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Introduction 
Proof occupies a unique status within the secondary mathematics curriculum. Where most topics 
require an ability to digest concepts and algorithms, then to apply them correctly in a given situation, 
proving assertions requires a secondary level of understanding: a thorough understanding of the 
concepts and the ability to combine relevant ones into a logical argument (Selden & Selden, 1987).  

Proofs, therefore, involve not only solving concrete problems, but also covers abstract problems, and 
demonstrating conclusively that the solution or argument is correct. Student seldom have an 
introduction to these skills and techniques, and the conventions for them, before being instructed on 
the process (Andrew, 2009) 

The unique nature of proof therefore demands a broad set of skills and knowledge, and these skills 
are reflected in every component of the Working Mathematically skill set (NESA, N.D.). The syllabus 
topics, outcomes, and relevant Working Mathematically categories, are shown in the following table. 

The issues, errors, and misconceptions are therefore also unique, and so are the challenges facing 
both students and teachers. 

Table 1: Syllabus Topics and Outcomes, and applicable Working Mathematically categories 

NESA Syllabus Topic and Outcome 
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ME-P1: Proof by Mathematical Induction 

ME12-1 applies techniques involving proof or 
calculus to model and solve problems  

  √   √ 

ME12-6 chooses and uses appropriate technology to 
solve problems in a range of contexts  

 √   √  

ME12-7 evaluates and justifies conclusions, 
communicating a position clearly in 
appropriate mathematical forms 

√   √  √ 

MEX-P1 The Nature of Proof and 

MEX-P2 Further Proof by Mathematical Induction 



 

 

MEX12-1 understands and uses different 
representations of numbers and functions 
to model, prove results and find solutions to 
problems in a variety of contexts  

√      

MEX12-2 chooses appropriate strategies to construct 
arguments and proofs in both practical and 
abstract settings  

 √ √   √ 

MEX12-7 applies various mathematical techniques and 
concepts to model and solve structured, 
unstructured and multi-step problems 

  √  √ √ 

MEX12-8 communicates and justifies abstract ideas and 
relationships using appropriate language, 
notation and logical argument  

√   √   

 

Issues 
Literature on the teaching of proof, across various mathematical disciplines, identifies many issues 
and distinct common themes. These challenges confront both students and teachers; some of the 
challenges are shared between these groups. Principal issues include the following: 

Inadequate prior knowledge 

For most students, mathematics is the notion of proofs is relatively alien to them when they first 
encounter them in class; the ability to write a proof, or to recognise a valid proof, will likely not have 
been introduced to them yet  (Andrew, 2009; Selden & Selden, 1987). 

A study by Rice et al. (2016) comparing errors in proofs written by Computer Science majors and 
Mathematics majors found that, even at an undergraduate level, students with stronger mathematics 
backgrounds are far less likely than their counterparts to make major errors in their proofs. This study 
supports the importance of background knowledge, and the mode of thinking required, in composing 
and writing proofs. 

Lack of clarity on characteristics of a good proof 

A commonly highlighted issue is the lack of consensus on what constitutes a successful, 
well-constructed proof (Selden & Selden, 1987) Moreover, teachers and students frequently have 
different views of what a correct proof is (Andrew, 2009; Selden & Selden, 1987) . Moore (2016) and 
Andrew (Andrew, 2009) asserted that, while the proof-writing process and conventional forms are 
typically taught, the expectations (for example, level of detail and notation standards are frequently left 
unclear. 

In two of the studies examined, the authors identified a single attribute to describe the quality that a 
good proof, within most areas of mathematics, would exhibit. (The other studies framed their 
evaluation criteria in terms of errors made.) 

For Moore (2016), the defining characteristic is demonstrated understanding, shown through 
correctness, clarity, and fluency, in descending order of importance. 

Brown and Michel (2010) described the goal as expressing mathematical maturity, through readability, 
validity, and fluency; the method they propose, RVF, takes its name from the resulting acronym. 
Readability for them comprises coherence, flow, correct syntax/grammar, comprehensibility, logical 
continuity, and relevance (i.e. every assertion must have a purpose). Validity is evinced through 
appropriate method appropriate, correct calculations, and correct use of logical rules. Fluency is 
shown through the apt use of mathematical language and notation. 



 

 

Grading and feedback 

With the success characteristics being relatively abstract, the evaluation and grading processes also 
were naturally also seen as difficult; it is this process that prompted most of the studies  (Andrew, 
2009; Moore, 2016; Selden & Selden, 1987; Strickland & Rand, 2016) 

Moore’s study (2016) found that some teachers addressed errors as black-and-white and their 
severity context-independent, while others were interested in the cognitive process that led to the 
error: did it indicate a slight miscue, or was it a sign of a significant lack of grasp of the concept, 
careless or deliberate? The consensus in his group was that grading prohibitively time-consuming and 
detail is difficult to convey in feedback to students; therefore, their feedback often lacked detail 
beyond marking where an error occurred, or even simply the marks deducted. 

Correspondingly, several of the studies noted that students found feedback difficult to action, because 
it did not contain the necessary information  (Andrew, 2009; Selden & Selden, 1987; Strickland & 
Rand, 2016) 

Errors and Misconceptions 
According to Moore (2016), proofs are often taught by requiring students to write them, without 
knowing details of the rubric or evaluation criteria. Students are often unaware of grading criteria, 
which Moore’s study found to be variable; rubric or criteria unclear or not conveyed to students before 
writing. Therefore, the errors encountered can range widely. 

The studies considered here all include classifications of errors (see Figure 4: Strickland/Rand coding 
matrix and Appendices). Some of them consider errors in relation to the aspects of a quality proof 
(see Lack of clarity on characteristics of a good proof), which gives a sense of the range. Proof errors 
may be related, for example to: 

●​ logic (application of rules, or logical flow) 
●​ mathematical usage (e.g. computation) 
●​ fluency (language notation) 
●​ grammar/syntax 
●​ form (the conventional presentation and required components of a proof) 

Selden and Selden (1987) addressed Reasoning errors specifically, dividing them into Misconception 
and Other errors. Their list is in large part specific to set theory, though, and is not discussed further. 

However, they identified two distinct pedagogical approaches relating to mathematics, which they 
asserted is a major cause of misconceptions about proofs. 

The first approach, the static view, is easily recognised and prevalent. It involves learning concepts, 
then algorithms using those concepts. Finally, it leads to implementing the algorithms, usually in 
specifically defined scenarios. (The second, the Socratic-Moore method, involves sharing materials to 
study, discussion, and questions, but no lecturing or answers. By its nature, it avoids this 
misconception, but the resources discussed here may still be useful learning materials in that context. 

Students may – even if they do not realise it – think of mathematics in this static framework – learn, 
apply, execute. Proof being outside that construct, and therefore not what they think of as a 
mathematical skill, may present significant difficulties. Synthesizing results and solutions from many 
bits of knowledge may be new to students (Selden & Selden, 1987). 

This idea, that proof is not a mathematical exercise, may be the most significant misconception about 
it. If students are to create algorithms, not just follow them, they will need to validate their creations, 
they need reasoning, justification, and communication skills (see Table 1). 

Resources that could be used to teach 
Proofs, having a general structure but otherwise being thought exercises rather than algorithms, lend 
themselves less to technical applications than to logical processes. To address the prevailing issues 
associated with teaching and grading proofs, these authors proposed rubrics of their own design. 
They intended to establish common understanding of expectations, a platform for consistent grading, 



 

 
and a framework for useful feedback. Andrew (2009) proposed two reasons that a consistent 
framework for evaluation would alleviate misconceptions: 

●​ meaningful, consistent feedback; 
●​ clarity on what affects marks, so students focus attention more productively. 

All of the rubrics include feedback that is targeted, but not prescriptive; two of the authors (Andrew, 
2009; Moore, 2016) include this trait as a benefit or design aspect of their solution, in that they guide 
students but leave it to them to identify and correct the exact error. 

The rubrics are discussed below, in descending order of simplicity. 

RVF 

The RVF rubric, Brown and Michel’s abstraction of an original objectives-based rubric (2010), reduces 
and generalises the criteria to the three primary attributes they identified in their study. The authors 
chose a 0- scale where the criterion is non-Boolean (and 0/1 otherwise), because it is still close to a 
Boolean in efficiency, but it allows some latitude for considering the three desired attributes and 
overall considerations. 

An example appears below; descriptions of the criteria are in the Appendices. 

Figure 1: RVF rubric (Brown & Michel, 2010) 

 

The following version might be more self-explanatory: 

Figure 2: RVF rubric update 

Criterion Met? 
Readability: steps relevant and connected, body is coherent, grammar & syntax  0​ 1​

2​ 3 
Validity: method appropriate, calculations correct, deductions logically correct 0​ 1​

2​ 3 
Fluency: Use and convey understanding of language and notation of maths 0​ 1​

2 

 

Proof Error Evaluation Tool (PEET) 

Andrew (2009) developed the Proof Error Evaluation Tool (PEET) to enable quick marking and to 
enable quality feedback that students can easily interpret and act upon. In contrast to the RVF rubric, 
it is not intended to generate marks or a grade, but to facilitate discussion. As with the RVF, the output 
could be used for a secondary purpose (i.e. as input for marking). 

The PEET identifies twenty-two errors, classified as Structure (with eight sub-categories) or 
Understanding (six sub-categories), listed in the Appendices. 

When grading the proof, the teacher applies the listed codes in line, giving the student both the 
location and nature of the error, and can add a description if desired (see example below). 



 

 

Figure 3: PEET application example (Andrew, 2009) 

 

Strickland/Rand 

Strickland and Rand (2016), like Andrew, looked to classify errors, rather than enabling marking. This 
was by design, with the idea that, for example, a teacher would have higher expectations at the end of 
a term than they would at the start, so relative grades for the same errors might differ. Divorcing the 
classification from the grade avoided inaccurate or unfair results. 

They also recognised that judging an error’s severity was subjective, so they devised a qualitative 
severity classification: logic-related, maths-related, rhetorical (language/notation), or ambiguous. Their 
rubric, then, categorises errors in two dimensions: the type of error made, and the source of the 
misunderstanding. 

Strickland and Rand’s model also benefited from related work; they adapted categories from other 
models, and they cited Selden & Selden and Andrew, both also included in this paper, acknowledging 
they adapted much of their work was founded on these same references (Strickland & Rand, 2016) 

The matrix below lists the errors and their categories on the left, the severity categories across the 
top, and examples for various error/severity combinations, is shown below. Explanations for the 
numbered references are in the Appendices. 



 

 

Figure 4: Strickland/Rand coding matrix 

 

Comparison of tools 
The RVF approach provides marking criteria to be met, resulting in scores. It is primarily a guide for 
grading, though it provides specific values to analyse the three abstract factors that inform the grade. 
It encapsulates the detail that error classification requires – see the other two methods for comparison 
– into these scores. The method implies a level of sophistication in the works and independence in 
their writers. The RVF model appears suited to higher levels of work, with students who have some 
background with proofs. 

 

The PEET and Strickland/Rand approaches are methods of classifying and communicating errors. 
They do not result in a specific grade, nor are they intended to. However, they provide more direction 
in terms of the nature of errors – and certainly these systems could provide structure and rationale for 
applying marks or grades. The preference may depend on the error categories of each method. Of 
course, the user can always exchange or adapt the error sets to suit their needs. 

Considerations for Use 
In each case, the first advantage of a rubric is being able to communicate standards and expectations 
to students before they begin work. While a rubric provides a consistent platform, though, teachers 
may always interpret or apply the framework slightly differently, or take other factors (such as benefit 
of the doubt, use of abbreviations, or assumptions that affect relative importance of different attributes 
of the proof). Discussion of the rubric and assumptions will be informative and provide assurance to 
students about how to direct their efforts. 



 

 

Walking through an example, such as the one shown in Figure 3, would be helpful for discussion in 
class, so that students would see what to expect and understand how they might respond to it. That 
knowledge, in turn, could save teachers’ time in answering questions later. 

Rubrics, too, can be refined with use; when difficult questions or issues arise, or new, similar errors 
appear that do not fall within an existing category, the error rubrics can be adjusted. 

Because the PEET and Strickland/Rand models are both for identifying errors, and the RVF model is 
for grading, teachers may consider using two together, say the PEET for diagnosing, with the results 
informing an RVF scoring. 

All of the approaches give direction, without being prescriptive: a common thread with all of the 
approaches is the belief that the students will benefit from having to identify and correct the errors 
themselves – which implies the value of revising the exercises. Strickland and Rand (2016) 
recommend including a revision/resubmission task at least once in a class, to ensure students benefit 
from the feedback – but not for every exercise. 

Summary/conclusion 
Implicit here, and perhaps the most important conclusion, is that the skill of proof composition needs 
to be taught in a structured way, and it needs to incorporate a meaningful feedback cycle. The 
syllabus already includes three separate units on proof, so focusing on proof techniques within these 
units can fit within the existing framework. Some of the various attributes useful in proof can be 
developed in earlier units, for example in early geometry or work with triangles, junior students can 
learn to provide explanations or rules for their answers, and the marking rubric can reflect the 
importance of stating the reasons. 

The approaches for employing these rubrics need not involve technology, but they can be 
implemented using existing technology and productivity tools; platforms such as Google Forms, 
Microsoft Excel, and the classroom sharing/distribution platforms may provide the best technological 
context for these improvements. 

 



 

 

Appendices 
RVF 

 (Brown & Michel, 2010) 

Criteria 

 

 

PEET 

 (Andrew, 2009) 

Error Category 

S1. Introduced variables without defining them or performed 
operations that were undefined. 

Proof setup 

S1. The approach taken in proving a statement will not work.  

S1. The proof was to be completed using a specific method, but this 
method was not used. 

 

S2. Made a false assumption somewhere in the proof. Correct assumptions 

S3. Didn’t proceed through the proof in a linear fashion, and ideas 
were not in logical order. 

Linear/sequential order 

S4. The proof contained extraneous details or steps that did not really 
contribute to the proof. 

Stray details/conciseness 

S4. The length of the proof was unnecessarily long and thus 
extremely difficult to follow. 

 

S5. The write-up was illegible at times, making it difficult to read 
and/or understand. 

Neat presentation 



 

 

S6. Relied too much on calculator or computer-generated information 
in one step of the proof. 

Technology’s place 

S7. Needed to show p ≥ q but did not show directly, or by (q) ≥ (p), or 
by contradiction. 

Proof type 

S7. Only gave an example to establish the truth of a mathematical 
statement. 

 

S8. Used nonstandard or confusing notation. Correct use of 
symbols/notation 

U1. Wrote a statement that was not justified, explained, or verified. Sufficient details 

U2. Wrote a statement or paragraph that was ambiguous, confusing, 
and/or unnecessarily complex. 

Clarity 

U3. Failed to include an illustrative picture that would make the proof 
easier to understand. 

Pictures in the proof 

U3. Relied too much on a picture to prove something was true.  

U4. Did not sufficiently justify a crucial step in the proof. Crucial step/main idea 

U4. An error caused important parts of the proof to be left 
unaddressed. 

 

U5. Made a false statement or incorrect computation in the proof. Correct implications and 
statements 

U5. Incorrectly claimed that one statement implied or equaled 
another statement. 

 

U6. Included some cases but not others (which were not trivial). All cases present 

U6. Did not address one aspect of the problem.  

 

Strickland/Rand 

 (Strickland & Rand, 2016) 

Severity Categories 

Fundamental Errors errors that arise from a basic misunderstanding of how logical rules 
operate or what it means to construct a logical argument. 

Content Errors errors that show a misunderstanding of the mathematical content in a 
proof. 

Rhetorical Errors errors that reflect unfamiliarity with professional norms and conventions of 
proof-writing as related to presentation. 

Ambiguous Errors without interviewing the student, the rater feels that they have insufficient 
information to hypothesize the cause of the error. 

 
Coding Matrix – Explanatory Notes 

(Strickland & Rand, 2016) 

1. Error-caused Omissions: at times, an early error causes the student to veer off-track and spend 
quite a lot of energy barking up the wrong tree. In these cases, the rater may feel it is worth noting 
that any substantial progress towards a correct proof is absent. The code for Error-caused Omissions 
is unique in that it must be used in conjunction with a second code, which describes the error at onset 
of the divergent path. The type - Fundamental, Content, Rhetorical, or Ambiguous - would also be 



 

 
determined according to the error of onset. As a hypothetical example, consider a student who has 
committed the error “Vocabulary and Grammar” by claiming that the definition of a rational is a 
number that is even or odd. In their proof, they therefore failed to consider all non-integer rationals, 
and only explored cases of even and odd integers. The Vocabulary error triggered the Error-Caused 
Omission. 

2. Content Assertion: student fails to realize that a statement requires a logical leap. For example, 
suppose a student asserts, within a larger proof, that if n2 is even then n is also even. Although the 
claim is true, they have claimed the assertion as though it is obvious, which it is not. 

3. Rhetorical Assertion: student appears to understand the logical leap required to make the 
statement, but it is appropriate to provide the reader with more details. This is particularly contextual, 
according to whether the student is supposed to take a fellow student as the intended audience or 
whether they are learning to write for the professional community. 

4. Content Misuse of a Theorem: the error was commonly seen in the linear algebra course, when the 
material was more advanced than what the students had previously seen. An example would be a 
student who cites a theorem, where that theorem’s conditions do not actually apply to the context. 

5. Fundamental Vocabulary and Grammar: we do not find Fundamental Vocabulary and Grammar 
errors to be a useful category. The concept of having definitions or grammar itself is elementary. 
When students misuse fundamental mathematical words like “implies,” “therefore” or “since,” it is 
doubtful that they are actually wrestling with the word itself. More often, they are either struggling with 
the parts of an implication or with the phrasing of an implication. The former is better described by the 
category of Flow of Proof, while the latter is better described as Rhetorical error. 

6. Content Vocabulary and Grammar: an example, again from linear algebra, is a student who is 
asked to prove that a matrix is non-singular. In the course of the proof, the student reveals deep 
misunderstandings about what it means for a matrix to be non-singular. 

7. False Implication: False Implication must be distinguished from the error False Statement. If a 
student asserts that P implies Q, the code False Implication applies only to the implication itself, not 
the accuracy of P or Q. Often we applied this code to implications where both P and Q are necessary 
statements for the proof, but Q does not follow from P. 

8. Fundamental Extraneous Detail: a student may commit this error if they do not appear to 
understand the question, and are just throwing all possible details at the wall in hopes that something 
sticks. For Content and Rhetorical versions of this error, the proof may be correct as stated. 
Nevertheless, community norms of proof-writing call for mathematicians to cut out useless tangents 
and details, and so addressing extraneous detail is an aspect of teaching students to write proofs. 

9. Notation: elsewhere, we mentioned the heuristic “would a mathematician commit this error?” for 
determining which errors are Content errors. This heuristic fails to apply to Notation, however. 
Generally mathematicians have mastered all conventional forms of notation, but there is plenty of 
content with which a student can wrestle. 

10. False Statement: although all errors are technically False Statements, this is reserved for errors 
which are not otherwise described. Many of these are computational errors, but this category also 
serves as a general catch-all. 
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