1. Identify ML training related to video datasets, for instance, image classification for image datasets.

Video Classification

- Attributing some label with a given video
- Ex. sports

Action/Gesture Recognition

• Human actions/gestures within a given video

Event Detection

- Detecting specific events in a video
- Accidents on a road
- Unusual activity in a crowd

Scene Classification

- Categorizing videos based on the scene/environment in the video
- Indoor scenes, outdoor scenes, urban landscapes, etc

Object Detection/Tracking

- Locating objects of interest in a video
- Tracking these objects of interest

There are a large number of possible training related to video datasets.

2. Identify video datasets commonly used to for tasks in 1.

Found this github page for a list of all relevant datasets for different kinds of video based machine learning models

https://github.com/xiaobai1217/Awesome-Video-Datasets

Other large/famous video datasets

- UCF101: 13320 videos and 101 action classes
 - Good for action recognition
- HMDB51: 6849 videos and 51 action classes
- Kinetics: 400,000 videos 600 action classes
- Youtube-8M: Youtube video urls and 4716 vocab classes
 - General classification tasks
- Sports-1M: 1 million videos from 487 classes of sports
 - $\circ \quad {\rm Good \ for \ video \ classification}$

3. Identify ML models needed for above tasks, ideally find smaller models used.

- Video Classification:
 - CNN-LSTM Model: Convolutional Neural Networks (CNNs) for spatial features and Long Short-Term Memory (LSTM) networks for temporal features (Might be too big for our use case)
 - 3D CNNs: Models like C3D (Convolutional 3D) or R(2+1)D
- Action/Gesture Recognition:
 - I3D (Inflated 3D ConvNet): action recognition in videos. You can use smaller variants of I3D for faster inference.
 - Temporal Convolutional Networks (TCNs): TCNs are lightweight and can be used for gesture recognition.
- Event Detection:
 - Two-Stream Networks: Combine two CNN streams (one for spatial and one for optical flow) and fuse their features to detect events. Smaller versions of CNNs can be used here.
 - Single Shot MultiBox Detector (SSD): For detecting events like accidents
- Object Detection/Tracking:
 - YOLO (You Only Look Once): YOLO models, YOLOv3-tiny or YOLOv4-tiny,
 - SORT (Simple Online and Realtime Tracking): For object tracking, SORT is a simple yet effective choice.
 - Needs to be used with a detector model as well
- 4. Identify preprocessing operations applied on video datasets, for instance, images use decoding, RandomResizedCrop, RandomHorizontalFlip, ToTensor, and Normalize. For images, @rajveerb referred to MLPerf's example. Maybe look at research papers as well.

Some papers that I need to read over/get to

- <u>https://arxiv.org/pdf/1412.0767.pdf</u>
- https://arxiv.org/pdf/1503.08909.pdf
- <u>https://arxiv.org/pdf/1502.04681.pdf</u>
- https://arxiv.org/pdf/1602.00763.pdf

In general what I have noticed for pre processing so far:

- 1. Video loading
- 2. Frame Resizing

- 3. Temporal sampling (for certain tasks not all)
- 4. Data augmentation like flipping, rotating, etc, can be applied
- 5. Normalization
- 6. Batching

Preprocessing on C3D:

- Split each video into five 2-second clips
- Each clip is randomly cropped to be 16x112x112 for both spatial and temporal jittering
- 50% chance to be randomly flipped

Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark:

- To increase diversity in training data, we randomly flip and crop the training images.
- Due to limited computation resources, we equally divide each frame into 2×2 patches, and use the divided 4 patches with the resolution of 960 \times 540 for training

Action Recognition:

HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences

- Datasets used:
 - MSR Actions 3D Dataset
 - MSR Gesture 3D
 - MSR Daily Activity 3D
- Processing used:
 - frame size in all datasets is 320×240
 - divided into spatiotemporal cells, which are typically $4 \times 3 \times 3$ (w * h * # of frames)
 - 300 projectors created
 - Projectors created using their own math that I honestly don't really understand

Rolling Rotations for Recognizing Human Actions from 3D Skeletal Data

- Datasets used:
 - Florence3D-Action
 - MSRAction Pairs
 - G3D-Gaming
- Code provided: <u>http://ravitejav.weebly.com/rolling.html</u>
- Processing used:
 - 1. Skeletal representation,
 - 2. Nominal curve computation using DTW
 - 3. Rolling and unwrapping
 - 4. Linear SVM classification