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INTRODUCTION 

Profitable and reliable automated stock trading strategies are vital to investment 
companies and hedge funds, who manage the financial assets of millions of people. 
These strategies optimize capital allocation in order to maximize investment 
performance. Performance can be measured on the estimates of potential return and 
risk. However, it is challenging to design a profitable strategy in a complex and dynamic 
stock market. 

We propose a deep reinforcement learning (DRL) solution to the algorithmic trading 
problem of determining the optimal trading position at any point in time during a 
trading period in the stock market. We designed an actor-critic policy gradient 
Reinforcement Learning (RL) agent, as well as designing a stock trading environment in 
which to manage portfolios of multiple stocks.  

There has been some amount of previous work in this area. Wu et al. proposed a Deep Q 1

Network to perform stock trading which outperforms the turtle trading policy. Others  234

have experimented with combining different types of reinforcement models. However, 
most of these models have the limitation of only managing one stock at a time. We 
propose an DRL agent that is able to manage multiple stocks at the same time and make a 
buy/sell/hold decision at each time step. By managing different stocks at the same time, 
the agent should be able to learn across stock trends and make more informed decisions 
on which stocks to buy or sell.  

Our code base can be found at: https://github.com/seanzhan0319/DRL-Stock-Trading.git  

4 Application of Deep Q-Network in Portfolio Management 

3 Learning Financial Asset-Specific Trading Rules via Deep Reinforcement Learning  
2 Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy 
1Wu, Xing. Adaptive stock trading strategies with deep reinforcement learning methods. 2020.  
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METHODOLOGY 

Data preprocessing: We import data from the yfinance Python package, which offers 
well-structured day-to-day ticker data from Yahoo Finance. We chose the timeline of 
2010.1.1-2020.1.1, where there are no major volatilities in the stock market (e.g. major 
unpredictable crashes). And we choose AAPL, AMZN, GOOGL, MSFT as our training 
stocks and seen testing stocks, and REGN, WMT, JNJ, HON as unseen testing stocks. For 
each trading day (~261 per year), we import a data point consisting of open, high, low, 
and closing price points, as well as volume of trade, for each of the stocks in our 
portfolio.  

Stock Environment: We have created a stock/portfolio environment that handles 
transaction fees, takes into account interest, borrowing, and inflation rates, and allows 
the agent to sample episodes of experience from historical financial data according to the 
current policy. In generating a trading episode, the environment initializes a portfolio 
containing no stock shares and some amount of initial cash (e.g. $1000). For each 
timestep of the episode, we sample an action (hold, buy, or sell) for each of the stocks in 
our portfolio and handle the exchange of stock shares accordingly. We chose to use a 
fixed cash amount (e.g. $100) to be used in buy and sell transactions. Our portfolio values 
are then recalculated in the next timestep using the change in each stock’s closing price, 
before determining the next action to take. Note that our portfolio allows negative shares 
and negative cash, which emulates stock shorting and trading on margin (with 
appropriate fees implemented). However, if the total portfolio cash value becomes 
negative, the episode will 
terminate prematurely. 

RL agent: Our main model 
consists of an actor-critic policy 
gradient RL agent using a lifting 
layer, 2 GRU layers and 2 Dense 
layers as the actor, and 3 Dense 
layers as the critic. The agent is 
able to perform a forward pass on 
a batch of data and calculate the 
loss on that using standard 
actor-critic loss method. It also 
uses experience replay to stabilize 
training. We choose the following 
representations for our state, 
action, and reward spaces: 

 

 



●​ State: The state space consists of two components: 
○​ Pricing state: This state contains the pricing data (open, high, low, close, 

volume) for each stock in our portfolio for the last X timesteps (e.g. X=50). 
This is the input into our actor’s 2 GRU layers. 

○​ Portfolio state: This state contains the cash amount invested in each stock 
of our portfolio, as well as the cash on hand at the current timestep. This is 
concatenated with the output of our actor’s 2 GRU layers, and is then 
passed through the remaining dense layers of the actor. 

●​ Action: The action space at a given time step consists of a probability distribution 
for each possible action (hold, buy, sell), for each stock in our portfolio (i.e. a 3 by 
<num_stocks> tensor). During training, we sample an action from each stock’s 
distribution to determine the action for a given timestep. During testing, we take 
the max-probability action. 

●​ Reward: The reward is calculated as the discounted sum over each timestep’s total 
portfolio cash value. We also experimented with using each timestep’s change in 
total portfolio cash value, but this produced unstable results. Given more time, we 
would want to experiment with a weighted average of the two to balance 
short-term and long-term profit-seeking. 

Training, Validation, and Testing: We used a 8:1:1 split for our training, validation, and 
testing data. Due to our relatively limited stock data, we implemented two training 
methods: 

●​ The first method trains on data from a fixed set of stocks S, validates on S (but 
different time period), and tests on S (again, a different time period) as well as on 
a different set of stocks T (using data from the same time period as S). The reason 
for testing on a set of different stocks is to see whether or not our model was able 
to learn the specific interdependent price behaviors of the stocks in S. For 
example, S could include 4 large-cap technology stocks. We would expect the 
model to learn how prices between the stocks in S may be correlated; however, 
the model should then perform differently (almost always worse) on T, since the 
model’s learnings of the interdependent price behavior of S does not apply to T. 

●​ The second method trains on data from a dynamic set of stocks S* taken from a 
larger pool of stocks S, where S* is resampled from S for each episode run. Having 
a large pool of stocks S gives us much more training data to work with and 
produces a more general trading model, as opposed to the first method. The model 
validates on S* and tests on S* as well as a different set of stocks T, which is 
disjoint from S. Here, we cannot learn interdependent price behavior since our S* 
changes from episode to episode, so we would expect the testing results on S* to 
be similar to the results on T. 

RNN to predict stock price changes: we engineered a RNN that’s designed to predict 
changes in stock prices at the current time step given a sequence of price histories for a 

 



particular stock. This model mainly consists of a GRU and several Dense layers, and is 
trained independently of the main RL agent using supervised learning and data from 12 
diverse stocks over a span of 10 years. It is designed that the second to last Dense layer of 
this RNN model should be treated as an embedding space and fed into the RL agent as 
input in order for the RL agent to make more informed decisions. However, the testing 
accuracy on this RNN is around 100% in Mean Absolute Percentage Error and doesn’t 
perform well, so it is eventually not used in our main model. 

RESULTS 

 

All agents start with $1000 in cash 
and test for 200 days 

Final portfolio value  (testing on 5

the same set of stocks as training: 
AAPL, AMZN, GOOGL, & MSFT) 

Final portfolio value (testing on set of 
stocks different from training: 
REGN, WMT, JNJ, & HON) 

Portfolio Agent (4 stocks) $ 4170.20 $ 2342.88 

Single Stock Agent (the 
combination of 4 portfolio 
agents with $250 and 
trading 1 stock each) 

$ 1129.22 $ 685.37 

Buy and Hold (4 stocks) $ 1308.24 (benchmark) $ 1098.47 (benchmark) 

 

5 Portfolio value here is defined as the combined value of the cash at hand and the current value 
of all stocks bought, subtracting the debt the agent holds.  

 



 

 

 



1) Comparing the RL agent against several baselines: 

We compare our model against the performance of two baseline agents 

●​ Portfolio agent: our agent described in the previous section 

●​ Single stock agent: another agent we trained using similar methodology but is 

only trained on the data of 1 stock and can only trade one stock. We inputted data 

for a single stock to the deep network and allowed the RL agent to trade this single 

stock. We repeated this for all the stocks and combined the earnings of the 4 

agents.  

●​ Buy and hold agent: this agent uses a deterministic trading policy. It invests all its 

cash evenly distributed in all the stocks the portfolio agent trades in on the first 

day, and maintains this position until the end of the experiment..  

At test time, all agents were given $1000 to trade over ~200 trading days. Based on the 
experiment results, we make two important observations.  

First, we note that our Portfolio Agent performs about 220% better than the Buy and 
Hold Agent. The Buy and Hold agent represents the growth of the stock market (a.k.a the 
market grew and made the initial $1000 into $1308 in around 200 trading days). This 
shows that our RL agent is able to actually make money by performing trade actions and 
not just taking advantage of market growth. The agent outperforming the Buy and Hold 
agent shows that it was able to learn the optimal policy given the general trend of the 
stock prices. As tech stock prices have risen tremendously in the past 10 years, the agent 
tended to trade on margin and borrow money in order to invest in the stocks, as seen by 
the largely negative amount of cash. 

Second, we see that our Portfolio Agent performs ~270% better than Single Stock 
Agent. This result shows that trading a portfolio is indeed better than trading in single 
stocks. This is because when trading in portfolio, the agent has more information about 
whether a particular stock is worth buying/selling or not, compared to the other stocks.  

2) Testing agent on unseen stocks 

The experiment result shows that our agent is a lot more unstable when testing on stocks 
unseen during test time. The reward graph above shows a huge drop in the middle of the 
200-day episode. However, the agent is able to save itself from that situation and 
recovers. In the end, the agent does not perform as well as when tested on the same 
training stocks. This shows that our agent is able to learn stock-specific behavior, but 
can’t generalize well across stocks.  

3) Lifting Layer 

 



Another major factor affecting the performance of our agent is the lifting layer. Before 
passing price history through the two GRU layers, we first use a dense layer to lift the 
data to a higher dimension, much similar to what we have done in the “Neural Networks 
on Graphs” assignment. This lifting layer helps our agent learn about stock behavior with 
augmented data. Excluding this dense layer results in decreasing rewards and net loss in 
portfolio value.  

4) Randomizing 

To allow our portfolio agent to train on more data, we implemented a randomization 
method in which a set of stocks is sampled from a larger pool of stocks in each training 
episode. However, due to time constraints, we were unable to develop a profitable model 
using this training method. Given more time, we would look into developing a more 
robust and complex model so that it can take advantage of the larger amount of data. 

5) Learning Rate  

We also noted that the learning rate had a large impact on the behaviour of the agent. 
The above results were obtained using an exponential decay learning schedule (initial 
learning rate 0.03, decay factor 0.98, decay steps 10000). We also tested exponential decay 
learning schedule with initial learning rate at 0.01, 0.003, and the RL agent had a very 
similar performance. 

CHALLENGES 

Our main challenge was limited data. Because the price data of all stocks in our portfolio 
had to come from the same time period, we had to select stocks that had sufficiently-long 
price histories. Furthermore, since our model does not take into account factors such as 
news sentiment or overall market indices/indicators, we decided not to use data from 
before 2010 due to stock market events that our model would not be able to predict. This 
leaves us with only ~2600 data points for each stock, which is not enough data for such 
an intricate task (without overfitting). We tried several methods for overcoming this 
challenge, such as training on portfolios sampled from a larger pool of stocks, but this 
causes our model to lose information pertaining to interdependent price behavior 
specific to a given set of stocks. In the end, we found that we were most successful with 
models that trained on a portfolio of a specific set of stocks, despite the fact that our data 
was more limited. 

We were challenged by the problem of setting up a realistic stock environment. We made 
the decision to simplify transactions by setting a fixed amount for buy/sell actions (e.g. 
$100); that way, our action space would be able to be discrete, and the agent would be 
focused on a simpler task. We also made the decision to allow for the borrowing of stocks 
and cash (i.e. negative shares and balances) so that our agent would have more room to 

 



trade, especially since we had fixed the transaction amount. Given our portfolio design, 
we thought that it was important to include the portfolio’s information (i.e. amount 
invested in each stock, as well as cash on hand) in the state space, so that the agent would 
have an idea of how much cash it had to spend, how many shares of stock X it was 
borrowing, etc. 

As always, the design of the architecture of the RL model is a challenge. Based on the 
stock environment, we experimented with multiple designs and found a locally optimal 
one. The strategy that the agent has ultimately learned is borrowing cash and buying 
stocks because it learns that stock prices will generally rise over time. This trading 
method seems to be a brute-force approach to investment, and the agent seems to ignore 
short-term fluctuations in stocks. We have tried to adjust different parameters such as 
exponentially decaying learning rate, layers sizes, number of layers, training to 
validation to testing data set ratio, etc. However, our agent performs best only when it 
keeps borrowing cash and buying stocks, but maybe that’s the best strategy to trade in 
the real world if we have a lot of money.  

REFLECTION 

How do you feel your project ultimately turned out? How did you do relative to 
your base/target/stretch goals? 

We found that the task of tuning the model to produce reliable results was an intensive 
and interesting process. Though we do not feel that our model has been tuned perfectly 
(i.e. there is still some variance in the results between different models), we have been 
able to produce models that are profitable when tested over 200 trading days (roughly a 
year). Given how difficult the task of producing profitable agents is, we are proud of our 
work on this project and are satisfied with the results. We’ve surpassed our base goal of 
implementing a profitable agent with the capabilities of holding, buying, and selling 
single stocks, and we’ve met our target goal of implementing an agent that performs as 
well as/better than benchmarks (e.g. buy-and-hold) and stock indices (e.g. S&P 500) on a 
portfolio of multiple stocks. Due to time constraints, we have not yet implemented our 
stretch goal of options trading, though our model does support trading on margin and 
stock borrowing. 

Did your model work out the way you expected it to? 

Our model did work out the way we expected it to. Because it is a relatively small model, 
we did not expect it to be extremely consistent or profitable. However, we did expect that 
our model should beat the buy-and-hold benchmark, as well as the performance of stock 
indices. Though we were able to do so, we had hoped that our model would have less 
variability during training/testing, which is possibly a result of limited data. 

How did your approach change over time? What kind of pivots did you make, if 

 



any? Would you have done differently if you could do your project over again? 

Our approach did not change much over time since we thoroughly discussed 
implementations before deciding on a direction to go. We did not make any significant 
pivots, although we made several improvements to our model by refactoring certain 
parts of our training and testing pipeline. For example, we added a randomization 
feature to our model which allows the model to sample training sets from a larger pool of 
stocks (to attempt to solve the problem of limited data), and we added informative 
validation logs and visualizations after each training epoch. If we could do our project 
over again, we would focus more on short-term trading as opposed to long-term portfolio 
balancing. By changing the action space to allow the agent to decide transaction 
quantities, and by tuning the reward function to better balance short-term and long-term 
profits, we would allow the agent to learn better strategies for short-term trading. 

What do you think you can further improve on if you had more time? 

We did notice that our project did not always produce models that were consistently 
profitable. It seems that the models did not always converge smoothly; however, our 
model trains in ~10 minutes (due to the relatively small amount of data available) so we 
were able to train multiple models and compare their performances. If we had more 
time, we would explore ways to increase our dataset either by generating artificial data 
(which is a challenging project on its own) or by improving our implementation of the 
method of training on samples from a pool of stocks (which we could not produce a 
profitable model from, partially due to time constraints). Given more data, we would be 
able to train larger models as well. 

What are your biggest takeaways from this project/what did you learn? 

One of our takeaways was the difficulty training deep learning models when there is not 
a lot of data and the data is noisy, as is the case for real-world stock prices. Through 
experimentation, we developed creative methods to augment our data such as using 
stock data from multiple stocks (i.e. portfolio trading) to stabilize results as well as 
randomizing the set of stocks to train on to create more data points. With the limited 
data we have, we set our goal accordingly by expecting the agent to learn 
portfolio-specific stock trading strategies. In general, we learned about developing 
realistic stock environments, designing states, actions, and rewards for DRL trading 
agents, implementing new methods such as experience replay, and visualizing the 
model’s results in comparison with benchmarks. 
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