
DDFcsv datapackage
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119.

DDFcsv datapackage is a structure which:
● packages a DDFcsv dataset
● describes the DDFcsv dataset's metadata
● describes the DDFcsv dataset's schema.

It is an extension of tabular datapackages (which extends datapackage) of the Frictionless Data
project, run by the Open Knowledge Foundation.

A DDFcsv datapackage MUST have a datapackage.json file at the root of the DDFcsv
dataset. The datapackage.json is the entry point to the dataset for automated readers and
contains metadata for human readers.

This document goes on to describe datapackage.json for DDFcsv datapackages.
Compared to tabular datapackages, DDFcsv datapackage adds stricter rules and some
pre-defined fields. This means that a DDFcsv datapackage is always a tabular datapackage, but
not vice-versa.
The added rules and fields are marked with a green highlight in this document. Unhighlighted
rules are identical to those in tabular datapackage and added for clarity.

Implementations of this spec will first and foremost focus on the rules as described in this
document but should aim to implement the complete spec where relevant, including tabular
datapackages and datapackages.

Datapackage.json

Minimal version
An example of a minimal valid DDFcsv datapackage.json is the following:

{
"name": "dataset-name",
"resources": [
{
"path": "ddf--datapoints--population--by--geo--gender--year.csv",
"name": "ddf--datapoints--population--by--geo--gender--year",
"schema": {

https://www.ietf.org/rfc/rfc2119.txt
https://docs.google.com/document/d/1aynARjsrSgOKsO1dEqboTqANRD1O9u7J_xmxy8m5jW8
http://specs.frictionlessdata.io/tabular-data-package/
http://specs.frictionlessdata.io/data-packages/#descriptor-datapackagejson
http://frictionlessdata.io/
https://okfn.org/

"fields": [
{ "name": "geo" },
{ "name": "year" },
{ "name": "gender" },
{ "name": "population" }

],
"primaryKey": ["geo","gender","year"]

}
},
...

],
"ddfSchema": {
"datapoints": [
{
key: ["geo","year","gender"],
value: "population",
resources: ["ddf--datapoints--population--by--geo--gender--year"]

}
],
"entities": [...],
"concepts": [...],
"synonyms": []

}
}

A DDFcsv datapackage MUST contain the fields name and resources

Name
Name MUST be a string. Name MUST consist of solely lowercase alphanumeric characters,
underscores, hyphens and periods. Name SHOULD be identical to the name of the folder or
other structure (such as a github repo) it is stored in. Name SHOULD follow this naming
guideline:

ddf--%dataset_provider%--%dataset_title%

Where %dataset_provider% SHOULD be the dataset provider and %dataset_title% SHOULD
be similar to the dataset title. For example:

ddf--unpop--population
ddf--world_bank--world_development_indicators
ddf--gapminder--historical_life_expectancy

Resources
Resources MUST be an array containing resource objects. Each DDFcsv file in the dataset
MUST be described by one resource object. Translation files MUST NOT be described in the
resources array.

Resource object
Resource objects describe the resource and MUST contain the fields path, and schema and
SHOULD contain the field name:

● path MUST be a string which contains the relative path to the DDFcsv file.
● name MUST be a string which MAY be the file name or file path of the resource, minus

the extension. name MUST be unique to the datapackage, even when a dataset
contains multiple files with the same filename (for example in different folders). Name
MUST contain only lowercase alphanumeric characters, underscores (_), hyphens (-) or
periods (.)

● schema MUST be an object which follows the DDFcsv JSON Table Schema spec as
described in this document.

Conflicting name

The name field has to be unique across the dataset. But when it is solely the filename of the
resource, identically named files can cause conflict. Thus, our simple guideline is to add a suffix
-#, where # is a incrementing number, behind the filename for identically named files.
For example:

{
"path": "ddf--entities--company.csv",
"name": "ddf--entities--company",
"schema": { ... }

},
{

"path": "extra companies/ddf--entities--company.csv",
"name": "ddf--entities--company-2",
"schema": { ... }

}

DDF Schema
DDFcsv datapackage.json MUST contain a ddfSchema object, containing four fields:
datapoints, entities, concepts and synonyms. Each of these fields has an array of
key-value pair objects.
The ddfSchema SHOULD contain one object for each key-value pair in the dataset. The
ddfSchema MUST NOT contain any key-value pairs not present in the dataset.

The ddfSchema is the entrypoint for any application to read the DDFcsv dataset.

The resource schemas described in the resources section are not adequate for efficient reading
of a DDFcsv dataset. In DDF, an entity can be referenced by multiple concepts, because it can
belong to multiple entity sets. Therefore, it is possible that data might be found under a different
header in the csv file than described in the resource schema.
For example the entity sgp, representing Singapore, could be both in the entity sets country
and united_nations_state, in the entity domain geo. Therefore it may be found in
ddf--entities--geo--country.csv, ddf--entities--geo.csv and
ddf--entities--geo--united_nations_state.csv to declare its properties. And
datapoints describing data concerning Singapore can also refer to country,
united_nations_state or geo:
ddf--datapoints--population--by--geo--year.csv,
ddf--datapoints--population--by--country--year.csv,
ddf--datapoints--population--by--united_nations_state--year.csv.
The above means that when an application wants to read a certain key-value pair in the DDF
dataset, it has to look in files that contain other concepts in the same entity domain. Country
data might be found in united_nation_state files or even city files (when Singapore is
both a city and country).
To minimize the files needed to read, the ddfSchema enumerates per key-value pair all
resources containing relevant data.

Unexpected key-value pairs in ddfSchema
Certain key-value pairs may be unexpected side-effects of entities' multi-set memberships. For
example, Singapore might have a national_anthem property because it's a country.
Additionally, it's also a city, leading to the key-value pair <city>,national_anthem being
present in the dataset. However, a schema query returning that a city has a
national_anthem might be unwanted.
A way to indicate this is to add an expected field to the key-value pair, with a value of false, to
indicate the key-value pair may be unexpected.
Another option is to not include the key-value pair in the ddfSchema array at all. Then it will
seem to not be part of the dataset at all. However you SHOULD NOT keep key-value pairs out
of the ddfSchema. What might be unwanted in one use-case, can be interesting in others.

Since DDFcsv datasets are meant for open data and collaboration, you don't know yet what use
cases your data might be used for.

Key-value pair object
A key-value pair object describes a key-value pair in the dataset and MUST include the fields
primaryKey, value and resources.

● primaryKey must be an array of strings in which each string is a concept in the key of
the key-value pair.

● value must be a string describing the value of the key-value pair or null
○ The key-value pair object with value null designates that for that key there is

data but no key-value pair. In other words, there is only a list of keys. Only
key-value pair objects for entities can have value null.
Entities can exist in a dataset without any properties. In that case there are no
key-value pairs, but there are keys: entities. The value null key-value pair
object is needed to reflect the availability of these entities and help dataset
readers to find these entities in the ddfcsv dataset.

frequency

1yearly

5yearly

ddf--entities--frequency.csv

frequency name

10yearly Every decade

20yearly Every 20 years

more/ddf--entities--frequency.csv

{
key: ["frequency"],
value: null,
resources: ["ddf--entities--frequency"]

},{
key: ["frequency"],
value: name,
resources: ["more-ddf--entities--frequency"]

}

Note that the second file/table is not in the resources list for the value null
key-value object because the table contains a key-value pair, so doesn't need a
value null key-value object to describe it.

Concepts MUST have a concept_type property and thus each concept in the
dataset is featured in at least one key-value pair (with value concept_type).
Therefore, no value null key-value pair object is needed for concepts.
Datapoints MUST have an indicator and thus each datapoint in the dataset is
featured in at least one key-value pair. Therefore, no value null key-value
pair object is needed for datapoints.

● resources must be an array of strings in which each string is a resource-name in the
resources section of the datapackage.json. The resource MUST contain at least one row
conforming the key-value pair described in this key-value pair object.
You SHOULD NOT have redundant resources in your dataset. A redundant resource is a
resource which contains only redundant data (i.e. all data also occurs in other files in the
dataset). Because of the possibility to have redundant or duplicate data in DDFcsv
datasets, a resource in the resources array might also be redundant. Redundant
resources serve no purpose and are thus NOT RECOMMENDED.
Redundant data and resources are only useful for readers when your reader is smart
enough to use the redundancy to its benefit by selecting a set of resources which cover
the query data but read the least amount of non-query data. For example, a query for
cities will only read the cities resource and not the country resource (even though there
is city data on singapore/hong kong) because it knows that all city data queried for in the
country resource is also in the city resource.

The key-value pair object MAY include an expected field.
● expected MUST be a boolean which indicates if the key-value pair is expected in the

dataset.

"ddfSchema": {
"concepts": [{

"primaryKey": ["concept"],
"value": "name",
"resources": ["ddf--concepts"]

}, {
"primaryKey": ["concept"],
"value": "concept_type",
"resources": ["ddf--concepts"]

}],
"entities": [{

"primaryKey": ["geo"],
"value": "name",
"resources": ["ddf--entities--geo"]

},{

"primaryKey": ["geo"],
"value": null,
"resources": ["ddf--entities--geo"]

},{
"primaryKey": ["country"],
"value": "name",
"resources": ["ddf--entities--geo"],
"expected": false

}],
"datapoints": [{

"primaryKey": ["country","year"],
"value": "population",
"resources": ["ddf--datapoints--population--by--year--geo",

"ddf--datapoints--population--by--year--country"]
}, {

"primaryKey": ["geo","year"],
"value": "population",
"resources": ["ddf--datapoints--population--by--year--geo",

"ddf--datapoints--population--by--year--country"]
}],
"synonyms": []

}

Recommended fields
The fields title, description, author and license SHOULD be fields in
datapackage.json. For more explanation about what information they must contain, see the
tabular datapackage spec.

Language and translations
A DDFcsv dataset SHOULD contain strings in only one language. When a DDFcsv
datapackage contains strings in only one language, that language SHOULD be described using
the language field.
A DDFcsv dataset MAY contain data in multiple languages. When it does, the original language
and translations MUST be described using the language and translations fields.
The language and translations fields MUST be at the root of datapackage.json.
language MUST be one language object while translations MUST be an array
containing one or more language objects.

Language object
A language object MUST have the field id and MAY have the field name.

http://specs.frictionlessdata.io/data-packages/#recommended-fields
https://docs.google.com/document/d/1aynARjsrSgOKsO1dEqboTqANRD1O9u7J_xmxy8m5jW8/edit#heading=h.wwltud39groy

● id MUST be a string with the language tag as described in the language and
translation section of the DDF specs.
If the Language Object is part of the translations field, a folder with the same name
as id must exist in the /lang/ folder of the dataset.

● name SHOULD be the native name of the language (i.e. as written in the language
itself)

Look at the typical datapackage.json below for an example of translation and language fields.

DDFcsv JSON Table Schema
DDFcsv JSON Table Schema (DJTS) is an extension of the JSON Table Schema spec (JTS).
DDFcsv datapackages use DJTS to describe the schema of DDFcsv files.

Schema object
The schema object MUST contain the fields fields and primaryKey.

Fields
Fields MUST be an array of Field Objects. Each Field Object describes one field in the DDFcsv
file. The order of Field Objects in the array must be identical to the order of fields in the DDFcsv
file.

Field Object
A field object MUST contain the field name which MUST be a string identical to the field name in
the csv.

Constraints

When the DDFcsv file is a datapoint file, which follows the split files by dimension value
guideline, the Field Object SHOULD contain the field constraints, with subfield enum.

For example:

{
"path": "ddf--datapoints--population--by--geo-usa--gender--year.csv",
"name": "ddf--datapoints--population--by--geo-usa--gender--year",
"schema": {
"fields": [

{ "name": "geo"
"constraints": {
"enum": ["usa"]

}

https://docs.google.com/document/d/1Cd2kEH5w3SRJYaDcu-M4dU5SY8No84T3g-QlNSW6pIE/edit#heading=h.p9hjxognyk8
https://docs.google.com/document/d/1Cd2kEH5w3SRJYaDcu-M4dU5SY8No84T3g-QlNSW6pIE/edit#heading=h.p9hjxognyk8
http://specs.frictionlessdata.io/json-table-schema/
https://docs.google.com/document/d/1aynARjsrSgOKsO1dEqboTqANRD1O9u7J_xmxy8m5jW8/edit#heading=h.3ri1gutbftas
https://docs.google.com/document/d/1aynARjsrSgOKsO1dEqboTqANRD1O9u7J_xmxy8m5jW8/edit#heading=h.3ri1gutbftas
http://specs.frictionlessdata.io/json-table-schema/#field-constraints

},
{ "name": "year", },
{ "name": "gender" },
{ "name": "population" }

],
"primaryKey": ["geo","gender","year"]

}
}

PrimaryKey
primaryKey MUST be a string or array describing the fields which form the primary key in the
DDFcsv file. For details, please refer to the primaryKey in the JTS spec.
Fields mentioned in the fields array which are not in the primaryKey form the values in
that table. In other words, they are indicators, entity properties or concept properties.

Typical datapackage.json example without
ddfSchema
Below is an example of typical content of datapackage.json.

{
"name": "ddf--unpop--population",
"title": "UNPOP Population"
"description": "Population statistics from the UN Population Division"
"language": [
{ "id": "en",
"name": "English"

}
],
"translations": [
{ "id": "nl-NL",
"name": "Nederlands (Nederland)"

},
{ "id": "ru",
"name": "русский"

}
],
"license": "BSD-3-Clause"
"author": "Gapminder <info@gapminder.org> (http://gapminder.org)",
"resources": [

{
"path": "ddf--datapoints--population--by--geo-usa--gender--year.csv",
"name": "ddf--datapoints--population--by--geo-usa--gender--year",
"schema": {

http://specs.frictionlessdata.io/json-table-schema/#primary-key

"fields": [
{ "name": "geo"
"constraints": {
"enum": ["usa"]

}
},
{ "name": "year" },
{ "name": "gender" },
{ "name": "population" }

],
"primaryKey": ["geo","gender","year"]

},
{
"path": "ddf--datapoints--population--by--geo-swe--gender--year.csv",
"name": "ddf--datapoints--population--by--geo-swe--gender--year",
"schema": {
"fields": [

{ "name": "geo"
"constraints": {
"enum": ["swe"]

}
},
{ "name": "year" },
{ "name": "gender" },
{ "name": "population" }

],
"primaryKey": ["geo","gender","year"]

},
{ ... },
...

]
}

