
OCR A-Level Computer Science Spec Notes
2.2 Problem solving and programming

2.2.1 Programming techniques
(a) Programming constructs: Sequence, iteration, branching
Programming Constructs (Methods of writing code):

-​ Sequence
●​ Series of statements which are executed one after another
●​ Most common programming construct

-​ Branching/Selection
●​ Decisions made on the state of a Boolean expression
●​ Program diverges to another part on program based on

whether a condition is true or false
●​ IF statement is a common example of Selection

-​ Iteration

●​ = repetition. A section of code repeated for a set
amount of time / until condition is met

●​ Loop: When a section of code is repeated
●​ Example of For Loop ->
●​ Example of While Loop ↓

(b) Recursion, how it can be used and compares to an iterative approach​

-​ Subroutine/Subprogram/Procedure/Function that calls itself
-​ Another way to produce iteration

(c) Global and local variables​
Variables: Named locations that store data in which contents can be changed during program
execution

-​ Assigned to a data type
-​ Declared/Explicit statement

Global Variables
-​ Defined/declared outside subprograms (Functions/Procedures etc)
-​ Can be ‘seen’ throughout a program
-​ Hard to integrate between modules
-​ Complexity of program increases
-​ Causes conflicts between names of other variables
-​ Good programming practice to not use global variables (Can be altered)

Local Variables
-​ Declared in a subroutine and only accessible within that subroutine
-​ Makes functions/procedures reusable
-​ Can be used as a parameter
-​ destroyed/deleted when subroutine exits
-​ same variable names within two different modules will not interfere with one another
-​ Local variables override global variables if they have the same name

(d) Modularity, functions, procedures, parameters​
Modularity: Named locations that store data in which contents can be changed during program
execution

-​ Program divided into separate tasks
-​ Modules divided into smaller modules
-​ Easy to maintain, update and replace a part of the system
-​ Modules can be attributed to different programmers strength
-​ Less code produced

Functions
-​ Subroutine/subprogram/module/named sub-section of program/block which most of

the time returns a value
-​ Performs specific calculations & returns a value of a single data type
-​ Uses local variables & is used commonly
-​ Value returned replaces function call so it can be used as a variable in the main body of a

program
Procedures

-​ Performs specific operations but don’t return a value
-​ Uses local variables
-​ Receives & usually accepts parameter values
-​ Can be called my main program/another procedure
-​ Is used as any other program instruction or statement in the main program

Parameters
-​ Description/Information about data supplied into a subroutine when called
-​ May be given identifier/name when called
-​ Substituted by actual value/address when called
-​ May pass values between functions & parameters via reference/ by value
-​ Uses local variables

Passed by Value:

-​ A copy is made of the actual value of the variable and is passed into the procedure.

-​ Does not change the original variable value.
-​ If changes are made, then only the local copy of the data is amended then discarded.
-​ No unforeseen effects will occur in other modules.
-​ Creates new memory space

Passed by Reference:

-​ The address/pointer/location of the value is passed into the procedure.
-​ The actual value is not sent/received
-​ If changed, the original value of the data is also changed when the subroutine ends
-​ This means an existing memory space is used.

(e) Use of an IDE to develop/debug a program​
IDE (Integrated Development Environment) contains the tools needed to write/develop/debug
a program. Typical IDE has the following tools:

-​ Debugging tools
●​ Inspection of variable names
●​ Run-time detection of errors
●​ Shows state of variables at where error occurs

-​ Translator diagnostics:
●​ Reports syntax errors
●​ Suggests solutions & informs programmer to correct error
●​ Error message can be incorrect/misinterpreted

-​ Breakpoint:
●​ Tests program at specified points/lines of code
●​ Check values of variables at that point
●​ Set predetermined point for program to stop & inspect code/variables

-​ Variable watch:
●​ Monitors variables/objects
●​ Halt program if condition is not met

-​ Stepping:
●​ Set program to step through one line at a time
●​ Execution slows down to observe path of execution + changes to variable names
●​ Programmer can observe the effect of each line of code
●​ Can be used with breakpoints + variable watch

(f) Use of object orientated techniques

-​ Many programs written using objects (Building blocks)
-​ Self contained
-​ Made from methods & attributes
-​ Based on classes
-​ Many objects can be based in the same class
-​ Most programs made using object-oriented techniques

2.2.2 Computational methods
(a) Features that make a problem solvable by computational methods​ ​
Computability: Something which is not affected by the speed/power of a machine

Computational methods can help to break down problems into sections for example:

-​ Models of situations/hypothetical solutions can be modelled
-​ Simulations can be run by computers
-​ Variables used to represent data items
-​ Algorithms used to test possible situations under different circumstances

Features that make a problem solvable by computational methods:

-​ Involves calculations as some issues can be quantified - these are easier to process
computationally

-​ Has inputs, processes and outputs
-​ Involves logical reasoning.

(b) Problem recognition​

-​ A problem should be recognised/identified after looking at a situation and possible
solutions should be divided on how to tackle the problems using computational methods

 ​ ​
(c) Problem decomposition​ ​
Problem Decomposition

-​ Splits problem into subproblems until each problem can be solved.
-​ Allows the use of divide and conquer
-​ Increase speed of production.
-​ Assign areas to specialities.
-​ Allows use of pre-existing modules & re-use of new modules.
-​ Need to ensure subprograms can interact correctly.
-​ Can introduce errors.
-​ Reduces processing/memory requirements.
-​ Increases response speeds of programs.

(d) Use of divide and conquer​ ​
Divide and Conquer: When a task is split into smaller tasks which can be tackled more easily

(e) Use of abstraction​ ​
Abstraction: Process of separating ideas from particular instances/reality

-​ Representation of reality using various methods to display real life features
-​ Removes unnecessary details from the main purpose of the program
-​ E.g Remove parks/roads on an Underground Tube Map

Examples of Abstraction: Variables/data structure/network/layers/symbols (maps)/Tube Map

(f) Applying computational methods
Other computational Methods:

-​ Backtracking
●​ Strategy to moving systematically towards a solution
●​ Trial & Error (Trying out series of actions)
●​ If the pathway fails at some point = go to last successful stage
●​ Can be used extensively

-​ Heuristics
●​ Not always worth trying to find the ‘perfect solution’
●​ Use ‘rule of thumb’ /educated guess approach to arrive at a solution when it is

unfeasible to analyse all possible solutions
●​ Used to speed up finding solutions for A* algorithm
●​ Useful for too many ill-defined variables

-​ Data mining
●​ Examines large data sets and looks for patterns/relationships
●​ Brute force with powerful computers
●​ Incorporates: Cluster analysis, Pattern matching, Anomaly detection, Regression

Analysis
●​ Attempts to show relationships between facts/components/events that may not

be obvious which can be used to predict future solutions
-​ Visualisation

●​ A computer process presents data in an easy-to-grasp way for humans to
understand (visual model)

●​ Trends and patterns can often be better comprehended in a visual display.
●​ Graphs are a traditional form of visualisation.
●​ Computing techniques allow mental models of what a program will do to be

produced.
-​ Pipelining

●​ Output of one process fed into another
●​ Complex jobs placed in different pipelines so parallel processing can occur
●​ Allow simultaneous processing of instructions where the processor has

multi-cores
●​ Similar to factory production in real life

-​ Performance modelling
●​ Example of abstraction
●​ Real life objects/systems (computers/software) can be modelled to see how they

perform & behave when in use
●​ Big-O notation used to measure algorithm behaviour with increasing input
●​ Simulations predict performance before real systems created

	2.2 Problem solving and programming

