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This document describes a possible design and implementation for hazard pointers in the Linux
kernel. But first, a recap of implementation issues and an introduction to hazard pointers.

TL; DR: Issues
The biggest design issue surrounds module unloading. With RCU, a single rcu_barrier()
call initiated after the last call_rcu() involving an in-module function suffices. This approach
relies on the fact that RCU read-side critical sections are sharply bounded, witness RCU CPU
stall warnings. (Not needed in Neeraj’s use case.)

But one of the advantages of hazard pointers is the ability to hold a long-term reference without
blocking reclamation of other hazard-pointer-protected objects. This means that a
straightforward hazptr_barrier() that waits on all pre-existing hazard-pointer callbacks
might never return. For more detail, please see the discussion of hazptr_barrier() below.
(Neeraj’s use case does not invoke rcu_barrier(), and so presumably would not need
hazptr_barrier().)

Another design issue surrounds diagnostics. The equivalent of an RCU CPU stall warning does
not make sense, and the straightforward lockdep approaches are invalidated by the fact that it is
perfectly legal to pass hazard pointers from one CPU to another and from one task to another.
Note that one of the main benefits of hazard pointers is the ability to hold references to
individual objects indefinitely.

A use-case issue is that there are not yet any known situations in the Linux kernel where
memory contention favors use of hazard pointers over any of the other applicable
synchronization mechanisms. But Neeraj located one here.

Note that the hazard-pointer grace-period mechanism compares hazard pointers. This means
that there must either be a unique pointer value that corresponds to a given object on the one
hand or that the hazard-pointers mechanism must understand what the memory allocator is
doing.

There is no need for the saturation and underflow checks that are required for classic reference
counting are not needed because hazard pointers uses “stroke arithmetic”, where the value of
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the implicit reference counter is the number of hazard pointers currently referencing the
hazard-pointer-protected object.

What Are Hazard Pointers?
Hazard pointers can be thought of as an inside-out reference counter. Instead of an integer
within a data element that counts references, each reference is instead denoted by a pointer
that is stored in a CPU/task-local location, each such pointer being a “hazard pointer”. And I
hope that you will agree with me that freeing a data element referenced by a hazard pointer
would indeed be hazardous! The reference count for a given data element is then the number
of hazard pointers referencing it.

As with RCU, once a given data element has been removed from all structures (excluding the
hazard pointers themselves), readers can no longer find that element, and therefore no new
hazard pointer can be created. Except for race conditions where readers store a hazard pointer
to a given element just as that element is being removed. Hazard pointers handles this race by:

1. Reading the pointer to the target data element.
2. Storing it to a hazard pointer.
3. Enforcing full ordering (for example, smp_mb(), though there are other options).
4. Re-reading the original pointer. If the values read differ, the reader clears the hazard

pointer and retries from the beginning. It is often the case that “from the beginning”
means going back to an immortal pointer to the entire data structure, for example, a tree
traversal will usually need to restart from the head of that tree.

5. Otherwise, the continued existence of the target data element is guaranteed, so the
reader can start using that element.

This results in zero writes to the shared structure on the read path and no read-modify-write
atomic operations. The call to smp_mb() can be replaced by sys_membarrier()-like IPIs,
but CONFIG_PREEMPT_RT=y builds of the Linux kernel would probably prefer the read-side
smp_mb() calls. Alternatively, RCU could be used to protect hazard-pointer acquisition, which,
in contrast to “A marriage of pointer- and epoch-based reclamation” (where epoch-based
reclamation is an implementation of RCU), this might be a beautiful friendship between the two,
avoiding the traditional hazard-pointer-induced read-side memory barriers and IPIs while also
avoiding the traditional RCU unbounded memory footprint in face of unbounded readers or
grace-period blocking.

Reference material:

1. Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic Reads and
Writes (Maged Michael’s original paper).

https://dl.acm.org/doi/abs/10.1145/3385412.3385978
https://dl.acm.org/doi/10.1145/571825.571829
https://dl.acm.org/doi/10.1145/571825.571829


2. The Repeat Offender Problem: A Mechanism for Supporting Dynamic-Sized, Lock-Free
Data Structures (Herlihy’s, Luchangco’s, and Moir’s original paper). These two papers
were officially declared to be in a tie. ;-)

3. Folly library hazard-pointers implementation (see files in this directory whose names are
prefixed by “Hazptr”).

4. Hazard Pointers for C++26 (C++ working paper, contains background and use cases).
5. Is Parallel Programming Hard, And, If So, What Can You Do About It? (Section 9.3).

Why Hazard Pointers in the Linux Kernel?
At a high level, RCU is a scalable replacement for reader-writer locking and the hazard pointers
technique is a scalable replacement for reference counting. Now there are already a great
number of scalable reference-counting use cases in the Linux kernel, including the following:

● “Just use kref!” This works extremely well in a great many use cases, but imposes
constraints on acquiring references, such as holding a lock, already holding a reference,
or, in the case of kref_get_unless_zero(), being within an RCU read-side critical
section. Furthermore, in this RCU-protected case, you cannot acquire the first
reference, which can be OK in the not-uncommon case where a reference is “held” by
the enclosing data structure. And in all cases, kref has scalability limitations due to
memory contention when there is a popular element.

● “Just use RCU!” The point here is that rcu_read_lock() can be thought of as
acquiring a reference to all RCU-protected data elements, and doing so atomically with
near-zero cost. This works great! That is, assuming that there is no need to block while
holding a reference and that no one is going to hold a reference for very long.

● “Just use SRCU!!!”. This allows both blocking while holding a reference and also
long-running references. But this assumes that there is no need to distinguish between
someone holding a reference to one element from someone holding a reference to some
other element. As might happen if it was necessary to free part of the data structure
during the course of a long-running reference.

● “Just use percpu-ref!” This refers to the percpu_ref structure that supports calls to
percpu_ref_get() and friends. This can work extremely well, but a data structure
comprised of many small elements might not be well-served by a per-element set of
per-CPU variables. And of course using SRCU with a per-element srcu_struct
structure suffers from this same memory-size issue.

● “Just follow rcuref.rst!” This document suggests using RCU to guarantee a data
element’s continued existence while acquiring a per-element reference. This works quite
well, and has long been heavily used in open-coded form. However, it is often
preferable to avoid the unconditional atomic_inc() in the read-side path in favor of a
conditional primitive, in order to avoid acquiring references to things that have just now
been removed. In addition, it would have scalability limitations if applied to a data
structure with a popular element (such as the root of a search tree), which could
potentially suffer memory contention. The usual way around such memory-contention

https://dl.acm.org/doi/10.5555/645959.676129
https://dl.acm.org/doi/10.5555/645959.676129
https://github.com/facebook/folly/tree/main/folly/synchronization
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/tree/Documentation/RCU/rcuref.rst


issues is to have RCU protect the search structure (including the popular element), and
obtain the reference only of the destination element. Which works quite well. That is,
unless the destination element itself happens to be the popular element.

● Finally, the patch series that prompted this document. This is similar to the
aforementioned rcuref.rst approach, but does provide conditional reference acquisition.
However, it has similar issues with popular elements, and to this point, one of the
features of this patch series is that it avoids atomic compare-and-swap operations due to
their quadratic behavior on contention. This suggests that the popular-element problem
might soon be more than a theoretical issue.

● More reference-counting use cases here!

Given all of these alternatives, why would something new be required?

Running through the alternatives above, the potential unmet needs include:

1. Handling frequent reference acquisition from many CPUs to a single popular data
element. The fact that the aforementioned patch series improved performance by
avoiding cmpxchg operations hints that this unmet need might be important.

2. Allowing other data elements to be freed while a given reference is being held or
acquired.

And one way of handling these needs happens to be hazard pointers. It is quite possible that
the design and implementation process will identify a useful alternative, or that additional
Linux-kernel use cases will appear. If and when this happens, they will be added to the
appropriate lists.

At this point, the odds against something like this going in any time soon might be ten-to-one
against. But that is probable enough to be worth thinking things through, especially given that
an unanticipated bottleneck could change the odds at any time.

Desiderata
Because most hazard-pointer uses are in userspace libraries and research code, it is well worth
laying out some of the constraints inherent in the Linux kernel:

1. CPU and memory overhead must be reasonably low.
2. It is necessary to preserve the energy-efficiency measures adopted by RCU, perhaps by

sharing some of RCU’s code. It might be good to consolidate the laziness timers.
3. Allocating memory on the free path should be avoided, except when used as an

optimization, as in the case of kfree_rcu_mightsleep().
4. Bottlenecks should be avoided, though early prototypes might have some performance

and scalability limitations.

https://lore.kernel.org/all/20230323102649.764958589@linutronix.de/
https://lore.kernel.org/all/20230323102649.764958589@linutronix.de/


5. Should idle and offline CPUs be permitted to be hazard-pointer readers? If so, then
there has to be some other mechanism to drive forward processing on behalf of these
CPUs. (The preferred answer is of course “yes”.)

6. Other kernel functionality must be accounted for, including CPU hotplug (thus requiring
deferred processing to be done off-CPU when needed), module unload (thus requiring
an rcu_barrier() or similar), and PREEMPT_RT (thus requiring some approach not
relying excessively on IPIs and preemption disabling, at least for kernels built with
CONFIG_PREEMPT_RT=y).

7. It should not be necessary to double the number of pointers passed through APIs (the
pointer to the object itself and its hazard pointer). In many use cases, the hazard pointer
is manipulated within a single function so that there is no problem. In other use cases, it
may be helpful to pass a reference to the hazard pointer in place of the pointer itself.
However, this works better in C++ than in C due to the type erasure inherent to hazard
pointers. C can handle this by creating a hazard-pointer type for each
hazard-pointer-protected type, which is also not wonderful. (Full disclosure: C++ also
creates duplicate types, but automatically and behind the scenes. Too bad about the
increased build times…)

8. It should be possible to past call_hazptr() an in-module function, and to still be able to
safely unload that module. This is harder than it might seem.

9. It would be nice for hazard-pointer acquisition to be unconditional, but this might or might
not be feasible.

More desiderata will be added as needed while design and implementation progress.

Design

Identifying Data Elements
Unlike RCU, hazard pointers must know the address of the data element being protected. This
can be an issue in cases where some readers maintain pointers to the interior of that data
element. Here are some ways of handling this:

1. Use the address of the beginning of the element as a canonical pointer.
2. Use the address of the element’s rcu_head field as a canonical pointer.
3. Make the call_hazptr() function take a range of addresses rather than a single

address.
4. Refer to the memory-management system to obtain the range of addresses.



The initial prototype will use the element’s rcu_head field as a canonical pointer, as this
permits any storage to be used (not just slab memory) and allows the rcu_head structure to be
reused, thus in turn allowing easy reuse of RCU’s real-time and energy-efficiency mechanisms.
Longer term, this choice rules out a kfree_hazptr_mightsleep(), but one thing at a time.
Perhaps longer term there will be a hazptr_head structure that provides space for a
pointer/size pair.

Data Structures

Tracking Hazard Pointers
Hazard pointers will be allocated in cache-friendly blocks in a hazptr_block structure. This
structure also contains an identically sized array of hazptr_rbtree_node structures that are
used to create a hazard-pointer search structure that is used during each hazard-pointers
reclamation cycle. This is not exactly memory-efficient, but it does avoid any need to allocate
memory on the free path. Longer term, perhaps a hash table can be substituted for the current
rbtree, thus halving the size of the hazptr_rbtree_node structure, but in the short term use
of the rbtree sidesteps hash-table-(re)sizing issues.

Different execution contexts will need to trace hazard pointers, and a hazptr_context
structure is provided for this purpose. This structure contains a list of hazptr_block
structures and the head of a freelist threading through the unused hazard pointers. Perhaps
each CPU would pre-allocate a hazptr_context structure, though this would require
disabling preemption across a hazard-pointers traversal. It is easy enough to allocate per-task
hazptr_context structures if doing so makes sense.

API
The initial hazard-pointers API members are the hazptr_context structure,
DEFINE_HAZPTR_CONTEXT(), DECLARE_HAZPTR_CONTEXT(),
init_hazptr_context(), cleanup_hazptr_context(), hazptr_alloc(),
hazptr_free(), hazptr_tryprotect(), hazptr_protect(), hazptr_swap(),
hazptr_clear(), call_hazptr(), and hazptr_barrier().

struct hazptr_context;

This is a structure that holds a set of hazard pointers for a given context, where the context
might be a CPU, a task, and so on. It may be declared statically or dynamically allocated. If it is
dynamically allocated, then it must be passed to init_hazptr_context() before its first
use, otherwise DEFINE_HAZPTR_CONTEXT() must be used to statically allocate it.



DEFINE_HAZPTR_CONTEXT(name);

Define a statically allocated hazptr_context structure with the specified name. The keyword
static may be placed in front of this if desired in order to limit visibility to the current
translation unit. This structure is initially empty, but may be passed to hazptr_alloc() in
order to associate newly allocated hazard pointers with it.

DECLARE_HAZPTR_CONTEXT(name);

Make the specified statically allocated non-static-storage-class hazptr_context structure
visible to other translation units.

void init_hazptr_context(struct hazptr_context *hzcp);

Initializes the specified hazptr_context structure. This structure is initially empty.

void cleanup_hazptr_context(struct hazptr_context
*hzcp);

Frees all hazard pointers contained within the specified hazptr_context structure. If this
structure was dynamically allocated, it may now be freed. If it was statically allocated, it is now
back in the empty state and it may be passed to hazptr_alloc() in order to start using it
again.

Note that cleanup_hazptr_context() will complain bitterly if any of the hazard pointers
that it contains are still in use.

hazptr_t *hazptr_alloc(struct hazptr_context *hzcp);

Returns a pointer to a new hazptr_t or NULL if memory is exhausted. Note that the specified
hazptr_context structure must already have been initialized, either via
DEFINE_HAZPTR_CONTEXT() or init_hazptr_context().

void hazptr_free(struct hazptr_context *hzcp, hazptr_t
*hzp);

Frees a hazard pointer that was previously returned from hazptr_alloc().

bool hazptr_tryprotect(hazptr_t *hzp, T **p, field);

Uses the hazard pointer referenced by hzp to protect the hazard-pointer-protected structure
referenced by *p, where field is the offset of the rcu_head structure within the enclosing
hazard-pointer-protected structure. If the structure referenced by *p is removed in the
meantime, this clears the hazard pointer and returns false. Otherwise, the structure is now
under hazard-pointer protection and this function returns true.



void hazptr_protect(hazptr_t *hzp, T **p, field);

Uses the hazard pointer referenced by hzp to protect the hazard-pointer-protected structure
referenced by *p, where field is the offset of the rcu_head structure within the enclosing
hazard-pointer-protected structure. The caller is responsible for ensuring that the pointer
referenced by p cannot be removed, for example, p might reference a linked-list header and *p
might reference that list’s first element.

void hazptr_swap(hazptr_t *hzp1, hazptr_t *hzp2);

Swaps the roles of the two hazard pointers. This is useful when doing hand-over-hand traversal
of a linked data structure.

void hazptr_clear(hazptr_t *hzp);

Arranges for the specified hazard pointer to no longer be protecting anything. Note that
hazptr_clear() is a no-op when used immediately before a call to either
hazptr_tryprotect() or hazptr_protect(). Why not just pass a NULL pointer to
hazptr_protect()? Diagnostics, my friend, diagnostics!

void call_hazptr(struct rcu_head *head, rcu_callback_t
func);

Passes the specified rcu_head pointer to the specified function some time after there are no
longer any hazard pointers protecting the enclosing structure.

void hazptr_barrier(void); (Questionable)
Waits until all pre-existing call_hazptr() callbacks have been invoked. This is useful for the
same reasons that rcu_barrier() is useful, for example, at module teardown time. One possible
issue with hazptr_barrier() is that people are likely to be happy to hold hazard pointers for
extended periods of time. One hope is that people refrain from long-term references to
elements that have been removed from their respective data structures.

It might be necessary to do something special for hazptr_barrier(), for example:

● There might need to be a call_hazptr() variant that checks to see if there are any
outstanding callbacks for a specified callback function. More thought is required here,
especially given how easy it is to add another call_hazptr() and to forget to add the
corresponding hazptr_barrier(). But this is the approach that could be made to
work quickly if hazard pointers was needed on an emergency basis.

● There might need to be a call_hazptr() for the specific case of module unloading
(as opposed to things like filesystem unmount).

○ This function might take a range of text addresses indicating the group of
functions that are to be unloaded with the to-be-unloaded module. However, this



approach might be complicated by use of common callback functions that are
outside of the module, but which use data within the module (which might be
referenced by the object being deferred-freed)

○ This function might take some identifier indicating which module is being
unloaded, so that it waits for all callback functions from that module.

○ Each in-module call to call_hazptr() might record the function being
invoked, then make a variant of hazptr_barrier() that waits for all callbacks
having that function. Doing this at build time has problems with function pointers.
Doing this either at build time or run time can wait unnecessarily on functions that
are in the main kernel. Attempts to distinguish between functions in relevant
modules and in the main kernel might have problems with deciding whether the
data involved survives module unloading.

○ This function might take a timeout.
○ There might be a single-shot polling version of this function.
○ All of these variants might have difficulty with DECLARE_STATIC_CALL() and

similar things.
○ All of these variants might have difficulty with modules that force-load other

modules (as rcutorture does with torture).
● It might be necessary to allow users to declare groups of call_hazptr() callback

functions and to have a hazptr_barrier() variant that waits for a specified group.

Another alternative is to forbid use of hazptr_barrier() from module code. However, given
that there is no reasonable implementation of synchronize_hazptr(), this alternative for all
intents and purposes forbids the use of hazard pointers from code that can be built as a module,
including things like rcutorture. For example, any hazard-pointer torture tests would need to be
built into the kernel, not running as modules.

Sample Use Case
This section was intended to look at the read-mostly set implementation quoted by Hazard
Pointers for C++26, implemented using hazard pointers, Thomas Gleixner’s RCU-protected
reference-count-acquisition patch, and pure RCU. However, that example as shown would
simply demonstrate RCU’s ease of use, and we need an example that plays more clearly to
hazard-pointers strengths. This section needs a better example, perhaps one where the
element is returned rather than an indication of presence or absence.

Please also see Neeraj’s Linux-kernel AppArmor example, which he posted to LKML here, and
includes analysis of alternative concurrency designs. This use case requires frequent reference
acquisition on a Nginx AA policy centralized reference count. This encounters memory
contention on 96-CPU systems, and systems with 512 CPUs are becoming (relatively) cheaply
and readily available. Neeraj’s patch series makes careful use of per-CPU reference counting,
but might benefit further from hazard pointers.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://lore.kernel.org/all/20230323102649.764958589@linutronix.de/
https://lore.kernel.org/all/20230323102649.764958589@linutronix.de/
https://lore.kernel.org/all/f184a2d6-7892-4e43-a0cd-cab638c3d5c2@amd.com/


At the 2024 LSF/MM summit, a number of developers and maintainers expressed a strong
interest in hazard pointers, so it is time to get this going. Boqun Feng released a prototype at
branch boqun-dev/hazptr of the shiny new (as of May 2024) shared RCU git tree.

Execution Flows

Hazard-Pointers Reclamation Cycle
This is to be driven by a dedicated kthread, similar to RCU’s rcu_gp_kthread().

1. Start a hazard-pointers reclamation cycle.
2. Collect callbacks from each CPU. (Does this need to be a separate pass from collecting

hazard pointers? Seems like migration could make this necessary. But could do it with
the hazard-pointer collection phase if the callbacks collected are for the next cycle rather
than the current one.)

3. Collect hazard pointers from each CPU.
4. Use IPIs if needed to accelerate collection. (Can use locking and remote access,

especially in PREEMPT_RT kernels.) Or just do the collection sequentially, at least in the
initial prototype.

5. Build search structure (rbtree? If so, include/linux/rbtree_types.h and
include/linux/rbtree.h). This step will initially be sequential, but it might need to
be parallelized later.

6. Check collected callbacks against search structure. If found, put back in the waiting list,
otherwise in the done list, with the done list being handed off to RCU. This can be done
concurrently at each CPU. (New call_hazptr() invocations would add to a third list
in order to bound lock contention.)

7. Wait for all checking to to complete, using IPIs if needed to accelerate checking. (Can
use locking and remote access, perhaps preferentially for small numbers of callbacks,
but especially for PREEMPT_RT kernels.)

8. End hazard-pointers reclamation cycle.

This procedure should be initiated based on time (but only if there are callbacks queued and
modulated by laziness), based on memory-shrinker needs (but only if there are callbacks
queued), and based on number of callbacks queued (similar to RCU’s call_rcu() heuristics).

For best results, in the case of laziness, the hazard-pointers reclamation cycle should be
commenced at the same time as is the RCU grace period. The point is to avoid unnecessary
wakeups.

Queueing a Hazard-Pointers Callback
The initial prototype will go directly to per-CPU callback queuing, given the generally short-lived
nature of global callback queuing in the various flavors of RCU.



Each per-CPU pool will have three lists of callbacks, presumably re-using the unsegmented
rcu_cblist:

1. For newly queued callbacks, protected by its own lock in order to reduce contention
during callback floods.

2. For callbacks that have been seen by the hazard-pointers reclamation cycle, but which
still had hazard pointers referencing them.

3. For callbacks that are ready to invoke. In non-lazy configurations, this list might be
unused in favor of the RCU_DONE_TAIL segment of the CPU’s rcu_data structure’s
->cblist.

If need be, an additional lock would protect the last two lists.

Avoiding Hazard-Pointer Acquisition Failure and Memory Barriers
Hazard pointers has traditionally had several disadvantages:

1. Hazard-pointer acquisition failure.
2. Read-side ordering, which has traditionally been provided either by read-side full

memory barriers or by real-time-unfriendly update-side IPIs interrupting readers.

Hazard-Pointer Acquisition Failure
To see the traditional need for hazard-pointer acquisition failure in non-trivial data structures,
consider the following linked list:

A -> B -> C -> D

Suppose that a reader holds a hazard pointer referencing B, which is then removed. B’s pointer
to next might still reference C, but suppose that prior to that reader advancing to C, C is also
removed. Because there is no hazard pointer referencing C, it may be freed immediately. But
this means that B’s pointer to next can no longer be traversed, because it now references the
freelist. For this reason, hazard-pointer traversals are subject to failure, so that the reader in
this case must abandon its traversal, perhaps retrying it from the beginning. For an example,
please see Section 3.3 of Hazard Pointers for C++26.

Hazard-pointer acquisition failure can be avoided using link counts, as demonstrated by
Folly-library usage. But without these link counts, another trick is to protect the load from the
to-be-traversed pointer and the store to the hazard pointer in an RCU read-side critical section.
The hazard-pointer update code can then gather the retired lists, wait for an RCU grace period,
and then pick up the hazard pointers. This approach frees the hazard-pointer reader from the
need to reload the traversed pointer, along with the need to double-check it against the stored
hazard pointer.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf


This works straightforwardly for trivial linked data structures that have at most one element
linked from an immortal header pointer. More involved linked data structures can use a
combination of link counts and RCU. @@@ Check @@@

Read-Side Ordering
@@@ RCU to avoid need for read-side memory barriers. @@@

@@@ Use hazard pointer instead of link count when cleaning up. Traversals gain hazard
pointer only on head element or some other proxy for the entire structure. Destructor drops
hazard pointer? Doesn’t help if destructor isn’t invoked until deleter time… @@@

Execution Contexts
Make rcu_core() call out to hazard-pointer work. This likely also requires similar call outs
from rcu_sched_clock_irq(), if nothing else, to ensure that rcu_core() runs when
hazard pointers needs it to.

Hazard-pointer callbacks (rcu_head structures) invoked by current RCU mechanisms by
feeding these callbacks into the appropriate RCU_DONE_TAIL segments. Carefully, so as to
avoid energy-efficiency issues.

Validation
Given the recent unearthing of an embarrassing day-one bug in perfbook’s hazard-pointers
implementation, something more aggressive will be needed, even in prototype stage.

Torture Testing
As with rcutorture, the testing must recycle elements of an array to avoid compiler interference
due to lifetime-end pointer-zap issues. Specific tests must include:

● Demonstrating that holding a hazard pointer on one element protects that element.
● Demonstrating that holding multiple hazard pointers on multiple elements protects them

all.
● Demonstrating that elements not referenced by a hazard pointer can be reclaimed.
● Demonstrating that elements not referenced by a hazard pointer can be reclaimed, even

when hazard pointer is held on some other element throughout.
● Demonstrating that hazard pointers function properly in the face of concurrent

CPU-hotplug operations.
● Demonstrating use of hazard pointers from idle and offline CPUs (most likely pro-forma

testing).
● Should it prove feasible, demonstrating hazptr_barrier() functionality.
● Demonstrating emergency reclamation in response to (for example) memory shrinkers.



● Demonstrating that lazy hazard-pointer callbacks do not result in needless wakeups. (To
be fair, this testing is still TBD for RCU.)

● Measuring the performance and scalability of hazard-pointer acquisition and release,
both in real-time mode (smp_mb() in read-side code) and otherwise (IPIs in update-side
code).

● Measuring the performance and scalability of hazard-pointer reclamation.

Use-Case Diagnostics
One use-case bug is failure to release a hazard pointer.

The equivalent of an RCU CPU stall warning does not make sense because, as with SRCU,
there are perfectly reasonable use cases that hold a hazard pointer for arbitrary lengths of time.
In addition, the straightforward lockdep approaches are invalidated by the fact that it is perfectly
legal to pass hazard pointers from one CPU to another and from one task to another.

If a suspected use-case bug is reproducible, one approach is to attach a BPF program to the
hazard-pointer acquisition code and to keep a stack trace in a BPF map for each hazard pointer.

Another use-case bug is premature reuse of a hazard pointer. This ends protection of the object
referenced by the previous use of that hazard pointer, with the resulting use-after-free issues.
One way to catch at least some of these bugs would be to require that hazard pointers be
cleared using hazptr_clear() before being reused. Another might be to add a
hazptr_check() function that verifies that the hazard pointer still contains the desired pointer.

Interestingly enough, one potential advantage of hazard pointers over in-object reference
counting is improved diagnostic, but with emphasis on “potential”.

LKMM Modeling
What has to happen for LKMM to be useful to hazard-pointers users and implementers?

Modeling Uses of Hazard Pointers
Here, the user models their hazard-pointer uses as if these hazard pointers were normal
reference counters. The reason this works is because LKMM doesn’t know about either
C-language structures or memory allocation, and LKMM can therefore safely model a reference
counter within the structure.

Modeling Implementations of Hazard Pointers
The implementer must carefully partition the implementation into pieces that LKMM’s tooling can
handle, just as with any other non-trivial synchronization primitive.



Optimizations
● Invoke callbacks directly from main kthread if there are not very many of them.
● Have a time delay between consecutive hazard-pointer scans unless there are lots of

not-yet-scanned callbacks or we are low on memory.
● Use a combining tree for requests to scan callbacks, similar to starting RCU grace

periods.
● Single list of callbacks vs. multiple queues. (As with Tasks RCU, perhaps best to start

with a single list.)


