
GPU Programming Assignment 3
Due Apr 28, 2022

Problem Statement

Multicore Task Scheduling:
In a system, there are M cores. There are N tasks which are present in the ready queue.
Each task has a different execution time (in seconds). Each core can execute a single task
at a time. Multiple cores can execute tasks simultaneously.

Each task has a priority assigned to it. The first task with a particular priority decides on
which core it can execute (say core 2). It depends on which core is free. When two or more
cores are free, a task should be executed on the core with the smaller ID. E.g. When core 3
and core 5 are free, then the task will get executed on core 3. Other tasks with the same
priority execute on the same core (eg. core 2) as the first task of that priority.
Whenever a core completes execution of a task, i.e., whenever it is free, a new task is taken
from the ready queue depending upon the task’s priority. If a task with certain priority does
not belong to that core, and if the core is free, it will be idle until the next appropriate task is
taken out. If a task with a certain priority belongs to a core and the core is busy, the task has
to wait until that particular core is free. Since we have only one queue in the system, a task
is popped out of the queue only when the previous task is out. Thus, the ready queue is a
blocking structure.

Assumptions:
● All tasks are in the ready queue at time zero.
● All tasks are independent of each other.
● Context switching time between tasks is zero.
● Scheduling time is zero.
● The number of cores are at least as many as the number of different priorities.

Tasks:
Print the total time (waiting time in queue + execution time on core) spent in the system for
each task.

Input Format

http://www.cse.iitm.ac.in/~rupesh/teaching/gpu/feb22/


First line contains M, N respectively. The next line contains execution times T(i) of each
task, in an order present in the ready queue. The next line contains priorities Pr(i) of each
task.

Output Format:
Total time taken by each task.

Input Constraints:
1 ≤ M ≤ 1000
1 ≤ N ≤ 10^5
1 ≤ T(i) ≤ 100
0 ≤ Pr(i) < M

Example:

Sample input:
3 10
1 3 2 5 4 1 2 3 1 2
1 0 0 1 1 0 0 0 2 2
Sample output:
1 3 5 8 12 9 11 14 12 14

Explanation:
Initially, all cores are free. So smaller ID core i.e. core 0 starts executing task 0. Since task 0
has priority 1, all other tasks which have priority 1 will get executed on core 0 when their
turn comes up.

Now next task 1 is having priority as 0 and two cores are free. Again a smaller ID core i.e.
core 1 will execute task 1. So, all tasks with priority 0 will get executed on core 1.
At time 0, Core 2 is free and task 2 is at the front of the queue. Since it has priority 0, it must
be executed on the core where the first task of priority 0 was executed (that is, Core 1 which
executed task 1 of priority 0). Since Core 1 is not free, task 2 is not popped out of the
queue.

Meanwhile, when task 0 is completed on core 0, task 2 has not yet been popped out of the
queue. So it will wait until task 2 is popped. At time 3 seconds, task 1 completes and frees
Core 1. Thus task 2 with priority 0 is popped and executed on core 1. At the same time, task
3 with priority 1 is also scheduled for execution on core 0.



Similarly, tasks 4,5,6,7 execute. When task 8, which is the first task with priority 2, is taken
out from the ready queue, none of the other cores are free, so it will get executed on core 2.
And so does task 9 with the same priority, executes on core 2.

Implementation Details
● Queue can be implemented as an array. All GPU threads should access it in parallel –
thus retrieving a task from the queue would need synchronization.
● Task execution need not be simulated (e.g., a thread waiting for a few seconds). You can
simply calculate its turnaround time.
● Sequential implementations would fetch zero marks.
● You are free to launch the kernel with the number of threads equal to the number of
cores or number of tasks.

Learning Suggestion
● Write a CPU-version of code achieving the same functionality. Time the CPU code and
GPU code separately for large inputs and compare the performances.


