DRL for Automated Portfolio Management

Exploring reinforcement learning agents for day-to-day stock trading

Adam Wang, Andrew Yuan, Sean Zhan, Paul Zhou
TA: Antony Sagayaraj

CSCI 1470 Fall 2020

INTRODUCTION

Profitable and reliable automated stock trading strategies are vital to investment
companies and hedge funds, who manage the financial assets of millions of people.
These strategies optimize capital allocation in order to maximize investment
performance. Performance can be measured on the estimates of potential return and
risk. However, it is challenging to design a profitable strategy in a complex and dynamic
stock market.

We propose a deep reinforcement learning (DRL) solution to the algorithmic trading
problem of determining the optimal trading position at any point in time during a
trading period in the stock market. We designed an actor-critic policy gradient
Reinforcement Learning (RL) agent, as well as designing a stock trading environment in
which to manage portfolios of multiple stocks.

There has been some amount of previous work in this area. Wu et al. 'proposed a Deep Q
Network to perform stock trading which outperforms the turtle trading policy. Others**
have experimented with combining different types of reinforcement models. However,
most of these models have the limitation of only managing one stock at a time. We
propose an DRL agent that is able to manage multiple stocks at the same time and make a
buy/sell/hold decision at each time step. By managing different stocks at the same time,
the agent should be able to learn across stock trends and make more informed decisions
on which stocks to buy or sell.

Our code base can be found at: https://github.com/seanzhan0319/DRL-Stock-Trading.git

"Wu, Xing. Adaptive stock trading strategies with deep reinforcement learning methods. 2020.
2 Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy

% Learning Financial Asset-Specific Trading Rules via Deep Reinforcement Learning
4 Application of Deep Q-Network in Portfolio Management

https://github.com/seanzhan0319/DRL-Stock-Trading.git
https://arxiv.org/ftp/arxiv/papers/2003/2003.06365.pdf
https://arxiv.org/pdf/2010.14194.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690996
https://reader.elsevier.com/reader/sd/pii/S0020025520304692

METHODOLOGY

Data preprocessing: We import data from the yfinance Python package, which offers
well-structured day-to-day ticker data from Yahoo Finance. We chose the timeline of
2010.1.1-2020.1.1, where there are no major volatilities in the stock market (e.g. major
unpredictable crashes). And we choose AAPL, AMZN, GOOGL, MSFT as our training
stocks and seen testing stocks, and REGN, WMT, JNJ, HON as unseen testing stocks. For
each trading day (~261 per year), we import a data point consisting of open, high, low,
and closing price points, as well as volume of trade, for each of the stocks in our
portfolio.

Stock Environment: We have created a stock/portfolio environment that handles
transaction fees, takes into account interest, borrowing, and inflation rates, and allows
the agent to sample episodes of experience from historical financial data according to the
current policy. In generating a trading episode, the environment initializes a portfolio
containing no stock shares and some amount of initial cash (e.g. $1000). For each
timestep of the episode, we sample an action (hold, buy, or sell) for each of the stocks in
our portfolio and handle the exchange of stock shares accordingly. We chose to use a
fixed cash amount (e.g. $100) to be used in buy and sell transactions. Our portfolio values
are then recalculated in the next timestep using the change in each stock’s closing price,
before determining the next action to take. Note that our portfolio allows negative shares
and negative cash, which emulates stock shorting and trading on margin (with
appropriate fees implemented). However, if the total portfolio cash value becomes
negative, the episode will

terminate prematurely. Input
RL agent: Our main model oy
consists of an actor-critic policy Y —
gradient RL agent using a lifting il
layer, 2 GRU layers and 2 Dense Lol
layers as the actor, and 3 Dense v T
layers as the critic. The agent is | GTU D S
able to perform a forward pass on | Dm‘];om D Dise
a batch of data and calculate the 7 4 B
loss on that using standard et GRU Dense mchronk
actor-critic loss method. It also ' v
. . . Dropout Dense
uses experience replay to stabilize Pertoliostae | !
training. We choose the following e [T Linear
representations for our state, ro— Value

action, and reward spaces:

State: The state space consists of two components:

o Pricing state: This state contains the pricing data (open, high, low, close,
volume) for each stock in our portfolio for the last X timesteps (e.g. X=50).
This is the input into our actor’s 2 GRU layers.

o Portfolio state: This state contains the cash amount invested in each stock
of our portfolio, as well as the cash on hand at the current timestep. This is
concatenated with the output of our actor’s 2 GRU layers, and is then
passed through the remaining dense layers of the actor.

Action: The action space at a given time step consists of a probability distribution
for each possible action (hold, buy, sell), for each stock in our portfolio (i.e. a 3 by
<num_stocks> tensor). During training, we sample an action from each stock’s
distribution to determine the action for a given timestep. During testing, we take
the max-probability action.

Reward: The reward is calculated as the discounted sum over each timestep’s total
portfolio cash value. We also experimented with using each timestep’s change in
total portfolio cash value, but this produced unstable results. Given more time, we
would want to experiment with a weighted average of the two to balance
short-term and long-term profit-seeking.

Training, Validation, and Testing: We used a 8:1:1 split for our training, validation, and
testing data. Due to our relatively limited stock data, we implemented two training
methods:

The first method trains on data from a fixed set of stocks S, validates on S (but
different time period), and tests on S (again, a different time period) as well as on
a different set of stocks T (using data from the same time period as S). The reason
for testing on a set of different stocks is to see whether or not our model was able
to learn the specific interdependent price behaviors of the stocks in S. For
example, S could include 4 large-cap technology stocks. We would expect the
model to learn how prices between the stocks in S may be correlated; however,
the model should then perform differently (almost always worse) on T, since the
model’s learnings of the interdependent price behavior of S does not apply to T.
The second method trains on data from a dynamic set of stocks S* taken from a
larger pool of stocks S, where S* is resampled from S for each episode run. Having
a large pool of stocks S gives us much more training data to work with and
produces a more general trading model, as opposed to the first method. The model
validates on $* and tests on S* as well as a different set of stocks T, which is
disjoint from S. Here, we cannot learn interdependent price behavior since our S$*
changes from episode to episode, so we would expect the testing results on S* to
be similar to the results on T.

RNN to predict stock price changes: we engineered a RNN that’s designed to predict
changes in stock prices at the current time step given a sequence of price histories for a

particular stock. This model mainly consists of a GRU and several Dense layers, and is
trained independently of the main RL agent using supervised learning and data from 12
diverse stocks over a span of 10 years. It is designed that the second to last Dense layer of
this RNN model should be treated as an embedding space and fed into the RL agent as
input in order for the RL agent to make more informed decisions. However, the testing
accuracy on this RNN is around 100% in Mean Absolute Percentage Error and doesn’t
perform well, so it is eventually not used in our main model.

RESULTS

Final portfolio value® (testing on Final portfolio value (testing on set of

All agents start with S1000 in cash
5 s the same set of stocks as training: | stocks different from training:

and test for 200 days AAPL, AMZN, GOOGL, & MSFT) | REGN, WMT, JNJ, & HON)
Portfolio Agent (4 stocks) | $4170.20 $2342.88

Singlg Stopk Agent (the .

combinaton sL4DOTIOS | 112022

trading 1 stock each)

Buy and Hold (4 stocks) $ 1308.24 (benchmark) $1098.47 (benchmark)

5 Portfolio value here is defined as the combined value of the cash at hand and the current value
of all stocks bought, subtracting the debt the agent holds.

Buv and Honld Agent

Portfolio Agent

Testing on the same stocks

Rewards
7500
4000
5000 1
3500
& 2500 =
bt B _al_h1 |I| il I % 3000 1
= O = r I’ (] L iy
—_— w
g —2500 A | 3 2500
=5 5000 1 =]
& = APl o= 2
A 7500 { mmm AMZN L.
L0000 | ™= GOOGL
= MSFT el
—17500 | EEE CASH
0 2 2 6 I 0 3 = 75 10 15 150 15 200
Intervals (20 days per interval) days
Testing on different stocks
Rewards
5000 1
il -
@ 0] A |_i| I.I I.I I. ! ¥ AL §
3 — 1500
= -5000 4 < 1000
x —
s} == REGN g8
j=] - WMT S
o —10000 - 500
- HON
- CASH
_lsnno 2 T T T T T T 0 T T T T T T T T T
0 2 4 [10 0 25 50 75 100 125 150 175 200
Intervals (20 days per interval) days
Apple Amazon Google Microsoft
— R T -—coost 00 T
o 00| csh 1500 | = cRSH 000 casH 1000 | == casH
T s - e
- ||I o I || = II = |||”
27 wee 'Illl| o M am vy i p __|.| of =ty ' I I
5 -l l I I -son I - | I 1000 I I
& 200 giost e
130 oo 3000
e 1 -a000 -3000 = —4000 I .0
4 [8 w0

["]

o i 4 .
Intervals (20 days per interval)

Rewards

Total Asset ($)
E ¥ ¥ o84 ¥ 8

00 125

days

B0 s

[] 2

L] L] 0
Intervals (20 days per interval)

2

L] 4 .
Intervals (20 days per interv.

6

1

)

L]
Intervals (20 days per interval)

Rewards Rewards Pewards
00 we 500 {
Lo
-
»o 00
- G 20 {
0 wod
150
k)
]
0o 0
00 o
] ! : : L L ;
o s 0 » N P m s 00 o P = L] W0 5 150 WS 0 o » » - = L] L]
days days days

1) Comparing the RL agent against several baselines:

We compare our model against the performance of two baseline agents

e Portfolio agent: our agent described in the previous section

e Single stock agent: another agent we trained using similar methodology but is
only trained on the data of 1 stock and can only trade one stock. We inputted data
for a single stock to the deep network and allowed the RL agent to trade this single
stock. We repeated this for all the stocks and combined the earnings of the 4
agents.

e Buy and hold agent: this agent uses a deterministic trading policy. It invests all its
cash evenly distributed in all the stocks the portfolio agent trades in on the first
day, and maintains this position until the end of the experiment..

At test time, all agents were given $1000 to trade over ~200 trading days. Based on the
experiment results, we make two important observations.

First, we note that our Portfolio Agent performs about 220% better than the Buy and
Hold Agent. The Buy and Hold agent represents the growth of the stock market (a.k.a the
market grew and made the initial $1000 into $1308 in around 200 trading days). This
shows that our RL agent is able to actually make money by performing trade actions and
not just taking advantage of market growth. The agent outperforming the Buy and Hold
agent shows that it was able to learn the optimal policy given the general trend of the
stock prices. As tech stock prices have risen tremendously in the past 10 years, the agent
tended to trade on margin and borrow money in order to invest in the stocks, as seen by
the largely negative amount of cash.

Second, we see that our Portfolio Agent performs ~270% better than Single Stock
Agent. This result shows that trading a portfolio is indeed better than trading in single
stocks. This is because when trading in portfolio, the agent has more information about
whether a particular stock is worth buying/selling or not, compared to the other stocks.

2) Testing agent on unseen stocks

The experiment result shows that our agent is a lot more unstable when testing on stocks
unseen during test time. The reward graph above shows a huge drop in the middle of the
200-day episode. However, the agent is able to save itself from that situation and
recovers. In the end, the agent does not perform as well as when tested on the same
training stocks. This shows that our agent is able to learn stock-specific behavior, but
can’t generalize well across stocks.

3) Lifting Layer

Another major factor affecting the performance of our agent is the lifting layer. Before
passing price history through the two GRU layers, we first use a dense layer to lift the
data to a higher dimension, much similar to what we have done in the “Neural Networks
on Graphs” assignment. This lifting layer helps our agent learn about stock behavior with
augmented data. Excluding this dense layer results in decreasing rewards and net loss in
portfolio value.

4) Randomizing

To allow our portfolio agent to train on more data, we implemented a randomization
method in which a set of stocks is sampled from a larger pool of stocks in each training
episode. However, due to time constraints, we were unable to develop a profitable model
using this training method. Given more time, we would look into developing a more
robust and complex model so that it can take advantage of the larger amount of data.

9) Learning Rate

We also noted that the learning rate had a large impact on the behaviour of the agent.
The above results were obtained using an exponential decay learning schedule (initial
learning rate 0.03, decay factor 0.98, decay steps 10000). We also tested exponential decay
learning schedule with initial learning rate at 0.01, 0.003, and the RL agent had a very
similar performance.

CHALLENGES

Our main challenge was limited data. Because the price data of all stocks in our portfolio
had to come from the same time period, we had to select stocks that had sufficiently-long
price histories. Furthermore, since our model does not take into account factors such as
news sentiment or overall market indices/indicators, we decided not to use data from
before 2010 due to stock market events that our model would not be able to predict. This
leaves us with only ~2600 data points for each stock, which is not enough data for such
an intricate task (without overfitting). We tried several methods for overcoming this
challenge, such as training on portfolios sampled from a larger pool of stocks, but this
causes our model to lose information pertaining to interdependent price behavior
specific to a given set of stocks. In the end, we found that we were most successful with
models that trained on a portfolio of a specific set of stocks, despite the fact that our data
was more limited.

We were challenged by the problem of setting up a realistic stock environment. We made
the decision to simplify transactions by setting a fixed amount for buy/sell actions (e.g.
$100); that way, our action space would be able to be discrete, and the agent would be
focused on a simpler task. We also made the decision to allow for the borrowing of stocks
and cash (i.e. negative shares and balances) so that our agent would have more room to

trade, especially since we had fixed the transaction amount. Given our portfolio design,
we thought that it was important to include the portfolio’s information (i.e. amount
invested in each stock, as well as cash on hand) in the state space, so that the agent would
have an idea of how much cash it had to spend, how many shares of stock X it was
borrowing, etc.

As always, the design of the architecture of the RL model is a challenge. Based on the
stock environment, we experimented with multiple designs and found a locally optimal
one. The strategy that the agent has ultimately learned is borrowing cash and buying
stocks because it learns that stock prices will generally rise over time. This trading
method seems to be a brute-force approach to investment, and the agent seems to ignore
short-term fluctuations in stocks. We have tried to adjust different parameters such as
exponentially decaying learning rate, layers sizes, number of layers, training to
validation to testing data set ratio, etc. However, our agent performs best only when it
keeps borrowing cash and buying stocks, but maybe that’s the best strategy to trade in
the real world if we have a lot of money.

REFLECTION

How do you feel your project ultimately turned out? How did you do relative to
your base/target/stretch goals?

We found that the task of tuning the model to produce reliable results was an intensive
and interesting process. Though we do not feel that our model has been tuned perfectly
(i.e. there is still some variance in the results between different models), we have been
able to produce models that are profitable when tested over 200 trading days (roughly a
year). Given how difficult the task of producing profitable agents is, we are proud of our
work on this project and are satisfied with the results. We’ve surpassed our base goal of
implementing a profitable agent with the capabilities of holding, buying, and selling
single stocks, and we’ve met our target goal of implementing an agent that performs as
well as/better than benchmarks (e.g. buy-and-hold) and stock indices (e.g. S&P 500) on a
portfolio of multiple stocks. Due to time constraints, we have not yet implemented our
stretch goal of options trading, though our model does support trading on margin and
stock borrowing.

Did your model work out the way you expected it to?

Our model did work out the way we expected it to. Because it is a relatively small model,
we did not expect it to be extremely consistent or profitable. However, we did expect that
our model should beat the buy-and-hold benchmark, as well as the performance of stock
indices. Though we were able to do so, we had hoped that our model would have less
variability during training/testing, which is possibly a result of limited data.

How did your approach change over time? What kind of pivots did you make, if

any? Would you have done differently if you could do your project over again?
y y yuy y proj g

Our approach did not change much over time since we thoroughly discussed
implementations before deciding on a direction to go. We did not make any significant
pivots, although we made several improvements to our model by refactoring certain
parts of our training and testing pipeline. For example, we added a randomization
feature to our model which allows the model to sample training sets from a larger pool of
stocks (to attempt to solve the problem of limited data), and we added informative
validation logs and visualizations after each training epoch. If we could do our project
over again, we would focus more on short-term trading as opposed to long-term portfolio
balancing. By changing the action space to allow the agent to decide transaction
quantities, and by tuning the reward function to better balance short-term and long-term
profits, we would allow the agent to learn better strategies for short-term trading.

What do you think you can further improve on if you had more time?

We did notice that our project did not always produce models that were consistently
profitable. It seems that the models did not always converge smoothly; however, our
model trains in ~10 minutes (due to the relatively small amount of data available) so we
were able to train multiple models and compare their performances. If we had more
time, we would explore ways to increase our dataset either by generating artificial data
(which is a challenging project on its own) or by improving our implementation of the
method of training on samples from a pool of stocks (which we could not produce a
profitable model from, partially due to time constraints). Given more data, we would be
able to train larger models as well.

What are your biggest takeaways from this project/what did you learn?

One of our takeaways was the difficulty training deep learning models when there is not
a lot of data and the data is noisy, as is the case for real-world stock prices. Through
experimentation, we developed creative methods to augment our data such as using
stock data from multiple stocks (i.e. portfolio trading) to stabilize results as well as
randomizing the set of stocks to train on to create more data points. With the limited
data we have, we set our goal accordingly by expecting the agent to learn
portfolio-specific stock trading strategies. In general, we learned about developing
realistic stock environments, designing states, actions, and rewards for DRL trading
agents, implementing new methods such as experience replay, and visualizing the
model’s results in comparison with benchmarks.

	DRL for Automated Portfolio Management
	INTRODUCTION
	METHODOLOGY
	RESULTS
	
	
	
	1) Comparing the RL agent against several baselines:
	2) Testing agent on unseen stocks
	3) Lifting Layer
	4) Randomizing
	5) Learning Rate

	CHALLENGES
	REFLECTION

