OCR A-Level Computer Science Spec Notes
2.2 Problem solving and programming

2.2.1 Programming techniques

(a) Programming constructs: Sequence, iteration, branching
Programming Constructs (Methods of writing code):

- Sequence
e Series of statements which are executed one after another g e poo s oo of student
. INPUT Name
e Most common programmmg construct WRITE ‘Please enter the exam mark of student’
INPUT ExamMark
PRINT Name, ExamMark|
. . iftmark{=1ﬁﬂ & mark>=75)
- Branching/Selection cout<<"lst class";
e Decisions made on the state of a Boolean expression Chn R DITEATIE & ey
. cout<<"Znd class™;
e Program diverges to another part on program based on else if(mark<50 & marks=30)
. . . Il3 d l Ilr.
whether a condition is true or false 5 e
e IF statement is a common example of Selection cout<<"Last class";
- Iteration
e =repetition. A section of code repeated for a set int answer = 0;
amount of time / until condition is met o _ _
. . for (int i = 1; 1 < 101: i++)
Loop: When a section of code is repeated |
Example of For Loop -> SMSWEr = &nswer + i;

Example of While Loop | }

int i=0;
printf ("Even numbker upto 20"} ;
while(i<Z0)
{
i=i+Z;
printf ("%d\n™ i} ;
}
getchi);

(b) Recursion, how it can be used and compares to an iterative approach
- Subroutine/Subprogram/Procedure/Function that calls itself
- Another way to produce iteration

fiVery simple example
public int Fact (int numberj{
{

if (nuwber == 0] Recursive Call
return 1:
el=e
return nurber % Fact (humber - 1) ——

(c) Global and local variables
Variables: Named locations that store data in which contents can be changed during program
execution

- Assigned to a data type

- Declared/Explicit statement



Global Variables

Defined /declared outside subprograms (Functions/Procedures etc)
Can be ‘seen’ throughout a program

Hard to integrate between modules

Complexity of program increases

Causes conflicts between names of other variables

Good programming practice to not use global variables (Can be altered)

Local Variables

Declared in a subroutine and only accessible within that subroutine

Makes functions/procedures reusable

Can be used as a parameter

destroyed/deleted when subroutine exits

same variable names within two different modules will not interfere with one another
Local variables override global variables if they have the same name

(d) Modularity, functions, procedures, parameters
Modularity: Named locations that store data in which contents can be changed during program
execution

Program divided into separate tasks

Modules divided into smaller modules

Easy to maintain, update and replace a part of the system
Modules can be attributed to different programmers strength
Less code produced

Functions

Subroutine /subprogram/module /named sub-section of program /block which most of
the time returns a value

Performs specific calculations & returns a value of a single data type

Uses local variables & is used commonly

Value returned replaces function call so it can be used as a variable in the main body of a
program

Procedures

Performs specific operations but don’t return a value

Uses local variables

Receives & usually accepts parameter values

Can be called my main program /another procedure

Is used as any other program instruction or statement in the main program

Parameters

Description/Information about data supplied into a subroutine when called
May be given identifier/name when called

Substituted by actual value/address when called

May pass values between functions & parameters via reference/ by value
Uses local variables

Passed by Value:

A copy is made of the actual value of the variable and is passed into the procedure.



- Does not change the original variable value.

- If changes are made, then only the local copy of the data is amended then discarded.
- No unforeseen effects will occur in other modules.

- Creates new memory space

Passed by Reference:
- The address/pointer/location of the value is passed into the procedure.
- The actual value is not sent/received
- If changed, the original value of the data is also changed when the subroutine ends
- This means an existing memory space is used.

(e) Use of an IDE to develop/debug a program
IDE (Integrated Development Environment) contains the tools needed to write/develop/debug
a program. Typical IDE has the following tools:
- Debugging tools
e Inspection of variable names
e Run-time detection of errors
e Shows state of variables at where error occurs
- Translator diagnostics:
e Reports syntax errors
e Suggests solutions & informs programmer to correct error
e Error message can be incorrect/misinterpreted
- Breakpoint:
e Tests program at specified points/lines of code
e Check values of variables at that point
e Set predetermined point for program to stop & inspect code/variables
- Variable watch:
e Monitors variables/objects
e Halt program if condition is not met
- Stepping:
e Set program to step through one line at a time
e Execution slows down to observe path of execution + changes to variable names
e Programmer can observe the effect of each line of code
e Can be used with breakpoints + variable watch

(f) Use of object orientated techniques
- Many programs written using objects (Building blocks)
- Self contained
- Made from methods & attributes
- Based on classes
- Many objects can be based in the same class
- Most programs made using object-oriented techniques



2.2.2 Computational methods
(a) Features that make a problem solvable by computational methods
Computability: Something which is not affected by the speed /power of a machine

Computational methods can help to break down problems into sections for example:
- Models of situations /hypothetical solutions can be modelled
- Simulations can be run by computers
- Variables used to represent data items
- Algorithms used to test possible situations under different circumstances

Features that make a problem solvable by computational methods:
- Involves calculations as some issues can be quantified - these are easier to process
computationally
- Has inputs, processes and outputs
- Involves logical reasoning.

(b) Problem recognition
- A problem should be recognised/identified after looking at a situation and possible
solutions should be divided on how to tackle the problems using computational methods

(c) Problem decomposition
Problem Decomposition
- Splits problem into subproblems until each problem can be solved.
- Allows the use of divide and conquer
- Increase speed of production.
- Assign areas to specialities.
- Allows use of pre-existing modules & re-use of new modules.
- Need to ensure subprograms can interact correctly.
- Can introduce errors.
- Reduces processing/memory requirements.
- Increases response speeds of programs.

(d) Use of divide and conquer
Divide and Conquer: When a task is split into smaller tasks which can be tackled more easily

(e) Use of abstraction
Abstraction: Process of separating ideas from particular instances/reality
- Representation of reality using various methods to display real life features
- Removes unnecessary details from the main purpose of the program
- E.g Remove parks/roads on an Underground Tube Map
Examples of Abstraction: Variables/data structure/network /layers/symbols (maps)/Tube Map



(f) Applying computational methods
Other computational Methods:
- Backtracking
e Strategy to moving systematically towards a solution
e Trial & Error (Trying out series of actions)
e If the pathway fails at some point = go to last successful stage
e Can be used extensively
- Heuristics
e Not always worth trying to find the ‘perfect solution’
e Use ‘rule of thumb’ /educated guess approach to arrive at a solution when it is
unfeasible to analyse all possible solutions
e Used to speed up finding solutions for A* algorithm
e Useful for too many ill-defined variables
- Data mining
e Examines large data sets and looks for patterns/relationships
e Brute force with powerful computers
e Incorporates: Cluster analysis, Pattern matching, Anomaly detection, Regression
Analysis
e Attempts to show relationships between facts/components/events that may not
be obvious which can be used to predict future solutions
- Visualisation
e A computer process presents data in an easy-to-grasp way for humans to
understand (visual model)
Trends and patterns can often be better comprehended in a visual display.
Graphs are a traditional form of visualisation.
Computing techniques allow mental models of what a program will do to be
produced.
- Pipelining
e Output of one process fed into another
e Complex jobs placed in different pipelines so parallel processing can occur
e Allow simultaneous processing of instructions where the processor has
multi-cores
e Similar to factory production in real life
- Performance modelling
e Example of abstraction
e Real life objects/systems (computers/software) can be modelled to see how they
perform & behave when in use
e Big-O notation used to measure algorithm behaviour with increasing input
Simulations predict performance before real systems created



	2.2 Problem solving and programming 

