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Introduction

Proof occupies a unique status within the secondary mathematics curriculum. Where most topics
require an ability to digest concepts and algorithms, then to apply them correctly in a given situation,
proving assertions requires a secondary level of understanding: a thorough understanding of the
concepts and the ability to combine relevant ones into a logical argument (Selden & Selden, 1987).

Proofs, therefore, involve not only solving concrete problems, but also covers abstract problems, and
demonstrating conclusively that the solution or argument is correct. Student seldom have an
introduction to these skills and techniques, and the conventions for them, before being instructed on
the process (Andrew, 2009)

The unique nature of proof therefore demands a broad set of skills and knowledge, and these skills
are reflected in every component of the Working Mathematically skill set (NESA, N.D.). The syllabus
topics, outcomes, and relevant Working Mathematically categories, are shown in the following table.

The issues, errors, and misconceptions are therefore also unique, and so are the challenges facing
both students and teachers.

Table 1: Syllabus Topics and Outcomes, and applicable Working Mathematically categories
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ME-P1: Proof by Mathematical Induction
ME12-1 applies techniques involving proof or Vv v
calculus to model and solve problems
ME12-6 chooses and uses appropriate technology to v v
solve problems in a range of contexts
ME12-7 evaluates and justifies conclusions, v v v
communicating a position clearly in
appropriate mathematical forms

MEX-P1 The Nature of Proof and
MEX-P2 Further Proof by Mathematical Induction




MEX12-1 | understands and uses different v
representations of numbers and functions
to model, prove results and find solutions to
problems in a variety of contexts

MEX12-2 | chooses appropriate strategies to construct v Vv v
arguments and proofs in both practical and
abstract settings

MEX12-7 | applies various mathematical techniques and Vv Vv v
concepts to model and solve structured,
unstructured and multi-step problems

MEX12-8 | communicates and justifies abstract ideas and | / Vv
relationships using appropriate language,
notation and logical argument

Issues

Literature on the teaching of proof, across various mathematical disciplines, identifies many issues
and distinct common themes. These challenges confront both students and teachers; some of the
challenges are shared between these groups. Principal issues include the following:

Inadequate prior knowledge

For most students, mathematics is the notion of proofs is relatively alien to them when they first
encounter them in class; the ability to write a proof, or to recognise a valid proof, will likely not have
been introduced to them yet (Andrew, 2009; Selden & Selden, 1987).

A study by Rice et al. (2016) comparing errors in proofs written by Computer Science majors and
Mathematics majors found that, even at an undergraduate level, students with stronger mathematics
backgrounds are far less likely than their counterparts to make major errors in their proofs. This study
supports the importance of background knowledge, and the mode of thinking required, in composing
and writing proofs.

Lack of clarity on characteristics of a good proof

A commonly highlighted issue is the lack of consensus on what constitutes a successful,
well-constructed proof (Selden & Selden, 1987) Moreover, teachers and students frequently have
different views of what a correct proof is (Andrew, 2009; Selden & Selden, 1987) . Moore (2016) and
Andrew (Andrew, 2009) asserted that, while the proof-writing process and conventional forms are
typically taught, the expectations (for example, level of detail and notation standards are frequently left
unclear.

In two of the studies examined, the authors identified a single attribute to describe the quality that a
good proof, within most areas of mathematics, would exhibit. (The other studies framed their
evaluation criteria in terms of errors made.)

For Moore (2016), the defining characteristic is demonstrated understanding, shown through
correctness, clarity, and fluency, in descending order of importance.

Brown and Michel (2010) described the goal as expressing mathematical maturity, through readability,
validity, and fluency; the method they propose, RVF, takes its name from the resulting acronym.
Readability for them comprises coherence, flow, correct syntax/grammar, comprehensibility, logical
continuity, and relevance (i.e. every assertion must have a purpose). Validity is evinced through
appropriate method appropriate, correct calculations, and correct use of logical rules. Fluency is
shown through the apt use of mathematical language and notation.



Grading and feedback

With the success characteristics being relatively abstract, the evaluation and grading processes also
were naturally also seen as difficult; it is this process that prompted most of the studies (Andrew,
2009; Moore, 2016; Selden & Selden, 1987; Strickland & Rand, 2016)

Moore’s study (2016) found that some teachers addressed errors as black-and-white and their
severity context-independent, while others were interested in the cognitive process that led to the
error: did it indicate a slight miscue, or was it a sign of a significant lack of grasp of the concept,
careless or deliberate? The consensus in his group was that grading prohibitively time-consuming and
detail is difficult to convey in feedback to students; therefore, their feedback often lacked detail
beyond marking where an error occurred, or even simply the marks deducted.

Correspondingly, several of the studies noted that students found feedback difficult to action, because
it did not contain the necessary information (Andrew, 2009; Selden & Selden, 1987; Strickland &
Rand, 2016)

Errors and Misconceptions

According to Moore (2016), proofs are often taught by requiring students to write them, without
knowing details of the rubric or evaluation criteria. Students are often unaware of grading criteria,
which Moore’s study found to be variable; rubric or criteria unclear or not conveyed to students before
writing. Therefore, the errors encountered can range widely.

The studies considered here all include classifications of errors (see Figure 4: Strickland/Rand coding
matrix and Appendices). Some of them consider errors in relation to the aspects of a quality proof
(see Lack of clarity on characteristics of a good proof), which gives a sense of the range. Proof errors
may be related, for example to:

logic (application of rules, or logical flow)

mathematical usage (e.g. computation)

fluency (language notation)

grammar/syntax

form (the conventional presentation and required components of a proof)

Selden and Selden (1987) addressed Reasoning errors specifically, dividing them into Misconception
and Other errors. Their list is in large part specific to set theory, though, and is not discussed further.

However, they identified two distinct pedagogical approaches relating to mathematics, which they
asserted is a major cause of misconceptions about proofs.

The first approach, the static view, is easily recognised and prevalent. It involves learning concepts,
then algorithms using those concepts. Finally, it leads to implementing the algorithms, usually in
specifically defined scenarios. (The second, the Socratic-Moore method, involves sharing materials to
study, discussion, and questions, but no lecturing or answers. By its nature, it avoids this
misconception, but the resources discussed here may still be useful learning materials in that context.

Students may — even if they do not realise it — think of mathematics in this static framework — learn,
apply, execute. Proof being outside that construct, and therefore not what they think of as a
mathematical skill, may present significant difficulties. Synthesizing results and solutions from many
bits of knowledge may be new to students (Selden & Selden, 1987).

This idea, that proof is not a mathematical exercise, may be the most significant misconception about
it. If students are to create algorithms, not just follow them, they will need to validate their creations,
they need reasoning, justification, and communication skills (see Table 1).

Resources that could be used to teach

Proofs, having a general structure but otherwise being thought exercises rather than algorithms, lend
themselves less to technical applications than to logical processes. To address the prevailing issues
associated with teaching and grading proofs, these authors proposed rubrics of their own design.
They intended to establish common understanding of expectations, a platform for consistent grading,



and a framework for useful feedback. Andrew (2009) proposed two reasons that a consistent
framework for evaluation would alleviate misconceptions:

e meaningful, consistent feedback;
e clarity on what affects marks, so students focus attention more productively.

All of the rubrics include feedback that is targeted, but not prescriptive; two of the authors (Andrew,
2009; Moore, 2016) include this trait as a benefit or design aspect of their solution, in that they guide
students but leave it to them to identify and correct the exact error.

The rubrics are discussed below, in descending order of simplicity.
RVF

The RVF rubric, Brown and Michel’s abstraction of an original objectives-based rubric (2010), reduces
and generalises the criteria to the three primary attributes they identified in their study. The authors
chose a 0- scale where the criterion is non-Boolean (and 0/1 otherwise), because it is still close to a
Boolean in efficiency, but it allows some latitude for considering the three desired attributes and
overall considerations.

An example appears below; descriptions of the criteria are in the Appendices.
Figure 1: RVF rubric (Brown & Michel, 2010)

e Author’s solution is readable 0 1 2 3
e Author’s arguments and calculations are valid 0 1 2 3
e Author evinces Huency 0 1 2

The following version might be more self-explanatory:

Figure 2: RVF rubric update

Criterion Met?

Readability: steps relevant and connected, body is coherent, grammar & syntax | 0 1
2 3

Validity: method appropriate, calculations correct, deductions logically correct 0 1
2 3

Fluency: Use and convey understanding of language and notation of maths 0 1
2

Proof Error Evaluation Tool (PEET)

Andrew (2009) developed the Proof Error Evaluation Tool (PEET) to enable quick marking and to
enable quality feedback that students can easily interpret and act upon. In contrast to the RVF rubric,
it is not intended to generate marks or a grade, but to facilitate discussion. As with the RVF, the output
could be used for a secondary purpose (i.e. as input for marking).

The PEET identifies twenty-two errors, classified as Structure (with eight sub-categories) or
Understanding (six sub-categories), listed in the Appendices.

When grading the proof, the teacher applies the listed codes in line, giving the student both the
location and nature of the error, and can add a description if desired (see example below).



Figure 3: PEET application example (Andrew, 2009)

THEOREM. For any pesitive integer n, if n squared is a multiple of 3, then
n is a multiple of 3.

“Proof (d)"". Prook. Let n be a positive integer such that n” is a multiple of
3. Then n = 3m where m is a positive integer. So n® = (3!}:*1')2 =9m’ = 3(31’?12).
This breaks down into 3m times 3m, which shows that m is a multiple of 3.

Let n be a positive integer such that n* is ~ S4. This statement is not used anywhere

a multiple of 3. in the proof.

Then n = 3m where m is a positive §7. Is attempting to proof g = p.
integer.

Son® = (31':1)-2 =9m? = 3(31?:2},

This breaks down into 3m times 3m, U2. This statement is confusing because
which shows that m is a multiple of 3. it was already shown that n* = 3(3m?),

clearly a multiple of 3, but then it is
stated that n” is a multiple of 3 because
it “‘breaks down into 3m times 3m.”

Strickland/Rand

Strickland and Rand (2016), like Andrew, looked to classify errors, rather than enabling marking. This
was by design, with the idea that, for example, a teacher would have higher expectations at the end of
a term than they would at the start, so relative grades for the same errors might differ. Divorcing the
classification from the grade avoided inaccurate or unfair results.

They also recognised that judging an error’s severity was subjective, so they devised a qualitative
severity classification: logic-related, maths-related, rhetorical (language/notation), or ambiguous. Their
rubric, then, categorises errors in two dimensions: the type of error made, and the source of the
misunderstanding.

Strickland and Rand’s model also benefited from related work; they adapted categories from other
models, and they cited Selden & Selden and Andrew, both also included in this paper, acknowledging
they adapted much of their work was founded on these same references (Strickland & Rand, 2016)

The matrix below lists the errors and their categories on the left, the severity categories across the
top, and examples for various error/severity combinations, is shown below. Explanations for the
numbered references are in the Appendices.



Figure 4: Strickland/Rand coding matrix

An error caused large parts of the proof to be omitted. Must be used in
conjunclion with another code specifying the triggering error. See (1) below.
Contaxt requires
Entire resull is Local assertion. more delails. See
Asserions asserted See (2) below. (3) below.

Did nol address one or more sections of the proof. (Trailed off halfway, skipped
Omitted Seclions |cases, elc.)

| Local Omission | Omitted a single isolated s
| Mimm Hisprnﬂngl

Ex - applying the |known results or | known theorem,

| Impaorting known converse of a theorems. See (4) |while using it
\material (Misusing Theorem |theorem below comectly
Prose is poorly
writhen of missing,
Misuse of or student fais to
Rare or definition or follow
Vocabulary & nonexistent. See  |vocabulary. See  |mathematical
Grammar 5) below. 5) below. convenbons

Didn't proceed through the proof in a linear fashion, or ideas were nol in logical

|Flow of proof Logical Order
| Circular Argument |Uses conclusion in the course of the proal

False implication |P does not imply Q. See (7) below.
Extraneous Detail led or irrelevant resylts. See (8) below.
Localy

;Misuellaneuus Unintelligible A sing

pletely uninteligib

Ex - Student fails
universal proof for |to include “Without
Usually this error is unnhmm-l loss of
Prool by Example |Fundamental. generality...”
[Notation ____| i

MM
Proving a weaker result (eg - a result that only apphes to a
{ oreg )

Made a false statement or incormect
False Stalement  |compulation. Apparent typo

Comparison of tools

The RVF approach provides marking criteria to be met, resulting in scores. It is primarily a guide for
grading, though it provides specific values to analyse the three abstract factors that inform the grade.
It encapsulates the detail that error classification requires — see the other two methods for comparison
— into these scores. The method implies a level of sophistication in the works and independence in
their writers. The RVF model appears suited to higher levels of work, with students who have some
background with proofs.

The PEET and Strickland/Rand approaches are methods of classifying and communicating errors.
They do not result in a specific grade, nor are they intended to. However, they provide more direction
in terms of the nature of errors — and certainly these systems could provide structure and rationale for
applying marks or grades. The preference may depend on the error categories of each method. Of
course, the user can always exchange or adapt the error sets to suit their needs.

Considerations for Use

In each case, the first advantage of a rubric is being able to communicate standards and expectations
to students before they begin work. While a rubric provides a consistent platform, though, teachers
may always interpret or apply the framework slightly differently, or take other factors (such as benefit
of the doubt, use of abbreviations, or assumptions that affect relative importance of different attributes
of the proof). Discussion of the rubric and assumptions will be informative and provide assurance to
students about how to direct their efforts.



Walking through an example, such as the one shown in Figure 3, would be helpful for discussion in
class, so that students would see what to expect and understand how they might respond to it. That
knowledge, in turn, could save teachers’ time in answering questions later.

Rubrics, too, can be refined with use; when difficult questions or issues arise, or new, similar errors
appear that do not fall within an existing category, the error rubrics can be adjusted.

Because the PEET and Strickland/Rand models are both for identifying errors, and the RVF model is
for grading, teachers may consider using two together, say the PEET for diagnosing, with the results
informing an RVF scoring.

All of the approaches give direction, without being prescriptive: a common thread with all of the
approaches is the belief that the students will benefit from having to identify and correct the errors
themselves — which implies the value of revising the exercises. Strickland and Rand (2016)
recommend including a revision/resubmission task at least once in a class, to ensure students benefit
from the feedback — but not for every exercise.

Summary/conclusion

Implicit here, and perhaps the most important conclusion, is that the skill of proof composition needs
to be taught in a structured way, and it needs to incorporate a meaningful feedback cycle. The
syllabus already includes three separate units on proof, so focusing on proof techniques within these
units can fit within the existing framework. Some of the various attributes useful in proof can be
developed in earlier units, for example in early geometry or work with triangles, junior students can
learn to provide explanations or rules for their answers, and the marking rubric can reflect the
importance of stating the reasons.

The approaches for employing these rubrics need not involve technology, but they can be
implemented using existing technology and productivity tools; platforms such as Google Forms,
Microsoft Excel, and the classroom sharing/distribution platforms may provide the best technological
context for these improvements.



Appendices

RVF

(Brown
Criteria

& Michel, 2010)

Your written responses will be assessed via attention to the following categories, which

will be explained below: wvalidity, readability, and fluency. Assume that an equal weight will

be applied to each category that is applicable, noting that readability and Huency are always
applicable whereas validity may not be.

Readability. Your written work will be examined for readability. Obviously, if your written

work is not readable it cannot be assessed, but since the ability to communicate Mathe-
matics is a focal point for this class, special attention will be paid to this quality. Strings
of equations with no explanation or motivation do not constitute a readable response,
and although a carefully chosen, motivated, and explained figure may be worth 1000
words, 1000 figures in and of themselves will be worth nothing,

Fluency. Mathematics is a concise and precise langnage and [ wish to enhance your Huency

with this language. Therefore, part of every assessment will focus on your ahility to
incorporate correct, established notation and terminology into your written work. An
example of a lack of fluency is the use of “top” and “bottom” for the numerator and
denominator of a fraction. Another example which is evidence of fluency is using “Let
f be a real valued function of a real variable” interchangeably with “Let f: B — R”.
Other things which are definable perhaps only by an exhaustive list of examples will be
assessed as well.

Validity. If a solution requires calculations or entails a string of deductions, the extent to

which your solution is valid will be analyzed. Validity corresponds to the discernable
extent to which your method used is appropriate, vour calculations are correct, and yvour
deductions follow the rules of logic.

PEET

(Andrew, 2009)

Error Category

S1. Introduced variables without defining them or performed Proof setup

operations that were undefined.

S1. The approach taken in proving a statement will not work.

S1. The proof was to be completed using a specific method, but this

method was not used.

S2. Made a false assumption somewhere in the proof. Correct assumptions
S3. Didn’t proceed through the proof in a linear fashion, and ideas Linear/sequential order

were not in logical order.

S4. The
contribu

proof contained extraneous details or steps that did not really | Stray details/conciseness
te to the proof.

S4. The

extremely difficult to follow.

length of the proof was unnecessarily long and thus

S5. The

and/or understand.

write-up was illegible at times, making it difficult to read Neat presentation




S6. Relied too much on calculator or computer-generated information | Technology’s place
in one step of the proof.

S7. Needed to show p = g but did not show directly, or by (q) = (p), or | Proof type
by contradiction.

S7. Only gave an example to establish the truth of a mathematical

statement.

S8. Used nonstandard or confusing notation. Correct use of
symbols/notation

U1. Wrote a statement that was not justified, explained, or verified. Sufficient details

U2. Wrote a statement or paragraph that was ambiguous, confusing, | Clarity
and/or unnecessarily complex.

U3. Failed to include an illustrative picture that would make the proof | Pictures in the proof
easier to understand.

U3. Relied too much on a picture to prove something was true.

U4. Did not sufficiently justify a crucial step in the proof. Crucial step/main idea

U4. An error caused important parts of the proof to be left

unaddressed.

U5. Made a false statement or incorrect computation in the proof. Correct implications and
statements

U5. Incorrectly claimed that one statement implied or equaled

another statement.

U6. Included some cases but not others (which were not trivial). All cases present

U6. Did not address one aspect of the problem.

Strickland/Rand

(Strickland & Rand, 2016)
Severity Categories

Fundamental Errors errors that arise from a basic misunderstanding of how logical rules
operate or what it means to construct a logical argument.

Content Errors errors that show a misunderstanding of the mathematical content in a
proof.
Rhetorical Errors errors that reflect unfamiliarity with professional norms and conventions of

proof-writing as related to presentation.

Ambiguous Errors without interviewing the student, the rater feels that they have insufficient
information to hypothesize the cause of the error.

Coding Matrix — Explanatory Notes
(Strickland & Rand, 2016)

1. Error-caused Omissions: at times, an early error causes the student to veer off-track and spend
quite a lot of energy barking up the wrong tree. In these cases, the rater may feel it is worth noting
that any substantial progress towards a correct proof is absent. The code for Error-caused Omissions
is unique in that it must be used in conjunction with a second code, which describes the error at onset
of the divergent path. The type - Fundamental, Content, Rhetorical, or Ambiguous - would also be



determined according to the error of onset. As a hypothetical example, consider a student who has
committed the error “Vocabulary and Grammar” by claiming that the definition of a rational is a
number that is even or odd. In their proof, they therefore failed to consider all non-integer rationals,
and only explored cases of even and odd integers. The Vocabulary error triggered the Error-Caused
Omission.

2. Content Assertion: student fails to realize that a statement requires a logical leap. For example,
suppose a student asserts, within a larger proof, that if n2 is even then n is also even. Although the
claim is true, they have claimed the assertion as though it is obvious, which it is not.

3. Rhetorical Assertion: student appears to understand the logical leap required to make the
statement, but it is appropriate to provide the reader with more details. This is particularly contextual,
according to whether the student is supposed to take a fellow student as the intended audience or
whether they are learning to write for the professional community.

4., Content Misuse of a Theorem: the error was commonly seen in the linear algebra course, when the
material was more advanced than what the students had previously seen. An example would be a
student who cites a theorem, where that theorem’s conditions do not actually apply to the context.

5. Fundamental Vocabulary and Grammar: we do not find Fundamental Vocabulary and Grammar
errors to be a useful category. The concept of having definitions or grammar itself is elementary.
When students misuse fundamental mathematical words like “implies,” “therefore” or “since,” it is
doubtful that they are actually wrestling with the word itself. More often, they are either struggling with
the parts of an implication or with the phrasing of an implication. The former is better described by the
category of Flow of Proof, while the latter is better described as Rhetorical error.

6. Content Vocabulary and Grammar: an example, again from linear algebra, is a student who is
asked to prove that a matrix is non-singular. In the course of the proof, the student reveals deep
misunderstandings about what it means for a matrix to be non-singular.

7. False Implication: False Implication must be distinguished from the error False Statement. If a
student asserts that P implies Q, the code False Implication applies only to the implication itself, not
the accuracy of P or Q. Often we applied this code to implications where both P and Q are necessary
statements for the proof, but Q does not follow from P.

8. Fundamental Extraneous Detail: a student may commit this error if they do not appear to
understand the question, and are just throwing all possible details at the wall in hopes that something
sticks. For Content and Rhetorical versions of this error, the proof may be correct as stated.
Nevertheless, community norms of proof-writing call for mathematicians to cut out useless tangents
and details, and so addressing extraneous detail is an aspect of teaching students to write proofs.

9. Notation: elsewhere, we mentioned the heuristic “would a mathematician commit this error?” for
determining which errors are Content errors. This heuristic fails to apply to Notation, however.
Generally mathematicians have mastered all conventional forms of notation, but there is plenty of
content with which a student can wrestle.

10. False Statement: although all errors are technically False Statements, this is reserved for errors
which are not otherwise described. Many of these are computational errors, but this category also
serves as a general catch-all.
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