrix}$ tel que $\det \begin{pmatrix} \overset{\boxtimes}{u}, \overset{\boxtimes}{v} \end{pmatrix} = \begin{vmatrix} x \ x' \\ y \ y' \end{vmatrix} = xy' - x'y$		
	Exemple On considère les vecteurs suivants : $\overset{\text{\tiny L}}{u}(2;3)$ et $\overset{\text{\tiny L}}{v}(3;4)$ • det $\det(\vec{u}, \vec{v}) = 2\ 3\ 3\ 4 = 2\times 4 - 3\times 3 = -1$ • det $\det(\vec{v}, \vec{u}) = 3\ 2\ 4\ 3 = 3\times 3 - 2\times 4 = 1 = -\det\det(\vec{u}, \vec{v})$ • det $\det(2\vec{u}, \vec{v}) = 4\ 3\ 6\ 4 = 4\times 4 - 6\times 3 = -2 = 2\det\det(\vec{u}, \vec{v})$.		
	Remarque: Soient u et v deux vecteurs et k un nombre réel on a :		
	$\det \begin{pmatrix} u, v \end{pmatrix} = -\det \begin{pmatrix} u, v \end{pmatrix}$ $\det \begin{pmatrix} u, v \end{pmatrix} = \det \begin{pmatrix} u, k \end{pmatrix} = k \times \det \begin{pmatrix} u, v \end{pmatrix}$		
	<u>2. Colinéarité de deux vecteurs</u> <u>Propriété</u> :		
	Soient $u(x,y)$ et $v(x',y')$ deux vecteurs du plan.		
	On dit que u et v sont <i>colinéaires</i> si et seulement si $\det \left(u, v\right) = 0$		
	On a $u(2;3)$ et $v(-1;\frac{-3}{2})$ donc $\det(u,v) = 2 \times (\frac{-3}{2}) - 3 \times (-1) = -3 + 3 = 0$		
	Or on a $\det \begin{pmatrix} \overset{\bowtie}{u}, \overset{\bowtie}{v} \end{pmatrix} = 0$; par conséquent $\overset{\bowtie}{u}$ et $\overset{\bowtie}{v}$ sont colinéaires.		
	1) On considère les points suivants : $A(1;-8)$, $B(11;7)$, $C(5;-1)$ et $D(7;2)$		
Evaluati	Montrer que $\stackrel{\sim}{AB}$ et $\stackrel{\sim}{CD}$ sont colinéaires.		
on	2) Etudier l'alignement des points E,F et G dans les cas suivants :		
	i) $E(-4;2)$, $F(5;1)$ et $G(11;3)$		
	ii) $E(-2;3)$, $F(0;-1)$ et $G(-1;1)$.		
	III. La droite dans le plan 1. Vecteur directeur d'une droite		
	<u>Définition</u>		
	Soit (D) une droite qui passe par deux points distincts A et B .On appelle vecteur		
	directeur de la droite $\stackrel{ig(D)}{}$ tout vecteur qui est colinéaires au vecteur $\stackrel{ig(AB)}{AB}$		

Exemple

Etant donné une droite (D) d'équation réduite suivante : (D): y = -x + 1

On remarque que la droite D passe par les points A(1;0) et B(0;1) par conséquent le vecteur AB(-1;1) est un vecteur directeur de la droite D.

Remarque

Si une droite $\stackrel{(D)}{=}$ passe par un point $\stackrel{A}{=}$ et dirigée par un vecteur $\stackrel{\bowtie}{u}$ alors on écrit $D(A,\stackrel{\bowtie}{u})$

2. Equation cartésienne d'une droite

Activité :

Dans le plan on considère les points A(3;1) , B(-1;2) et soit M(x,y) un point de (AB)

- 1) Que peut dire sur la colinéarité de deux vecteurs $\stackrel{\sim}{AB}$ et $\stackrel{\sim}{AM}$
- 2) Déduire $\det \left(\stackrel{\text{MANAMA}}{AM}; \stackrel{\text{MANAMA}}{AB}\right)$
- 3) Exprimer $\det \left(\stackrel{\text{MANAMAN}}{AM}; \stackrel{\text{AB}}{AB} \right)$ en fonction de $^{\mathcal{X}}$ et $^{\mathcal{Y}}$.

Définition:

Soient a,b et c des nombres réels où $(a,b) \neq (0,0)$

Toute droite du plan admet une équation de forme ax + by + c = 0.

L'équation ax + by + c = 0 s'appelle *une équation cartésienne* d'une droite.

<u>Propri</u>été :

L'ensemble de point M(x,y) du plan qui vérifient ax+by+c=0 est une droite dirigée par le vecteur u(-b,a) .

<u>Remarque</u>

Soit D une droite passe par un point $A(x_A; y_A)$ et dirigée par un vecteur u(-b,a) et M(x,y) un point du plan.

$$M \in D\left(A, u\right) \Leftrightarrow AM \text{ et } u \text{ sont colinéaires } \Leftrightarrow \det\left(AM, u\right) = 0$$

Exemple: On considère les points suivants A(-3;1) et B(-1;4)

Déterminons l'équation cartésienne de la droite (AB)

$$M \in D\left(A, \stackrel{\text{\tiny (NAMAN)}}{AB}\right) \iff \det\left(\stackrel{\text{\tiny (NAMAN)}}{AM}, \stackrel{\text{\tiny (NAMAN)}}{AB}\right) = 0 \iff 3(x+3) - 2(y-1) = 0 \Leftrightarrow 3x - 2y + 11 = 0$$

D'où (AB): 3x-2y+11=0 est une équation cartésienne de droite (AB).

Evaluation	Déterminer une équation cartésienne de la droite $D(A,u)$ telle que $A(-2;3)$ et $u(-1;3)$ Déterminer une équation cartésienne de le droite $B(-2;1)$ et $C(-3;2)$						
	3. Représentation paramétrique d'une droite :						
	Soit (D) une droite passe par $A(2;1)$ et dirigée par un vecteur $u(3,-2)$ et $M(x,y) \in (D)$						
	1) Montrer qu'il existe un nombre réel t tel que $AM = tu$						
	2) Déduire les coordonnées du point M en fonction de t .						
	<u>Définition</u>						
	Soient $\stackrel{A(x_A;y_A)}{}$ un point du plan et $\stackrel{\omega}{u(\alpha,\beta)}$ un vecteur non nul.						
	$\int x = x_A + t\alpha$						
	Le système $\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \end{cases} / t \in \mathbb{N}$ s'appelle représentation paramétrique d'une						
	droite passe par le point $A(x_{\scriptscriptstyle A};y_{\scriptscriptstyle A})$ et dirigée par un vecteur $u(\alpha,\beta)$.						
	Exemple : Soit (D) une droite passe le point $A(2;-1)$ et dirigée par le vecteur						
	$u(-1;3) \text{ Le système} \qquad (D): \begin{cases} x=2-1t \\ y=-1+3t \end{cases} \text{ est une représentation}$						
	paramétrique de $\begin{picture}(D)\end{picture}$.						
	Remarque :						
- 1 ···	Toute droite du plan admet une infinité de représentation paramétrique.						
Evaluation	Soient $A(3;-2)$ et $B(5;4)$ deux points du plan.						
	1) Déterminer une représentation paramétrique de la droite AB						
	2) Le point $C(4;-1)$ appartient-il à la droite AB .						
	3) Donner une équation cartésienne de la droite $ (D): \begin{cases} x = -2 + 4t \\ y = -1 + 2t \end{cases} / t \in \mathbb{Z} $						
	IV. Positions relatives de deux droites définies par ses équations cartésiennes. Propriété						
	Soient (D) et (D') deux droites du plan définies par ses équations cartésienne						
	telles que (D) : $ax + by + c = 0$ et (D') : $a'x + b'y + c' = 0$. On dit que (D) et						
	(D') sont:						

	 * Parallèles ((D)//(D')) si et seulement si ab'-a'b=0 * Sécantes si et seulement si ab'-a'b≠0 et en particulier (D) et (D') 	
	sont Orthogonales $(D) \perp (D')$ si et seulement si $aa' + bb' = 0$	
	<u>Exemple</u>	
	Soient (D) et (D') deux droites telles que : $(D):3x-y-1=0$ et	
	$(D'): -2x + \frac{2}{3}y + 1 = 0$	
	Etudions la position relative de (D) et (D')	
	On a $3 \times \frac{2}{3} - (-1) \times (-2) = 2 - 2 = 0$ donc $(D) / / (D')$.	
	Etudier la position relative de ${D \choose D}$ et ${D' \choose D}$ dans les cas suivants :	
	$ (D): 6x - 2y + 3 = 0 ;; (D'): 2x - \frac{1}{3}y - 1 = 0 $	
Evaluati on	• $(D): x+2y-3=0$;; $(D'): -x-2y+4=0$	
Oii	(D):5x-3y+2=0 ;; (D'):2x-3y-5=0	
	$ (D): -2x - y + 2 = 0 ;; (D'): \frac{1}{2}x - y - 7 = 0 $	