High Honors Chemistry Final Exam Information 2024-2025

Mr. Sachetta & Mrs. Kurzman

Final Exam Format: 70 multiple choice questions (1 point each). The 1st 20 questions are mandatory and cover the entire year. The remaining 50 come from 10 out of 13 topics of your choosing. Each topic has 5 MC questions. Topics include:

- Atomic Structure
- Periodic Table
- Bonding
- Chemical Reactions
- Stoichiometry
- Particle Interactions
- Gases
- Solution Chemistry
- Acids & Bases
- Kinetics
- Equilibrium
- Thermodynamics
- Lab Procedures

The following questions are for you to practice as you prepare for the HH Chemistry final exam.

Matter

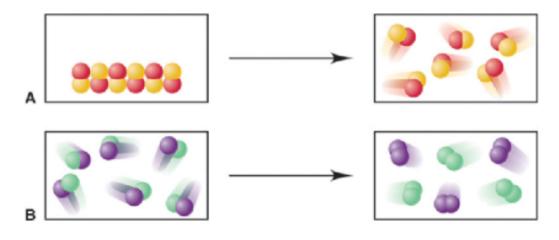
1. An example of a ph	ysical property is			
A. reacts with acid	B. luster	C. neutra	lizes a base	D. flammability
2. Dissolving table sal	It (NaCl) in water	is classified as a physic	cal change becar	use it
A. produces no new s	substances			
B. transfers energy				
C. releases heatD. changes the proper	rties of water			
D. changes the proper	rties of water			
3. The state of matter	that has an indefin	nite shape and an indefi	inite volume is	
A. gaseous state		C. elemen		
B. liquid state		D. solid s	tate	
4. Which of the follow	ving is a diatomic	element?		
A. Helium	B. Sulfur	C. Astatine	D. Hydrog	gen
5. Block Q and Block	Z have the same	mass. Both blocks are p	olaced into a cor	ntainer of pure water
		k Z sinks to the bottom		-
Which of the follow	ving statements is	an accurate conclusion	from this demo	onstration?
A. Block Z is heavier	than Block O			
B. Block Z is less der	-			
C. Block Z has a sma	•	Block Q.		
D. Block Z would flo	at if more water v	vere added.		
6. Pure substances inc	dude			
 A. elements and com		C. elemen	nts only	
B. compounds and m	•		nts and mixtures	S
	_	separation of the comp		ture'?
	-	nto oxygen and hydrog ce carbon dioxide and v		
		ltwater through evapor		
		orm calcium oxide and		
9 Which of the follow	ving is NOT on av	comple of motter?		
 8. Which of the follow A. air	B. light	C. plasma	D. methan	ne (CH.)
A. an	B. light	C. piasina	D. methan	ic (C114)
9. The substances that	are chemically be	ound together are		
A. the gases in the ai		(011)		
B. the elements that c	-	(CH_4)		
C. dust particles in th D. substances in bloo				
D. Substances in 0100	u			

____ 10. The table below shows the physical properties of selected metals.

Physical Properties of Selected Metals

Metal	Molecular mass (amu)	Melting point (°C)	Boiling point (°C)	Density (g/cm³)
Bismuth	209.98	271	1560	9.80
Chromium	52.00	1857	2672	7.20
Polonium	210.05	254	962	9.40
Ruthenium	101.07	2310	3900	12.3

A cube of an unknown metal has a volume of 1.66 cm³ and a mass of 11.95 g. Based on data in the table above, what is the identity of this metal?


A. bismuth

B. chromium

C. polonium

D. ruthenium

For questions 11-15, use the following two choices:

- 11. Which show(s) a physical change?
- 12. Which show(s) a chemical change?
- 13. Which result(s) in different physical properties?
- 14. Which result(s) in different chemical properties?
- 15. Which result(s) in a change of state?

Atomic Structure

of neon, a	The atomic number of nemole of Calcium contain				•
	wice as many atoms nalf as many atoms			equal number of ato times as many aton	
2. A	s the mass number of ar	isotope of ar	n element increas	es, the number of pr	rotons
A. increase increase				D. doubles each tinswer this question.	ime the mass number
A. Nitroger	Which of the following con a high sum of the following control and the sum of the following control and the following cont		ost neutrons? Carbon – 12	D. Boron – 12	E. Oxygen – 15
A. ab	n going from 1s ² 2s ² 2p ⁶ 3s sorb energy nit energy	-	oind to another a		
Use these	Answers for questions 5 (A) Democritu Rutherford	S	may be used on	ce, more than once	e, or not at all. (D)
	(B) Dalton (C) Thomspon Schroding				(E) Bohi (F)
5.	Developed the 1st At	omic Theory	of Matter.		
6.	Discovered the electronic	on.			
7.	Believed that all mat	ter was comp	osed of a smalles	st entity called 'atom	ios'.
8.	Proposed that electro	ns have both	wave and particl	e duality.	
9.	Developed the "plun	n pudding" me	odel of the atom.		
10.	Proposed that electro	ons possess a	certain amount of	f energy and must or	bit the nucleus on
	shells.				
	answers for questions 1	(A) 1s2 2s2 (B) 1s2 2s2 (C) 1s2 2s2 (D) 1s2 2s2 (E) 1s2 2s2	2 2p5 3s2 3p5 2 2p6 3s2 3p2 2 2p62d10 3s2 3p 2 2p6 3s2 3p4 2 2p6 3s2 3p6 4s2	06	nce, or not at all.
	An impossible electronic Represents an atom that				
	The ground-state config				
	Represents an atom in the				
15.	The ground-state config	uration for the	e atoms of vanad	ium	

Periodic Table

1. The least r a. potassium		nber of the		metals		cesiuı	m		d. hyd	drogen	
2. According a atomic siz	_	the chem atomic w	-	perties			s are pe			ons of th topic we	
3. The eleme (A) Be, B, C, N (D) C	nts in which		Ne, Ar,			(he same (C) Mg			us?	
4. Which of t a. silicon (14		-	s has chalcium (istics		ne meta c. sulfu				nonmetals' c (30Zn)
5. Which of t a. period 2		g sections . p block	of the p		table block			y meta d. gro			
5. Which of t a. have simil b. have simil c. have the s	ar valence of	electron co adii	onfigura	tions	d.	will r	eact to	form s	stable e	lements properti	
7. Which of t a. s and d blo		g section(. p and d b	*	period		le con s bloc		ie vale		ectrons? nd p blo	ck
8. An element energy level belongs	s to Group		electron			on end		_	the hi	ghest oc	cupied
a. 6	D.	. 8		c. 1	0			d. 16			
6. The figure periodic table.	below repr	esents the	periodio	table a	and th	e loca	tion of	four d	lifferen	t elemer	its on the
									W		
			Y						Z		
						+		\perp			
A certain element hadiagram above repre									hich le	etter in th	ne

b. X

a. W

c. Y

d. Z

	7. Which of	the following	elements is the	e most electroneg	gative'?	
	(A) S	(B) N	(C) Ne	(D) Mg	(E) Na	
	8 Which of	the following	elements has t	he largest atomic	radius?	
	(A) S	(B) N	(C) Ne	(D) Mg	(E) Na	
	() ~	(-)	(-)	(-)8	(_)	
	-	-		ecause they are i	n the same period.	
	a. True	b. F	alse			
	10 The ioni	zation energy o	enerally incre	ases as one mov	es from left to right across the	he neriodic
table l		0, 0			e from left to right across the	_
table.			C	, and the second	· ·	•
	a. True	b. F	alse			
Bond	ling					
	O					
	-	_			and covalent bonds?	
	A. CO_2	B. N	NH_3	C. NaNO ₃	D. NaCl	
	2. Which of	the following i	properties is n	ot associated wit	th metallic bonds?	
	A malleabil	• .	rittleness	C. ductility		
		_		•	•	
	•			_	tivity values. Which of the f	ollowing
most i	•	ne elements tog	•			
					ement to the other	
	-				electrons equally are electrons equally	
	-				form a chemical bond	
	_, , ,,,,,		,			
	4. Carbon, o	xygen and			ibility to form multiple cova	
			A. nitrog			B. iron
nickel			C. hydrog	gen	E. copper	D.
morei					L. copper	
	5. Element X	X has an electro	on configuration	on of $1s^2 2s^2 2p^6 3s^2$	s ² 3p ¹ . Element X will most l	likely form
oxides	s with the form			G 770	D 110	
	A. X_2O	В. 2	χ_2O_3	C. XO	$D. XO_2$	
	6 In which l	bond does the	oxygen atom r	ossess a partial j	nositive charge?	
	A. O-H	B. (C. N-O	D. O-C	
	•	_		est explains why	atoms bond?	
		ond to make n				
	*	oond to become oond to change		•		
	*	ond to change ond to become	-			
	,			<i>J</i>		

The following choice	s are for Questions 7-1	0. Choices may be us	sed once, more than o	once, or not at all.			
A. H ₂	B. CO ₂	C. N ₂	D. SO ₂	E. BH ₃			
7. Which molec	ule is polar?						
8. Which molec	ule contains two doubl	e bonds?					
9. Which molec	ule has two lone electr	on pairs?					
10. Which mole	cule has polar bonds b	ut is a nonpolar molec	cule?				
11. Which of the geometry?	e following models be s	st represents the shape	e of a compound with	h trigonal planar			
A.		С.					
В.		D.					
A. to push other they spread B. to allow the pairs. C. to destabilize D. none, because 14. The diagram	f lone pairs on moleculer atoms closer together out more. To other atoms to be further atoms to be further atoms to be further at the molecule by creatise they are just another at below represents part the sound holds these particles ond holds these particles.	her apart because lone ther apart because lone ating a dipole. In pair of electrons. icles of one element.	•				
	B) Hydrogen	•	ie	D) Matallic			
15. Palmitic aci	15. Palmitic acid, a component of most animal fats, has the molecular formula CH ₃ (CH ₂) ₁₄ COOH. Which of the following is the empirical formula for palmitic acid?						
Chem Rxns and S	toich						
1. All of the following	lowing involve a chem	ical change EXCEPT					

(A) the odor of	NH ₃ when NH ₄ Cl is rubbed tog	gether with Ca(OH) ₂ powder
(B) the formati	on of steam from burning H ₂ an	$\operatorname{d} \operatorname{O}_2$
(C) the formati	on of HCl from H ₂ and Cl ₂	
(D) the solidifie	cation of vegetable oil at low te	mperatures
2 When hydi	rocarbons burn, the products inc	clude carbon dioxide and
(A) oxygen	(B) dihydrogen monoxide	(C) hydroxide (D) hydrogen
(11) Oxygen	(b) uniyarogen monoxide	(C) hydroxide (D) hydrogen
3. A balanced	equation is shown below.	
	$C_6H_{12}O_6(l) \square 2 C_2$	$H_5OH(1) + 2 CO_2(g)$
Which of the followi products in this equa		es the mass of the reactant with the mass of the
A. The mass of	the reactant is half the mass of	the products.
B. The mass of	the reactant is twice the mass c	of the products.
C. The mass of	the reactant is one-fourth the m	nass of the products.
D. The mass of	the reactant is the same as the	mass of the products.
once, or not at all. The (A) H2SeO4(aq) (B) S8(s) + 8 O (C) 3 Br2(aq) +	to the reactions represented belonere is one answer per question. $y + 2 \text{ Cl}-(aq) + 2 \text{ H}+(aq) \rightarrow \text{H}$ $2(g) \rightarrow 8 \text{ SO2}(g)$ $6 \text{ OH}-(aq) \rightarrow 5 \text{ Br}-(aq) + \text{Br}$ $4 + \text{Na}_2 \text{SO4}(aq) \rightarrow \text{CaSO4}(s)$	O3-(aq) + 3 H2O(l)
4. A precipitat	tion reaction	
5. A synthesis	reaction	
6. A combusti	on reaction	
Particle Interacti	ions & Gases	
A. hydro	ne following is (are) the WEAK gen bonding ent bonding	EST attractive force? C. polar covalent bonding D. ionic bonding
2. A sample o A. hydrogen B. dipole-dip	•	C. London dispersion forces D. Ionic bonds
3. Small drops	s of water tend to bead up becau	ise of

A. high capillB. the shape	lary action of the meniscus		C. the resistance to in D. low London dispe	ncreased surface area ersion forces
A. ionic solic temperatur B. molecular C. ionic solid	ds with strong electrons res solids with high intentions s with highly mobile	rostatic attraction ermolecular force tons which have	es which have high me	which have high melting lting temperatures
5. Which of the	e labeled intervals re	epresent an incre	ase in kinetic energy?	
	Temperature, °C→	L M	N /	
A. L only B. M only			C. L and N only D. M and N only	
2.111 61117			B. W and I voing	
6. The normal	boiling point of water	er is		
A. 373 K.	B. 173 K.	C. 27	3 K.	D. 473 K.
7. Which temp	erature represents at	osolute zero?		
A. 0 K	B. 0 °C	C. 273 K	D. 273 °C	
A. They alway	5°C.	sly. es is made of pa C. H ₂	C. They never releas D. They never occur	
10. Which of t amounts of oxygen?	he following charact	eristics of gases	allows for scuba-divin	g tanks to contain large
A. Effusion	B. Diffusion	C. Fluidity	D. Compressibility	E. Expansion
		-	lot can change the altity hen the gas is heated,	•

Which of the following best explains this phenomenon? Heating the gas ...

A. reduces its pressu	ure.	C. decre	eases its molec	ular motion

B. decreases its density. D. reduces the frequency of the gas molecules' collisions.

10	3371 1 0.41	C 11 '	11 1 6 1	41 1	C	
1/	which of th	e following	will definitely	y cause the vol	nme ot a gas i	io increase/
14.	Willen of th	e ronowing	WIII delilitei	y cause the von	unic or a gas	to increase.

- I. decreasing the pressure with the temperature held constant
- II. increasing the pressure with a temperature decrease
- III. increasing the temperature with a pressure increase

A. I only B. II only C. I and III only

D. II and III only E. I, II, and III

_____ 13. Which of the following correctly describes molecules of two different gases if they are at the same temperature and pressure?

A. They must have the same mass.

C. They must have the same average kinetic energy.

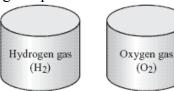
B. They must have the same velocity.D. They must have the same average potential energy.

14. All of the following statements underlie the kinetic molecular theory of gases EXCEPT:

- A. Gas molecules have no intermolecular forces.
- B. Gas particles are in random motion.
- C. The collisions between gas particles are elastic.
- D. Gas particles have negligible volume.
- E. The average kinetic energy directly depends on the volume of the gas.

15. If the pressure of a gas sample is doubled at constant temperature, the volume will be

A. 4 times the original


D. 1/4 of the original

B. 2 times the original

E. 1/8 of the original

C. 1/2 of the original

16. The two samples of gas represented below have the same volume, temperature, and pressure.

Based on this information, these two samples of gas must also have the same

A. Chemical reactivity.

C. Mass.

B. Density.

D. Number of molecules.

17. Which of A. C ₃ H ₈	the following ga B. NH		ost like a C. Ne	_	STP? D. HCl	
Solution Chemis	try					
1. When an io A. hydrogen B. ion-ion for	_	es in water, the	C. Lon	solvent interaction don forces dipole forces	on is	
	ate would dissolatium fluoride) maldehyde)	ve in carbon tet	B. CH ₃	de, CCl ₄ ? OH (methanol) Cl (sodium chlor		
A. a chemica B. a solution C. a solution D. a chemica		use the metal at h copper as the h silver as the s use the metals vot chocolate mixed. The hot chocol	soms bor solvent are will exchange and was	and with each oth and silver as the and copper as the ange electrons. ater) has a power olution is most	ner. e solute. e solute. dery resid	due on the bottom of
5. The table b	elow gives info	rmation about f	our aque	ous solutions o	f sodium	n nitrate (NaNO ₃).
Beak	xer Concent	20 20 20 2 2	O ₃ (%)		0 40 80 100	(C)
In which beaker will A. 1	an additional 1 B. 2	0 g of sodium r C. 3	nitrate (N D. 4	IaNO₃) dissolve	e at the <u>sl</u>	lowest rate?
6. Which of the	ne following wil	Il be electrically I. Salt dissolv II. Pure water III. Pure solid	ed in wa			
A. I only	B. III only	C. I and II onl	ly	D. I and III onl	y E	E. I, II, and III
7. Calcium hy water, it releases hyd hydroxide and water	lroxide ions. W	/ =-			-	as. When mixed with a solution of calcium
A. 1	В. 3	C. 7	D. 10			

8. The	table bel	_	values of som	e foods. ome Important	Foods		
Vegetables	рН	Citrus	pH	Dairy/Egg	pH	Starches	рН
Asparagus	5.6	Grapefruit		Butter	6.2	Bread (white)	5.5
Beans	5.5	Lemons	2.3	Cheese	5.6	Corn	6.2
Peas	6.1	Limes	1.9	Eggs (fresh)	7.8	Crackers	7.5
Spinach	5.4		3.5	Milk	6.5	Potatoes	5.8
				oduction of stor			•
patient <u>avoid</u> v A. veg	antil the etables	condition is re B. citi	esolved? rus	C. dairy/egg	D. sta	rches	
9. wno	en of the	Tollowing sai	Is will hydroly I. Nat II. Cu III. K	$_{4}$ SO ₄	orm basic solu	nons?	
A. I or	ıly	B. III only	C. I an II onl	y D. II a	nd III only	E. I, II, and III	[
below. 10. A c	hemical		C	action of water	`	nmonia (NH ₃) is	shown
		ŀ	ни́+Щон	₃ →NH ₄ + (OH_		
B. Bot C. Wat	h water er is act	and ammonia ing as an acid					
A. The	acid ha	Bronsted-Los s one more pr s one more ele	oton	from its conjug C. The acid ha D. The acid ha	as one less pro		
	nich of thach - pH	_	substances has ter - pH 7	the highest cond C. tomato juic	-	ydrogen ions in D. vinegar - p	
small amounts A. sma B. the C. the	s of a str all amou strong b weak ac	ong base becants of base do ase is balance id of the buffe	use not drastically d by conjugate	its conjugate base alter an aqueous base of the buffer strong base to the buffer	ıs solution's pF fer	H	ion of
Together they happens when A. HC	form a because O_3 (aq)	ouffer that is f base enters the + H ₃ O ⁺ (aq)>		$H_2O(1)$			

C.
$$HCO_3^-(aq) + H_2O(1) --> H_2CO_3(aq) + OH^-(aq)$$

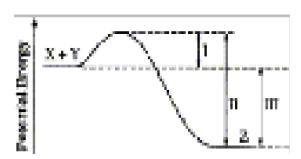
D. $H_2CO_3(aq) + H_2O(1) --> HCO_3^-(aq) + H_3O^+(aq)$

Kinetics, Equilibrium, Thermodynamics

- 1. Which of the following best describes the role of the spark from the spark plug in an automobile engine?
 - (A) The spark decreases the energy of activation for the slow step.
 - (B) The spark increases the concentration of the volatile reactant.
 - (C) The spark supplies some of the energy of activation for the combustion reaction.
 - (D) The spark provides a more favorable activated complex for the combustion reaction.
 - (E) The spark provides the heat of vaporization for the volatile hydrocarbon.

Step 1:
$$Ce^{4+} + Mn^{2+} \square Ce^{3+} + Mn^{3+}$$

Step 2: $Ce^{4+} + Mn^{3+} \square Ce^{3+} + Mn^{4+}$
Step 3: $Mn^{4+} + Tl^{+} \square Tl^{3+} + Mn^{2+}$


- 2. The proposed steps for a catalyzed reaction between Ce⁴⁺ and Tl⁺ are represented above. The products of the overall catalyzed reaction are
 - (A) Ce⁴⁺ and Tl⁺

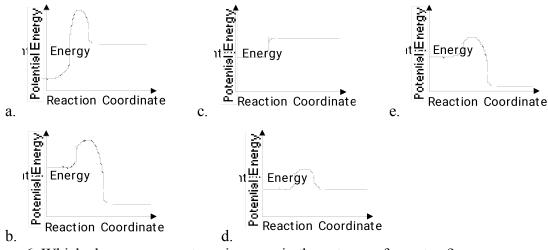
(B) Ce^{3+} and Tl^{3+}

(C) Ce^{3+} and Mn^{3+}

(D) Ce^{3+} and Mn^{4+}

(E) Tl^{3+} and Mn^{2+}

- 3. The energy diagram for the reaction $X + Y \square Z$ is shown above. The addition of a catalyst to this reaction would cause a change in which of the indicated energy differences?
 - (A) I only


(B) II only

(C) III only

(D) I and II only

- I, II, and III (E)
- 4. Given the reaction at equilibrium: $Mg(OH)_2(s) \square Mg^{2+}(aq) + 2 OH^{-}(aq)$ The equilibrium constant for this reaction is correctly written as
 - a. $[Mg^{2+}]+[2 \ OH^-]$ b. $[Mg^{2+}][2 \ OH^-]$ c. $[Mg^{2+}]+[OH^-]^2$ d. $[Mg^{2+}][OH^-]^2$

5. Which of the following is a graph that describes the pathway of reaction that is endothermic and has high activation energy?

- 6. Which change represents an increase in the entropy of a system?
- a. $C_6H_{12}O_6$ (s) $\Box C_6H_{12}O_6$ (aq)

c. $CO_2(g) \square CO_2(s)$

b. $H_2O(1) \square H_2O(s)$

- d. $C_2H_5OH(g) \square C_2H_5OH(l)$
- 7. Given the reaction at 1 atm and 298 K:

$$NaOH(s) + H_2O(l) \square Na^+(aq) + OH^-(aq) + 10.6 kcal$$
, the ΔH is

- a. Negative and the reaction is spontaneous
- c. Positive and the reaction is spontaneous
- b. Negative and the reaction is not spontaneous
- d. Positive and the reaction is not spontaneous
- 8. When stirred in 30°C water, 5 g of powdered potassium bromide, KBr, dissolves faster than 5 g of large crystals of potassium bromide. Which of the following best explains why the powdered KBr dissolves faster?
 - a. Powdered KBr exposes more surface area to water molecules than large crystals of KBr.
 - b. Potassium & bromide ions in the powder are smaller than they are in the large crystal
 - c. Fewer potassium & bromide ions have been separated from each other in the powder than in the crystals
 - d. Powdered KBr is less dense than large crystals of KBr

Open Response Questions

Matter

16. Mixture lab question: Let's pretend th	nat I completed the mi	xture lab three times (three	different
samples). The first time my percentage of	f salt was 22%, the sec	cond it was 55%, and the thi	rd it was 56%.
Assume no mistakes, and any errors affect	cted the data in the san	ne way for the three experin	nents. Why
were my values different? (2pts)			
17: Evidence of chemical changes: What	are the 4 indications of	of chemical reactions? (5 pts	s)
1			,
2	4		
18. Draw the following samples of matter (2pts each)	r on a microscopic sca	lle. Use different shapes who	en appropriate.
Liquid and gaseous Nickel		Solid Fluorine	
		Liquid ammonia (NH ₃)	
Solid water and gaseous Helium			

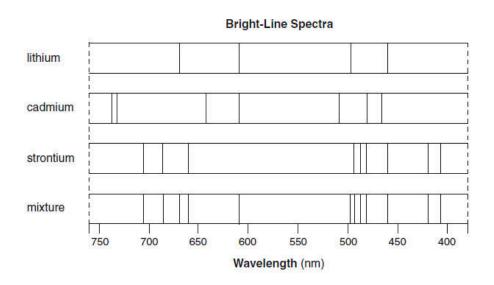
19a. A flask has a mass of 78.23 g when empty and 593.63 g when filled with water. When the same flask is filled with concentrated sulfuric acid, H₂SO₄, its mass is 1026.57 g. What is the density of concentrated sulfuric acid? (Assume water has a density of 1.00 g/cm³ at the temperature of the measurement.) Show all work for any calculated values.

19b. Alcohol has a de Will sulfuric acid from Will sulfuric acid from	n (19a) float or sink	in alcohol? _ in water? _			
26. Suppose that you a business. An official from recycled materials that the job is made more of making it impossible to	m the city of Bedfor t must be separated, difficult by the fact t	d, Mr. Taylor and they will hat someone	tells you that they he pay you \$5,000 if you	ave a dump truck ful ou can do it. Unfortu	ll of unately,
Fortunately, Mr. Taylo	r knows what the m	aterials in the	truck are, as well as	their densities:	
	Materia	l	Density (g/cm ³	·)	
	Aluminum Soc	da cans	2.7		
	Steel can	S	5.7		
	Plastic Milk	jugs	0.95		
	Glass Soda b	ottles	1.4		
magnetic) • Several nets fo What property of each	r skimming the tank	s and scooping	nveyor belt (FYI Alung material from the larate it from the mix	bottoms.	
S	teel cans				
Plast	ic Milk jugs				
Glass	Soda bottles				
Which component shows Write a brief outline (the rest of the mixture)	step 1, step 2, etc) the	nat describes	now you will separate		tles from

•	4	•	α	4
Λ	tΛ	mic	trii	cture
\Box	ιυ		\mathcal{O} u u	lululu

16. What were the 2 major breakthroughs in the understanding of an atom based on Rutherford's Gold				
Foil Experiment results? Include proper vocabulary words. (3 points)				
4				
17. Write the appropriate electron configuration notation as indicated for each particle.				
A) Exponential notation, orbital notation, and dot notation for silicon (4pts)				
B) Exponential notation for Silver. (2pts)				

18. Complete the following chart. (9 pts)


	10. Complete the following chart. (7 pts)							
Particle	Atomic	Mass	Charge	Atom or	#	#	#	Exponential Electron
	Number	Number		Cation	protons	neutrons	electrons	Configuration
				or				
				Anion				
$^{44}\text{Ca}^{2+}$								

19. What is the mass of 1.55 moles of CaCO₃? (5 pts)

20. How many particles are contained in 46 g of fluorine? (6 pts)

21. Magnesium consists of three naturally occurring isotopes. The percent abundance of these isotopes is as follows: ²⁴Mg (78.70%), ²⁵Mg (10.13%), and ²⁶Mg (11.70%). The average atomic mass of the three isotopes is 24.3050 amu. If the atomic mass of ²⁵Mg is 24.98584 amu, and ²⁶Mg is 25.98259 amu, calculate the <u>actual</u> atomic mass of ²⁴Mg. Express your answer to 5 decimal places (5pts)

22. An element is found to emit a photon with energy of 3.13×10^{-19} J. Using the chart below, determine the identity of the **element**. Justify your answer using words and calculations. (6 pts)

Periodic Table

<u>Directions</u>: Write either the name or symbol of the element described in each statement on the line provided. (2 points each)

9. Which nonmetal is a liquid at room temperature?
 10. What is the period 5 noble gas?
 11. What is the nonmetal element found in Group 14
 12. What is the lightest alkali metal?
13. What is the period 2 metalloid?

Directions: For #17 & 18, write the noble gas electron configuration. (5 pt, total) 17. Gold

18. Gallium

1 1	TT		1	c		4 4	4		1	C	41	C 11	•
14.	Use	princij	pies	01	atomic	structure	το	answer	eacn	OΙ	tne	IOII	owing

a. The radius of the Ca atom is 0.197 nm; the radius of the Ca²⁺ ion is 0.099 nm. Explain why this is so based on the structure of the atom and a comparison of the data. (3 points)

		Ionization Energy (kJ/mol)				
		First	Second			
I	K	419	3,052			
I	Rb	403	2,633			

b. Explain the difference between K and Rb in comparing their first ionization energies: (4 points)

c. Explain why there's such a drastic difference between the 1st and 2nd ionization energies of K. (4 points)

16. 12 pts total

	First	Second	Third
	Ionization Energy	Ionization Energy	Ionization Energy
	(kJ mol ⁻¹)	(kJ mol ⁻¹)	(kJ mol ⁻¹)
Element 1	1,251	2,300	3,820
Element 2	496	4,560	6,910
Element 3	738	1,450	7,730
Element 4	1,000	2,250	3,360

The table above shows the first three ionization energies for atoms of four elements from the third period of the periodic table. The elements are numbered randomly. Use the information in the table to answer the following questions.

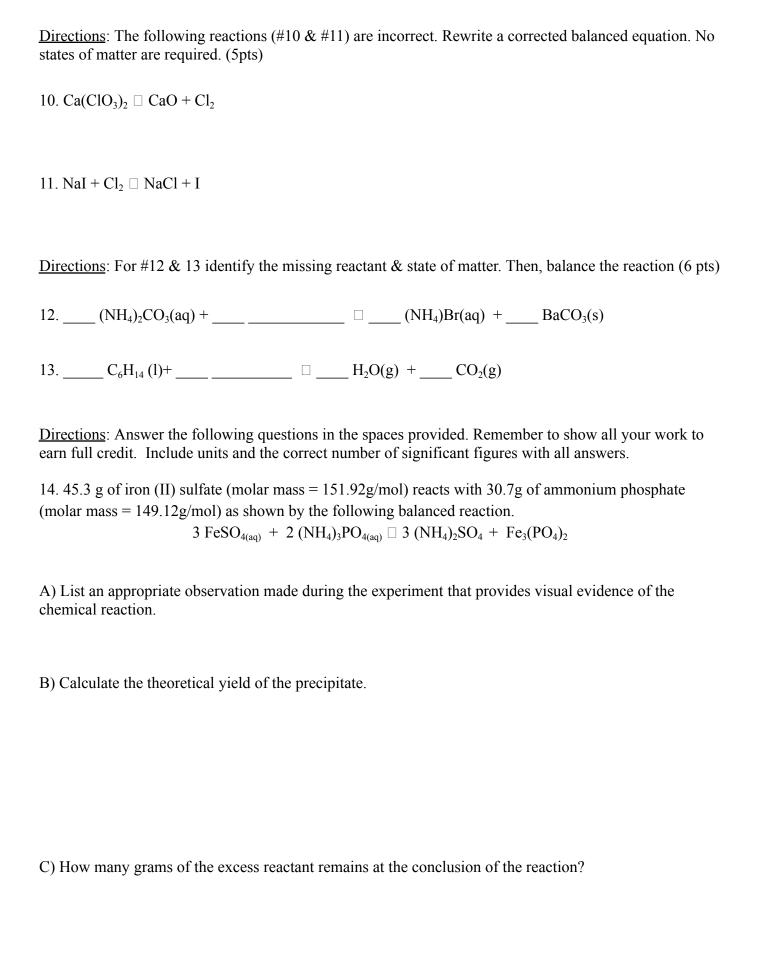
	(a)	Which element is most	metallic in character?	Explain your rea	asoning. (3 p	oints)
--	-----	-----------------------	------------------------	------------------	---------------	--------

Identify element 3. Explain your reasoning. (3 points) (b)

- Write the noble gas electron configuration for an atom of element 3. (2 points) (c)
- What is the chemical symbol for element 2? (1 point) (e)
- A neutral atom of which of the four elements has the smallest radius? Why? (3 points) (f)

BONUS: (not part of extra time allotment) The 1st ionization of Potassium is 419 kJ/mol. What minimum frequency of electromagnetic energy would be required to remove an electron from a single atom? (2 pts)

1


<u>Directions:</u> For each of the chemical formulas listed below write the correct name. Each answer is worth point.
16. CO ₃
17. Li ₃ AsO ₄
18. S ₂ P ₅
19. Mn(OH) ₃
20. WSO ₃
<u>Directions:</u> For each of the compounds listed below write its chemical formula. Each answer is worth 1 point.
21. Silver nitride
22. Iron (III) hypochlorite
23. Triphosphorus hexabromide
24. Aluminum peroxide
25. Magnesium iodate
Directions: Complete the following short. If you feel that a how describ warrant information, indicate by

<u>Directions</u>: Complete the following chart. If you feel that a box doesn't warrant information, indicate by putting an "X" in the box. A blank box indicates that you do not know, and it will be marked incorrect. (16 points total)

Particle	*Bond Type	Lewis Dot	Molecular Geometry	Polarity
or		Structure	(Sketch and name)	of
Molecule				Molecule
26.				
$MgCl_2$				
27.				
CH ₂ O				

28.													
NH₄Cl													
1111401													
(*Bond type: Ionic, non-polar covalent, polar covalent, both)													
		owing word problems. BE ers with the correct number				ORK = NO							
hydrog	en, and the rest or	e glycol is often used as an xygen. The molecular mas la of ethylene glycol. (8 p	s of eth										
30. What r	nass of Carbon ca	n be extracted from 75.0 g	of CO) ₂ ? (7 points	s)								
			,	2. (· F ·	- /								
33. A lab €	experiment was pe	erformed to determine the	empirio	cal formula	of a hydrate of Na ₂ SC	O_4 ·XH $_2$ O.							
	ass of hydrated sa		203.01										
<u>M</u>	ass of anhydrous	salt after heating:	89.49	g									
A. Determ	ine the formula of	f the hydrate. (7 points)											
B. Name th	he hydrate (1pts)												

34. A 3.0 g sample of Cu(NO ₃) ₂ ·3H ₂ O was heated to constant mass. (8pts)
A. What is left in the evaporation dish when constant mass is reached?
B. What is the expected mass of the remaining substance after constant mass is established?
Chemical Reactions & Stoichiometry
<u>Directions</u> : Complete the word equation. Then, write the complete, balanced, chemical equation for each reaction below. Include states of matter with all reactants and products. If the reaction does not occur, write, "No reaction." Determine the reaction type for each reaction. If more than one type of reaction occurs, indicate all types.
7. Iron(II) chloride combines with potassium phosphate to produce
Reaction Type
8. Chlorine gas reacts with a solution of magnesium bromide to produce
Reaction Type
9. Aluminum hydroxide decomposes with the addition of heat and produces
Reaction Type

Particle Interactions & Gases

0°C to 84°C. (11 pts)

1. Using your knowledge of chemistry, explain why the boiling points of these three compounds between hydrogen and group 16 elements vary. (3 points)

Compound	Boiling Point				
H_2O	100.0 ℃				
H_2S	-60.2 ℃				
H ₂ Se	-42.25 ℃				

2.	. Calculate the amount of heat, in calories, needed to bring 2.3 g of ice mixed with 42 g of water from

3. Which diatomic element (give its name) has a density of 7.13 g/L at STP? (6pts)

4. Rank the following g faster is the fastest gas						
_	CO ₂	O ₂	HF _	F ₂	SCl ₆	
5. Taylor collected a sar vapor at 20. °C is 17.3 of the sample was 444 t	torr. If Taylor	collected 2.2	2 moles of Ar	and 3.3 mo	oles of He, and th	ne total pressure
7. Ammonium sulfate,	an important f	fertilizer, car	be prepared	by the reac	tion of ammonia	with sulfuric
acid according to the fo	llowing balan	nced equation	n:			
-	2 N	$H_3(g) + H_2S$	$O_4(aq) \square (NH)$	$I_4)_2SO_4(aq)$		
Calculate the volume of	f NH ₃ (in liter	s) needed at	20°C and 25.	0 atm to rea	act with 150 g of	² H ₂ SO ₄ . (9pts)

Directions	Chemistry Complete and ba a net ionic equation	_	ions. Include states of matter and write your final
19	CN (aq) +	$HC_2H_3O_2$ (aq) \leftrightarrow	
20	H ₂ SO ₄ (aq) +	$Al(OH)_3 (aq) \rightarrow$	
21	BaCl ₂ (aq) +	_MgSO₄(aq) □	
Directions	· Name or write th	e formulas for the follow	ing acids (1 pt_each)
			24. Hydroiodic acid
			25. Acetic acid
26. In the s	space below, draw	a picture of KBr dissolvi	ng in H ₂ O. (6 points)
Before diss			After dissolution:

<u>Directions</u>: Answer the following questions in the spaces provided. <u>Show all your work to earn full credit</u>. Report your answers with correct units and the correct number of significant figures.

27. To what volume, in milliliters, must 50.0 milliliters of 3.50 M H_2SO_4 be diluted in order to make 2.00M H₂SO₄? (4 points)

28. What is the molarity of a solution that contains 5.85 g of potassium chloride (KCl) in 0.50 L of solution? (5 points)

29. Consider the balanced equation: $2 \ HgNO_3(aq) + Na_2CO_3(aq) \ \Box \ 2 \ NaNO_3(aq) + Hg_2CO_3(s)$
If 0.25 L of a 6.0 M mercury(I) nitrate solution reacts with excess sodium carbonate, what mass of mercury(I) carbonate will be produced? (7 points)
30. Determine the pH <u>and pOH of $2.4x10^{-2}$ M HNO₃. What color would this solution turn blue litmus paper? (4 pts)</u>
31. Ocean water has a pH of 8.2. Determine the $[H_3O^+]$ and $[OH^-]$ of the water. What color would this solution turn blue litmus paper? (4 pts)
32. If 0.730 g of gaseous hydrogen monochloride is dissolved to make 2.0 liters of solution, determine the pH of the solution. (5 pts)
33. If you mix 3.33 liters of 0.500 M NaCl with 9.00 liters of 0.2777M NaCl what will the concentration of the final solution be, assuming the volumes are additive? (7 points)

Kinetics,	Equilibrium,	Thermodynamics
-----------	--------------	-----------------------

9.	Given the reaction:	$N_2(g) + O_2(g)$	+ 43.2 kcal □ 2	2 NO (g),	what is the hea	t of formation	of nitrogen
m	onoxide gas in kcal/ı	mol?					

10. Complete the following chart (using arrows to indicate directions) based on the reaction:

 $4 \text{ HCl } (g) + O_2 (g) \square 2 \text{ H}_2O (g) + 2 \text{ Cl}_2 (g) + 113 \text{ kJ}$

Stress	Equil. Shift	[HCl]	$[O_2]$	[H ₂ O]	
Add HCl(g)					
Decrease T					
Add catalyst					
Decrease P					

<u>Calculation Directions</u>: Perform the following calculations in the spaces provided. Show all work for partial credit.

11. $2 \text{ H2S}(g) \rightarrow 2 \text{ H2}(g) + \text{S2}(g)$

When heated, hydrogen sulfide gas decomposes according to the equation above. A 3.40 g sample of H2S(g) is introduced into an evacuated rigid 1.25 L container. The sealed container is heated to 483 K, and $3.72 \times 10-2$ mol of S2(g) is present at equilibrium.

Calculate the value of the equilibrium constant, *Keq*, for the decomposition reaction at 483 K. Is the forward or reverse reaction favored?

12. Calculate the heat of reaction for: 2 NO (g) + O_2 (g) \square 2 NO₂ (g)

13. Carbon occurs in two distinct forms. It can be the soft, black material found in pencils, called graphite
or it can be the hard, brilliant gem we know as diamond. Calculate the ΔH for the conversion of graphite
to diamond for the following reaction:

$$C_{\text{graphite}}(s) \square C_{\text{diamond}}(s)$$

 $C_{\text{graphite}}\left(s\right) \ \Box \ C_{\text{diamond}}\left(s\right)$ The combustion reactions you will need to know are:

$$\begin{array}{l} C_{graphite}\left(s\right)+O_{2}\left(g\right)\;\square\;CO_{2}\left(g\right)\\ O_{2}\left(g\right)+C_{diamond}\left(s\right)\;\square\;CO_{2}\left(g\right) \end{array} \qquad \Delta H=-394\;kJ/mol\\ \Delta H=-396\;kJ/mol \end{array}$$

14. Calculate the heat of reaction for C_2H_4 + HBr \Box CH₃CH₂Br

Bond	Energy	Bond	Energy	Bond	Energy
C=C	611kJ/mol	С-Н	410kJ/mol	C-Br	270 kJ/mol
C-C	350kJ/mol	H–Br	366 kJ/mol		

15. The ΔS for the reaction shown at 298 K is 0.00300 kJ/mol*K. Calculate the standard free energy for this reaction & determine whether it will occur spontaneously at 298 K.

$$C(s) + O_2(g) \square CO_2(g) + 393.51 \text{ kJ}$$