CSC 226: Software Design & Implementation
T05: Buggy Fruit

T05: Buggy Fruit

Learning Objectives

More practice identifying functions

More practice creating new functions

Understand the value of return values from fruitful functions
Learn how to capture the output of a function

Practice some new ways of debugging programs

How to Start

Paired assignment T05 should be completed with a partner.
To begin, make a copy of this document by going to File >> Make a Copy...
Share the copied document with all members of your team. You can share this document
by hitting the blue button in the top right of the document, then entering the email
addresses of all members in the bottom input field.
Change the file name of this document to username1, username2 - T05: Buggy Fruit
(for example, pearcej, shepherdp - T05: Buggy Fruit). To do this, click the label in the
top left corner of your browser.
Next, go to the GitHub Classroom for T05.
You will be asked to create a team:

o One of you will create the team.

o Then, the other will join the team created by the first partner.

Checkpoint 1: What is the web address | C1:
for the GitHub repository for your T057?

Open PyCharm. If you are not at the Welcome to PyCharm page, close the current
project.
Using the Get from VCS button, open your T05 repository.

https://classroom.github.com/g/SKvkYVJf

CSC 226: Software Design & Implementation
T05: Buggy Fruit

Roles

Driver’:

Navigator?:

Quality Control® (if the class is odd
numbered):

Area of Circle

To begin T05, we will be exploring some code in the online debugging tool from last class. The
tool will allow us to see how the program is used in memory. You can access the code and tool
here: https://goo.al/HP2yoe . Use the "Forward>" button at the bottom to step through each line
of code. In the table below, briefly explain what is happening.

In which step does r str first geta value? | 1.
Where does this value come from?

In which step does r val first getavalue? |[2.
Where does this value come from?

Describe the difference between the value 3.
storedinr str and r val after step 8 of
the program.

' The driver will be doing the majority of the typing in PyCharm. Your job is to solve the problem given to
you by the Navigator.

2 The navigator will be giving directions to the driver, and helping the driver catch syntax and logic errors
as he or she creates the code. The navigator should keep track of time and make sure progress is being
made.

% The quality control specialist will ensure rules are being followed, both in the code (suggesting places to
add comments, watching for misspellings, etc.) and in this document (making sure the questions are
being answered at the right times, checking for typos, etc.) In a group of two, everyone is responsible for
quality control.

https://goo.gl/HP2yoe

CSC 226: Software Design & Implementation
T05: Buggy Fruit

variable? i.e. Where does this value first
come from?

In which steps does radius exist as a 4.

variable? Where does this value first come
from?

In which steps does result existas a 5.

when the flow of execution returns to the
main () function?

What happens to radius and result 6.

value? Where does this value come from?

In which step does area_ val firstgeta 7.

Debugging Code

One of the most common frustrations with programming is seeking out bugs and squashing
them. Debugging is the process of identifying and eliminating unexpected behavior produced
by your code. The IDE understands your frustrations, and has tools to help make debugging
code easier for you. Let's first explore some code, then look at some of these tools. Run the
following code like you normally do in PyCharm: t05_buggy.py

(at this point, don’t fix the code!)

Does the code work as expected? Why not? | 8.

Here are a few of the most important tools you'll

need to understand to become a master debugger.

First, instead of running the code, you will need to
set the debug mode of the IDE as shown on the
right.

Breakpoints: Debug mode will make it so that the
IDE will stop at your breakpoints. Clicking on the
button again after reaching a breakpoint will
resume running your program until it ends or
another breakpoint is reached. Breakpoints are
lines in your program that you have indicated
where the IDE should stop running the code so
that you can see a "snapshot" of what the variable

® Show Context Actions Alt+Enter

| Paste Ctrl+V
Copy [Paste Special >
Column Selection Mode Alt+Shift+Insert
Find Usages Alt+F7
Refactor >
Folding b
GoTo >
Generate... Alt+Insert

P Run 't5_buggy’ Ctrl+Shift+F10

Debug "t5_buggy’

Modify Run Configuration...

Y Open In >
Local History ?
Git >
Execute Line in Python Console Alt+Shift+E

Run File in Python Console
[3¢ Compare with Clipboard

0 Create Gist...

https://drive.google.com/file/d/1l2PsDFs9o7TW079oInJzfDb9ml7Tk17q/view?usp=sharing

CSC 226: Software Design & Implementation
T05: Buggy Fruit

values are on that line. The figure below shows an example of setting a breakpoint INSIDE a
function, which is very useful.

def chooseCave():
cave = "'

while cave !=

print(*")

cave = 1inpd

] return cave

Aol cbvommlel oo by~

In most IDEs you can set a breakpoint by clicking in the margin near the line number. A red dot
will appear as shown above. Note that using breakpoints before returns (as shown) is generally
a good idea. When you run the code in debug mode, the IDE will execute up to the first
breakpoint. Pressing run again will cause the program to run until the next breakpoint it hits,
and so on. However, it would be inconvenient to set breakpoints, for instance, at a large
number of consecutive lines. Not to worry! There is a solution for that as well.

The Debugger Console: When you click the Debug button, the debugger console appears, as
shown below.

Debug: » t5_buggy

(4 Debugger Blconsole = 2 ¥ & t % H
Frames Variables
> iabl
» MainThread b - |+
main, t5_buggy.py:46
m 01 <module>, t5_buggy.py:52
g o
g
%
o oo
2
g
s A
2
*
P ait » Run = TODO © problems % Debug B Terminal £ python Packages ® Python Console

Stepping Over, Stepping Into, Stepping Out: The image below shows the different ways we
can step through a program using the debugger. Hold your mouse over each button to see
which step operation it does.

CSC 226: Software Design & Implementation

T05: Buggy Fruit

Debugger El Console =

e BN 4

Click the Step Over button while in Debug
mode. What does it cause the debugger to
do?

Click the Step Into My Code button while in
Debug mode. What does it cause the
debugger to do?

10.

Click the Step Out button while in Debug
mode. What does it cause the debugger to
do?

1.

As you step through the code, take note
when changes occur in the Frames,
Variables, and Console sections.

each section.

Explain what information is being displayed in

12.

The PyCharm Watches tab: In the image below, click the circled button.

Yariables

®

& Terminal ¥ python Packages @ Python Console

CSC 226: Software Design & Implementation
T05: Buggy Fruit

Add a watch to the variable n1, and then run | 13.
the debugger. Use a breakpoint early so that
you can step through the program one line at
a time. Make sure to use “Step Into” when
you reach the line that calls the function
display result, and step through that one
line at a time as well. What does this cause
the debugger to do as you step through the
program?

Your Turn to Explore Some Bugs

The following are three buggy files, including the penny stealing code from last class:
e 105 buggy birthday.py
e t05 buggy circle area.py
e 104 making change.py

Use the remaining time in class to debug these codes. Remember, that the primary objective
is to learn to use the debugger effectively, so please do not think that the objective is to
just fix the errors--fixing the errors is just a vehicle to using the debugger. You may not
get through all three. That is okay.

Which feature of the debugger did you find 14.
the most useful for this assignment? For what
error did you find it useful?

How much do you foresee you and your 15.
partner using the debugger in future
assignments? Explain.

Were there any other things about the code | | 16.
gave you that made it hard to debug? What
ways could you make it easier to debug?

Submission Instructions

1. Edit the README.md file in your repository. Replace the lines with the correct
information for your name(s), the link the repository, and the link to this document, which

you can get via the blue Share button m in the top right of this window.
2. Check the Share settings for this document (top right). Set them to “Anyone with the
link can view”. That is how we will be able to access this document to grade you:

https://drive.google.com/file/d/1KJq-xmAMDAmOdNmaLn6y7T_9qNIwkW8K/view?usp=sharing
https://drive.google.com/file/d/1GXYi1Hq9d60O3i4I0aVqQYRt3QDztj9E/view?usp=sharing
https://drive.google.com/file/d/1tkZLtvidUMfC4wblh2Xbh8diVkj7qw8X/view?usp=sharing

CSC 226: Software Design & Implementation
T05: Buggy Fruit

Anyone with the link can view ~

3. Add, Commit, and Push your changes to your repository.

a. Right click any new files in the Project pane of PyCharm (far left), and click Git
>> Add. If the filename is red, it still needs to be added. If it is green, it has
already been added.

b. Right click the project directory in the Project pane of PyCharm, and click Git >>
Commit Directory...:

c. Add a meaningful commit message, and click “Commit and Push”:

d. Click the “Push...” button on the screen that follows.

4. Check your repository in Github to ensure everything was submitted. You can view
the updated repository at the link you pasted in Checkpoint 1.

	T05: Buggy Fruit
	Learning Objectives
	How to Start
	
	Roles
	Area of Circle
	Debugging Code
	Your Turn to Explore Some Bugs
	Submission Instructions

