
 

Deeper Dive into Static Equilibrium and Dynamic Modeling 
 
Using computational models to represent complex systems can greatly enhance our 

understanding of how such systems work. The modeler can test their understanding of a system’s 

behavior by sketching out its structure, defining the connections within it, and simulating to see if 

known system inputs will result in outputs that match the real world. By comparing a model’s 

output to observations from the real world, the model can be iteratively revised, advancing toward 

a more accurate representation of reality. It is the process of evolving one’s conceptual model in 

tandem with the gradual development of an accurate computer model that constitutes learning 

and makes the process of modeling so powerful in the classroom. 

  

SageModeler offers two distinct approaches to computational modeling, static equilibrium and 

dynamic time-based modeling. The modeling type you choose will depend upon the purpose of the 

model.  

 

What’s the difference between static equilibrium and dynamic time-based models? 
  

Static equilibrium models 
 

Static equilibrium models are used to represent systems that are inherently stable, or can be 

simplified such that the state of the system is defined by the combination of inputs to that system.  

Let’s use a simplified example of an epidemic. 

 

    

Figure 1. Modeling the outcome of an epidemic (left). During simulation, bar graphs represent the 

value of each variable (right). 

 

Imagine that you are interested in creating a model to help you determine how bad an epidemic 

will be based on several factors. A static equilibrium approach would first identify the critical 
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elements of the system affecting the number of people who will get infected and then define how 

each acts in combination with the others (Figure 1, left). The combination of susceptible people, 

infectivity of the virus, and infectious contacts will behave somewhat like an algebraic equation, 

where a change to one variable causes all other variables to respond as dictated by the 

relationship rules among them. With each change of a variable, the entire system immediately 

adjusts to a new static and stable state or outcome (Figure 1, right). 

  

In the epidemic model above, when # of people contacted is increased, a new state of the system is 

determined by combining this new input value with the other variables in the system, increasing 

the number of infected people. Each system “state” results from a particular set of relationships 

among known system components, and an adjustment to any of them will cause the system to 

instantaneously reach a new static equilibrium. It is as if you took a photograph of the population 

at one point in time, increased the number of contacts and took another photograph, then 

compared the pictures to analyze the effect of # of people contacted each day on number of infected 
people. 

  

In a classroom, static equilibrium  models provide an excellent way for students to express their 

understanding of structural complexity in systems with multiple components and 

interconnections. For many topics it can be extremely powerful to have students move from a list 

of important components to a diagram (on paper or a model diagram in SageModeler) that shows 

how the components are causally interconnected, and finally to a computational model that 

defines the rules governing the relationships between variables. What the computer offers is the 

ability to simulate all of the connections simultaneously and provide output(s) showing resultant 

changes across the entire model. Static equilibrium models can be simple, as in the epidemic 

example, or can be built out indefinitely, to the level of structural complexity desired by the 

teacher or the student. 

                                                                                                      

Structural complexity can be deepened by including detail about any of the system variables, or 

broadened by adding variables from outside the model’s boundary. In either case, a model can 

become quite complex. It is up to the teacher or modeler to consider an appropriate boundary for 

the system being modeled. 

 

 



 

Figure 2. Broadening the epidemic model to include mitigating factors like social distancing, 

masking, and a vaccination program. 

  

In the sample model shown here (Figure 2), the original model boundaries have been expanded to 

include variables representing mitigating factors for controlling the epidemic. In a similar manner, 

a student might deepen their representation of how the virus infects and reproduces at the 

molecular level, or expand the boundaries further to include economic and social impacts. 

  

It is the ability to represent one’s growing understanding of the many components in a complex 

system combined with the capacity to reliably simulate and test the validity of that understanding 

against reality that makes static equilibrium modeling so powerful as a learning tool. 

 
Dynamic time-based models 
Static equilibrium modeling can be a powerful tool for expressing and assessing one’s 

understanding of the scope and interconnectedness of a complex system, but it lacks the ability to 

address a system’s potential to evolve over time. When chains of causal connections loop back 

upon themselves, like a dog chasing its tail, the state of a system at one moment in time can 

provide the impetus for change into the next, and moment after moment the system gradually 

evolves. Most of the systems we encounter each day behave in this manner, and dynamic 

time-based modeling is the more appropriate approach for representing them.  

 

Let’s revisit the epidemic example. From a dynamic perspective it can become a story of change 

over time. Rather than modeling the overall severity of the epidemic, we may want to model how 

many people will get sick over time. This was particularly important during the COVID-19 

epidemic in order to plan for expanding hospital capacity or when to ease lockdown conditions.  
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Figure 3. Dynamic time-based model of a collection of susceptible people becoming infected over 

time (left). During simulation line graphs show the values of each variable over time as the model 

runs (right). 

 

To see an evolution of the model state over time, dynamic models include new kinds of variables 

called collectors, which can be added to or subtracted from during each model calculation cycle, 

and flows, which define the rate of change in the collectors (how much is added or subtracted each 

cycle to the collectors). In Figure 3, the # of susceptible people is a collector, as is the total number of 
infected people variable. The number of people infected per day variable represents how many people 

become sick each cycle of the model, causing that number to be subtracted from the # of 
susceptible people and added to the total number of infected people. This flow, represented as a 

picture of a valve, controls the rate of transfer from susceptible to infected collectors. Other 

variables, like chance of contact being infectious, infectivity of disease, and # of susceptible people, all 

affect the number of daily infections. Over time, the # of susceptible people decreases and the total 
number of infected people increases. However, we can see the number of daily infections starts high 

and slows down over time, due to the fact that there are fewer and fewer susceptible people over 

time to get infected. 

 

Because collectors can only be added to or subtracted from, they have a kind of “memory” of the 

state of the system. In their role as the model’s memory, collectors make it possible for dynamic 

time-based models to show how feedback causes the system to influence itself. In a feedback loop, 

the computer first ascertains the model “state” at a given moment by noting the values of all the 

collectors. These values influence other system variables based on relationship rules designated 

by the modeler, and eventually, through a chain of cause and effect relationships, loop back to 

influence a variable that is directly connected to the collector that initiated the loop. In Figure 4, 

an additional relationship has been defined between  the total number of infected people and chance 
of contact being infectious. This then connects to number of people infected per day and back to total 
number of infected people.  

 



 

Figure 4. Feedback added to the system by connecting the total number of infected people to the 

chance of contact being infectious variable, completing a loop with the number of people infected per 
day. 

 

Notice how the number of people infected per day more correctly shows the pattern we observed in 

the real world, when infections start slowly, reach a peak, and then taper off. Most complex 

systems include feedback, and adding a feedback loop into our model causes it to more realistically 

model the phenomenon of an epidemic. 

 

Let’s look at another example (Figure 5) with two feedback loops and walk through the logic of 

how this system will evolve over time. 

 

 



 

Figure 5. Two feedback loops affecting the deer population, the collector.  

 

When calculating how the model will behave from moment to moment, the computer begins with 

the collector— deer population. Tracing the “Positive/reinforcing feedback loop,” the number of 

deer in the population directly influences the number of mating opportunities, which together with 

mating success results in new deer births that are added to the population. The connection of this 

final variable back to the collector completes the feedback loop. In this case, the presence of deer 

in the population will feed back to add more deer to an already present population. If this loop 

described the entire system, then the deer population would grow exponentially with more deer 

having more births, causing more deer in the population and so on. 

 

However, there is a second loop in this system, one that defines a “Negative/balancing feedback.” 

In this part of the system the deer population is connected to food resources available per deer in such 

a way that an increase in deer population will cause a decrease in food resources per deer, which also 

impacts the deer births, causing them to decrease as well. Fewer deer births causes the deer 
population to grow more slowly, balancing out the system so that it can’t grow unchecked. 

 

What type of model should be used? 
With a more robust understanding of the differences between static equilibrium and dynamic 

time-based modeling comes the question of when it is best to use each approach. Dynamic 

time-based models are most powerful when dealing with fundamental questions about change in a 

 



system’s behavior as time passes. Exploration of feedback-induced behavioral patterns like 

exponential growth, growth (or decline) to a limit, S-shaped growth, and oscillations are the sweet 

spots of dynamic time-based models. Static equilibrium modes are at their best when exploring the 

breadth and complexity of connections among a multitude of variables in a system. 

 

Before deciding on the modeling approach, it is critical to clarify the model’s purpose, and to do 

this often requires careful consideration of the question you wish the model to answer or the 

phenomenon you wish it to represent. Ask yourself, “What do I want my students to learn by 

building this model?” If the priority is analysis of the structure and interconnection among 

components in a system and how a change to a system input will affect other system components, 

static equilibrium modeling is probably best. Static equilibrium models are excellent when asking a 

question like, “Within the system I have modeled, if a change is made to x, what will happen to y?” 

 

On the other hand, if the priority is to investigate why a particular behavior over time is seen in a 

system, or how a change to some variable will alter the way a system develops over time, a more 

appropriate approach will be the use of dynamic time-based modeling. 

 

The bottom line is that different questions require different modeling approaches. Here are some 

examples: 

 

Q: If CO2 production from factories were cut to half of what it is today, how would that affect 

global temperatures? 

Model type: Static Equilibrium (example 1, example 2) 

 

Q: If CO2 production from factories were cut to half of what it is today and allowed to continue at 

that level into the future, how would global temperatures change over time? 

Model type: Dynamic time-based (example 1, example 2) 

 

Q: What are the important components responsible for respiration within a cell and how are they 

connected? 

Model type: Static Equilibrium (example) 

 

Q: Why is it that cells do not continually increase energy production even when supplied with 

unlimited raw materials? 

Model type: Dynamic time-based (example) 

 

Summary 
Building computational models can be extremely powerful in a classroom. Modeling offers 

students the ability to test their understanding of the system as a whole. Static equilibrium models 

are best used when examining the structure of a system and questions of how a change in one part 

of a system can cause change in another. Their behavior is extremely stable, and very large 

systems can be explored without fear of encountering much confounding behavior.  
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Dynamic time-based models are best when addressing questions of fundamental patterns of 

behavior over time. Through the construction of simple models containing one or two collectors 

and a few feedback loops, students can gain appreciation for the importance of circular connection 

(feedback) and accumulation in complex systems, and how the state of a system evolves over time. 

 


