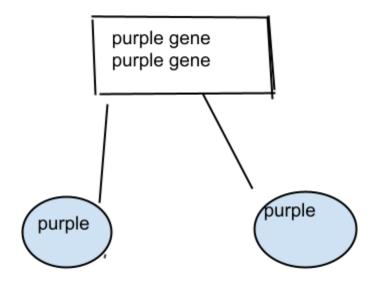

Mendel and Heredity

Chapter 8

1. Here	edity is	
	a. It has been known about since	
	b. it was first used in	
2. The	mechanism of heredity wasn't understood until the work of	
	ndel is considered the father of	
	a. genetics is	
4. Men	ndel repeated the work of a British farmer named	
and exp	perimented on	
5. The	reason Mendel was more successful than others who had studied heredity is	S
	a	
	b	
6. The	pea was a great specimen for genetics experiments because	
	a. They have 2 different forms of traits	
	Explain:	


b. The experimenter can control breeding	
Explain	
c. Peas are	
1	
2	
3	
4	
HOW MENDEL DID HIS EXPERIMENT	
7. Monohybrid cross	_
Examplex	
8. True breeding is	
o. The orealing is	
9. P generation is	
10. F1 generation is	_
11. F2 generation is	

16. In the F2 generation the trait that disappeared in the F1 reappeared i17. A ratio is	n a ratio.
15. Mendel found that in the F1 generation	
Mendel's Results	
14. Step 3:	
13. Step 2:	
12. Step 1:	

18.	Ratios are written in 3 ways
	a
	b
	c
SE	CTION 2
19.	Based on his experiments, Mendel formed 4 hypotheses
	a. For every trait an individual has genes one from the
	and 1 from the
	b. There are alternate versions of genes called
	Example: For flower color there is a version of gene for
	flowers and a version of a gene for flowers
	c. When an individual gets 2 alleles one is and one is
	1. dominant
	2. recessive
	Example Purple flowered plant x white flowered plant. All babies are purple
	is dominant
	is recessive
	d. When are formed the genes for a trait separate.

Example: Individual has 2 genes for purple flower color

20.	In	genetics	letters	are	used	to	represent	al	lel	les
-----	----	----------	---------	-----	------	----	-----------	----	-----	-----

a.		represent	dominant	alleles
----	--	-----------	----------	---------

Example:

Brown is dominant _______
Blue is recessive ______

21. ______ is when an individual has 2 of the same allele for a trait.

Example: _____ or ____

22. _____ is when an individual has 2 different alleles

for a trait

Example: _____

23	is the alleles or genes an individual has for
a trait (the letters)	
24	is the physical characteristics an individual
has for a trait as a result of their	genes (what they look like
25. Example:	
Taster is dominant:	
Non-taster is recessive	
Bob is a nontaster.	
His genotype is	
His phenotype is	
Sally is a heterozygous taster.	
Her genotype is	
Her phenotype is	·
26. Based on Mendel's experin	nent laws of heredity were formed
A. Law of segregation	
B. Law of independent assortm	nent

SECTION 3

SECTIO	JIN 3		
27. The	ere is a need	in genetics to p	oredict the of a cross.
28. A_			is a tool used to predict
offsprin	g		
_	Cross: Aa	x Aa	
	Α	a	
Α	AA	Aa	
а	Aa	aa	
29. ST	EPS TO MA	KING A PUN	NETT SQUARE
			is and what trait is
	rmine the		for each parent
3. Sepa	rate the		, this is what goes in each gamete
4. Place	e the gamete	possibilities fo	or one parent on the of each column of
punnett	square		
5. Place	e the gamete	possibilities fo	or the 2nd parent on the side of each
row.			
6. Com	bine the		for each trait together in the inside boxes

7. Determine the _____ and

30. E	xample:	In peas, yellow see	eds are dominant	to green seeds.	Do a punnett square for a
hetero	zygous y	ellow plant crossec	d with a homozyg	gous yellow pla	nt.
	Step 1:	Key			
	G =				
	g =				
	Step 2:				
	Parent 1	Genotype			
	Parent 2	2 Genotype			
		G	g		
	G				
	G				
	Step 6:				
	Genoty	pic ratio			
	GG:	Gg: gg			
	:	:			
	Phenoty	pic ratio			
	Green:	Yellow			

ratio of the cross.

Example: Sickle cell anemia is a recessive trait. Being healthy is dominant. John is heterozygous for sickle cell. Sue is heterozygous for sickle cell. Do a punnett square for John and Sue

Key:
Healthy:
Sickle cell:
John's genotype:
Sue's genotype:

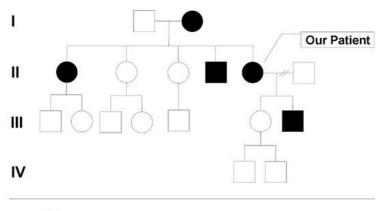
Genotypic Ratio

Phenotypic Ratio

	31. A	is a cross that looks at 2 traits
	instead of 1	
	32. It has boxes in the	punnett square instead of It uses
	the same steps as a monohybrid cross	ss
	33. Example: In peas, yellow seeds	s are dominant to green. Tall plants are
	dominant to short plants. Do the cro	oss of a heterozygous yellow heterozygous tall plant,
	with a heterozygous yellow, heteroz	cygous tall plant.
	Step 1:	
	Tall =	Short =
	Yellow =	Green =
	Step 2: Parent 1 genotype:	
	Parent 2 genotype:	
To Fig	gure Out Gamete Possibilities	
		FOIL
AaBb		F
		О
		Ι
		L

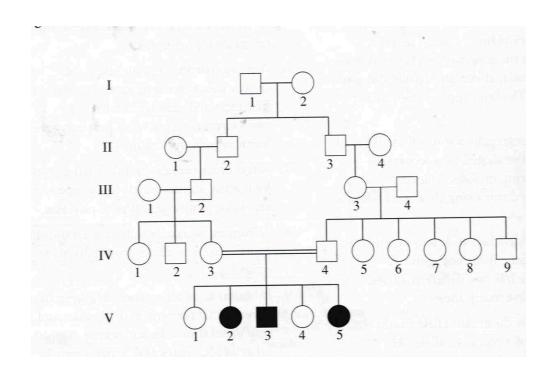
	GT	Gt	gT	gt
GT	GGTT			
Gt				
gT				
gt				

Step 6:


Genotypic ratio: Do with monohybrid cross but not dihybrid crosses
Step 7:
Phenotypic ratio
Green Tall: Green Short: Yellow Tall: Yellow Short
;;;;
34. When looking at an individual with the trait we don't know if they are
or
35. A is a cross done to determine if they are
or

36. A testcross is ALWAYS done by crossing a dominant individual with an unknown genotype

with a	individual	
37. If all the result	ing offspring are dominant, we assume the parent is	
	babies are recessive we know the dominant parent is	
	ndel found a purple pea plant growing in his garden. He	
	erozygous so he crossed it with a white plant. The cros 00 white plants. The purple plant is	
square to prove this		Do a punnett
40. Pedigrees are		


42. Symbols used in	pedigree	
nales:	females:	
nave a trait:	lack a trait:	
are carriers for a trait	::	
43. By looking at a լ	pedigree, geneticists can determine w	
43. By looking at a p	-	or
43. By looking at a page 44. A sex linked train	,,	or
43. By looking at a p44. A sex linked train45. Sex -linked general	t is carried on a	or chromosome
13. By looking at a part of the part of th	t is carried on a, es are usually carried on the the chromosome,	or chromosome

48. Example: Hemophilia is a sex linked trai	t. Bob is a normal male h	ne married Sue, a woman
who is a carrier for hemophilia. Complete th	e punnett square	
Phenotypic ratio		
Hemophilia: Healthy		
:		
49. A pedigree of a sex-linked trait would a	opear like	
<u>2 </u>		
50. A dominant trait is carried on	An	individual needs only
to have the trait.		
51. A pedigree of a dominant trait would app	pear like	

Not correctable to 20/20

- 52. A recessive trait is carried on ______.
- 53. An individual needs ______ of the gene to have the trait.
- 54. A pedigree would appear like _____

SECTION 4

55.	Most of the time traits have	patterns of inheritance.
56	This means the genes aren't	or

57. Some types of complex patterns of inheritance;

A. _____

B. _____

C.

D.

E.

58. ______ is when several genes influence a trait.

59. Example: Eye color

HERC2 GEY PHENOTYPE

BB	GG	BROWN
BB	Gg	BROWN
bb	GG	GREEN
bb	Gg	GREEN
bb	gg	BLUE

HERC2- Pro	oduce large quantities	of melanin	or no melanin	
Gey gene- if	you have this you pro	oduce small qu	antities of melanin	or none
60			is when the heterozygo	ous individual is an
intermediate	between the two hom	ozygous		
Example: R	R:	_, WW	, RW	
If you cross 2	2 pinks			

Red: Pin		White				
61		is v	when the	heterozygous of	fspring h	ave both traits.
62. Example a		cow X		bull		
Offspring are			_ (red ar	nd white)		
63. Punnett squar	re					
R =	W =		$RW = $ _		_	
Cross Red with W	/hite					
Phenotypic ratio						
Roan: Red: Wh	hite					
::						

64	is when there are more than 2 alleles for a trait.
Example: Blood typing	
= A antigens on the outside of red	blood cell
= B antigens on the outside of red b	plood cell
= no antigens on the outside of red	blood cell
65 and	are codominant meaning
66 is recessive to	and
67.	
Genotype	Phenotype
	A
	A
	В
	В
	AB
	О
Punnett square. Cross a heterozygous A v	vith a heterozygous B

Phen	otypic Ratio			
A:	AB:	B:	О	
68.			can influence genetic traits.	
69. I	Different environment	al factors	that can influence genetic traits	include
a		_		
b				
c				
70. I	Example of pH			
	with	h same ge	notype in acidic soil appear	and in basic
soil a	nppear			
71. I	Example of temperatu	re		
An _		keeps	the same genes but fur color cha	nges based on temperature
	A. During summer	the gene	for an enzyme is activated at hig	gher
	temperature this ca	uses the fo	oxes fur to	
	B. During winter t	he gene fo	or an enzyme is not activated at c	cooler
	temperatures, this c	causes the	foxes fur to	
72.	Example of Height			

A. A per	son's genes help determine how tall they are suppose to be
	n has good nutrition as a baby and child
B. If a pe	erson has poor nutrition as a baby and child
	your body to function properly it is essential for
to be made and w	ork properly
74	have the directions for making proteins.
75. If proteins an	ren't made or are made improperly
and	sometimes occur.
76. Some Genet	ic disorders:
A	D
В	E
C	F
87. Gene therapy	y is
1.	
88.	are used to insert healthy genes into the person with the disor
	lems with using viruses is
	·
11	·