

V.2 Native Share Menus
-Share to New
Expensify

AUTHORS
Georgia, Lizzi @ Infinite Red

SLACK ROOM
#expensify-infinite-red

DEADLINE
N/A

TRACKING ISSUE
[Github link]

Strategic Context

The only way to get a billion users on our platform is to leverage the natural viral
dynamics of collaboration. Currently, they do this via WhatsApp, SMS, and other chat
tools. We need NewDot to be an effective replacement for those tools in all of their core
flows.

High-level overview of the problem
There are plenty of times when you might want to share something from outside sources
into New Expensify. But there’s no way to quickly share links/photos/information. For
example, if you are in the Photos App and decide you’d like to share a photo, you’ll have
to leave the app → open New Dot → go to the correct chat → click add attachments →
find the same image again → and so on. That adds significant friction and makes it less
likely that users will default to Expensify as their go-to chat app.

Timeline and urgency
This project is a requirement for Reunification as it’s a core feature used by many of our
Mobile App users. In Old Expensify, you can share photos to initiate a smart scan. To
replicate this functionality of our previous platform, we need to add support for sharing
and initiating SmartScans into NewDot.

https://github.com/Expensify/App/issues/15603

Terminology
Direct Message (DM) - a chat between two individual people. Specifically not a group
chat.
Left Hand Nav (LHN) - the component containing the list of chats the user is in, shown
on the left-hand side of the screen on the desktop-width UI.
Native Share Menu - the native UI that pops up when a share is triggered. This includes
the list of apps that are available to share into.
Participant - The person, people, or workspace that money is requested from.
Request - A request for payment from a person or workspace. This can also be an
expense split with other people.
Share-to-Expensify - The user flow while attempting to send something from outside the
app to NewDot, such as sending someone a photo from the Photos App. This applies
whether the user picks “Share” or “Scan” within the app.
Share-from-Expensify - The user flow when attempting to share something in-app to an
external source, such as sending a QR code to iMessage.
Share attempt - A noun to describe the process of Share-to-Expensify (so we can say
“The user cancels the share attempt” instead of “The user cancels the share.”) This
applies whether the user picks “Share” or “Scan” within the app.
Share to chat - Specifically describes the act of sharing a file or message to chat, via the
“Share” tab, to distinguish from Share-to-Expensify generally.
SmartScan/Scan - The feature in Expensify that allows users to upload a photo of a
receipt, which is used to automatically fill out fields in a money request.

High-level of proposed solution

[Pre-design] / [Design Pre-design] / [2nd iteration Pre-design]

Let’s add New Expensify into the Native Share Menus for iOS and Android to allow
sharing files, links, and text into New Expensify from outside of the App (slack). There will
be no restrictions on file type. Users can also choose instead to use the file to create a
request with SmartScan, if the file type is compatible.

When a share is initiated and NewDot is selected in the system UI, a “Share to Expensify”
screen will show. This screen will have a tab bar with two tabs to choose from:

1.​ “Share”, where the user can send the shared file, message, or link to any existing
chat or new DM, or

2.​ “Scan”, where the user can create a new request, with the shared file attached as
the receipt.

On first load, we will default to the “Share” flow, but after that we’ll record the user’s tab
selection and show them their last-selected tab.

https://expensify.slack.com/archives/C01GTK53T8Q/p1678122006755739
https://expensify.slack.com/archives/C01GTK53T8Q/p1680526423839029
https://expensify.slack.com/archives/C01GTK53T8Q/p1698880562111639
https://expensify.slack.com/archives/C01GTK53T8Q/p1678122071926249

If the user has shared a file incompatible with SmartScan, the tab bar will not appear, as
there is no file to scan for the request. (Pre-design thread)

Share
“Share” is the tab view selected by default. When selected, the page will feature our
search component and allow users to search and select the destination of the share,
which can be any chat they are currently in, or a new DM.

The second page will display which chat the user selected to share to, a preview of any
file being shared, and a text input where the user can write a message to share. This text
input will be prefilled if the user chose to share text, including a link.

Once the user clicks “Share”, they will be navigated to the chat they shared to, where they
will see the attachment and/or message they just sent, with the same end result as if they
had sent the message from the chat screen itself.

https://expensify.slack.com/archives/C01GTK53T8Q/p1698881168323059

If a user adds a message to an attachment, the resulting chat will appear in New
Expensify as the message first and then the attachment on the next line (as a separate
message). (slack)

Scan
When the user selects the “Scan” tab, the search component for requests will be shown,
allowing the selection of workspaces or people as request participants.

On the second page, we will reuse the existing design of the Money Request creation
screen, allowing the user to preview the file they’d like to scan, confirm where the request
should be sent, and edit any details they’d like to before submitting the request.

User is not logged in
If a user has not yet logged into New Expensify when they try to share, they will be shown
the sign-in screen and the share attempt will be abandoned. The user can attempt again
to share once they are logged in.

UI Additions & Changes

App Icon in Native Share Menu
The icon for New Expensify will appear in the Native Share Menu.

https://expensify.slack.com/archives/C01GTK53T8Q/p1680682186316419?thread_ts=1680526478.104249&cid=C01GTK53T8Q

Share
After the user selects New Expensify in the Native Share Menu, they will be directed to
the Share Root page.

Choosing who to share to

When the user continues in the “Share” tab, we will display a chat search (based on the
existing Chat Search page), which allows a user to:

●​ find any existing chat they have, or
●​ create a new DM by typing in contact information.

Warning when files are too large

If the user tries to share a file that is above the attachment size limit (above 24MB), we will
immediately show an error message, in the same style as the current attachment picker
in a chat. (Pre-design thread)

https://expensify.slack.com/archives/C01GTK53T8Q/p1698880928025779

Pressing “Close” will take the user out of this modal flow, back into New Expensify. If the
user wishes to go back to the app they shared from, they have other options provided by
their operating system. See “Abandoning a share attempt” for details.

Previewing the share

When the user selects a chat, we navigate to the Compose Message page.

Here, the user will see:

●​ Who they are sharing to
●​ A preview of the file they are sharing (if applicable)
●​ A text input for an optional message

The content on this screen varies depending on what the user shared: a previewable file,
a non-previewable file, or text.

Sharing files

When a file is shared:

●​ the AttachmentView component will appear, and
●​ The message field will be empty.

The AttachmentView will determine whether a file is previewable or not, and to render
either a preview of the attachment, or an icon with the file name. We will not be making
changes to what AttachmentView can preview.

Sharing text

When the user shares text, such as a link or a message, it will be added to the message
field, which will auto-grow to show multiple lines.

Since there is no file to preview, the AttachmentView component is omitted.

The user can then edit the message as desired.

Sending the shared data

In either case, once the user is ready, they press “Share” to send the attachment and
message.

Pressing “Share” navigates to the chat they shared to, where they can see the sent
attachment and/or message.

Error handling

If the user tries to share or enter a message longer than 10k characters, the text input will
be highlighted red and an error displayed, and the error will have to be addressed before
the user can continue. (Pre-design thread)

Scan

If the user selects the “Scan” tab instead of “Share”, they will enter the request flow,
identical to creating a money request in the app today, starting on the Request
Participants page, embedded in the Root page tab navigator.

https://expensify.slack.com/archives/C01GTK53T8Q/p1698881057630769

The user can search for and select a workspace or people to request money from.

Selecting a single target

Tapping a list-item selects a single target and immediately navigates to the Request
Confirm page.

Splitting an expense among multiple people

Tapping the “Split” button in a line item allows the user to select multiple people to split
the expense with.

When someone is selected in this way, the “Add to Split” button appears. Touching this
button navigates to the Split Confirm Page.

Confirming the details of the request

The Request Confirm page lets the user edit the details of the request before creating it.

When the user creates the request by clicking the “Request”/“Split” button, they are
navigated to the chat containing the request.

Abandoning a share attempt

If the user no longer wishes to share the item – for instance if they change their mind or
need to back out during an error – they have several ways of going “back”, to cancel the
share:

●​ Canceling and staying in New Expensify using the “back button” in the header
●​ Returning to the previous app using system gestures and/or controls

Return to New Expensify

To exit the share flow and continue into New Expensify, the user can press the “back”
button in the header, which will close the share modal. If there is existing navigation
history, they will be returned to the last non-modal screen they viewed; otherwise they will
be returned to “Home” (i.e., displaying the last-accessed report, as when the app is first
loaded).

Returning to the app they shared from

To return to the app they shared from, the user can use system-provided gestures or
buttons.

On iOS the user can return to the app they shared from by touching the “breadcrumb” in
the top left, in the status bar. This is operating system behavior, triggered by one app
opening another, and can’t be changed.

On Android the user can use the back button or gesture to navigate back through the
share screens, until they reach the Share Root page, at which point pressing back again
will return them to the app they shared from.

Expensify.com / new.expensify.com
NewDot specific. Detailed section and implementation will be worked on by Infinite Red.

Data storage
No additional Data is stored.

Economic considerations

Are there any specific costs associated with your solution? If so, are these
costs fixed (e.g. the cost of building a lounge), or are they variable based
on usage (e.g. no. of API calls)?

 N/A

Does Expensify have the ability to spread payments out over time? And is
there a cost associated with doing so?

 N/A

Are there aspects of the engagement that enable Expensify to only pay
once a certain task is completed (e.g. onboarded a company and a billing
card is on file)?

 N/A

How long will Expensify be committed to these costs? What risks might be
associated with this length of commitment?

 N/A

On the flip side of all of this, what does Expensify stand to gain via your
solution (e.g. interchange, active user revenue, etc.)?

 N/A

Accounting Implications

Does this require a new vendor?
Vendor Name:
Vendor Contact Email:
Service Period:
Estimate spend:
Invoice Frequency: Daily
Expense Category and Department:
Require 1099: No
Is this related to a physical asset (lease, equipment, etc.)? No

 No

Does this change relate to revenue, discounts, expenses, commissions,
bonuses, active users or any other inward, outward or internal movement of
funds? Do we need to start counting these revenue generating users as
Paid Members? How is the accounting team addressing this change?

 Unknown

Does this change require moving money through Stripe, ECard, our ACH
system or any bank account?

 Unknown

Note to doc authors: Please make sure to get at least one review from someone on
the accounting team before moving to the detailed portion. See related SO here.
Thanks!

Reviewed By

CJ 2023-04-24

If applicable, link the disclosure document here.

Legal and Compliance considerations

https://stackoverflow.com/c/expensify/questions/13557

Does this require an update to ToS and/or privacy policy? No

Does this justify any additional controls in our regular SOC audit? No

Does this impact PCI? No

Are there any possible trademark considerations? No

Could anything about your design be patented? No

Will you be working with a new vendor and signing a contract? No

Risk Assessment
We need to evaluate every project and every proposed vendor for potential risk.

For every project that requires a code/hardware change:

 - Create a GH with the title projectName Risk Assessment. Apply the labels
Task, Ring1, Compliance, and an appropriate KSv2 option.
 - Include a link to your design doc and any related research or notes you’ve
already compiled.
- Infra will then follow this process to assess information change risk.

https://github.com/Expensify/Expensify/issues/277613

Note to doc authors: Please make sure to get at least one review for each section
before moving to the detailed portion.

Out of scope considerations

-​ In the first version of this project, we will only support clicking on the App Icon to
initiate a share (as opposed to being able to click on specific recent chats).

Alternate solutions

-​ We originally designed to follow the platform conventions for sharing (original
design document), which would have the Android users directed to the main app
to share, while iOS users would interact with a separate share extension that
closes once the share is complete. After feedback on the detailed design, we
decided to change to unify both platforms, which will increase consistency across
platforms, as well as being simpler to implement. (Slack thread)

High-level overview reviewed by
Authors:

https://stackoverflow.com/c/expensify/questions/14091
https://github.com/Expensify/Expensify/issues/277613
https://docs.google.com/document/d/1m4BZ-fhNMnTQhWiglqMk9U2VXYDSrirjeYRLPHf3SkA/edit
https://docs.google.com/document/d/1m4BZ-fhNMnTQhWiglqMk9U2VXYDSrirjeYRLPHf3SkA/edit
https://expensify.slack.com/archives/C01GTK53T8Q/p1696119018806989?thread_ts=1680526472.867539&cid=C01GTK53T8Q

If you’ve made it this far in your design doc, now is the time to pause and ensure you’ve
added your project to the CAP Sheet.

Please make sure to get at least two reviews from each G&R tier before moving on to
the detailed portion. Please follow this SO to guarantee reviews by applying the
DesignDocReview label to your tracking issue.

Reviewers:
After you have thoroughly reviewed this doc, add your name and date in the section that
corresponds to your Growth and Recognition tier.

Expensifiers + Graduates
 - Danny M - This is going to be dope! 2023-11-21
 - Chirag 2023-11-22
- JLi 2023-11-23
- Amy 2023-11-27

Project Managers

- Stites 2023-11-27

Product Managers

 - John L 2023-11-20
2023-11-24 - Tom

 - Conor P, looking forward to getting this one in the wild 2023-11-29
- Robert C. 2023-12-04

Generalists

 2023-11-21 Tim Golen
 puneet - great! 2023-11-21
 - - Looking good, a couple of minor questions related to 2024-01-27 Jason Mills

hybrid app and newdot video player.
2024-03-02 - @dbarrett - Looks great!

Offline support
Users will still be able to share offline. Attachments and money requests will continue to
follow the same offline patterns whether their creation is initiated from within the app or
from a share attempt.

mailto:tgolen@expensify.com
mailto:jason@expensify.com
https://docs.google.com/spreadsheets/d/1gZ9HPyq3jtVYoiHgKAkabaqSDhKb1zqv0gNhaPj17os
https://stackoverflow.com/c/expensify/questions/13557

For example, when looking at the conversation that they shared to, users who have
remained offline since sharing will see the same UI as when sending a message or
attachment while offline otherwise:

On new screens, we will use this same “You appear to be offline” indicator on the bottom
of the page as well.

Detailed background
Terminology
Bundle ID - the unique identifier associated with an iOS app. Takes the form of a reverse
URL. New Expensify’s bundle ID is com.chat.expensify.chat. Each “flavor” of New

Expensify has a unique bundle ID so it can be identified as a unique app. For example,
the development app’s bundle ID is com.expensify.chat.dev.
Codegen - This is a tool created by Meta to generate native interfaces from JavaScript
static types, using TypeScript or Flow.
New Architecture - A recent initiative from Meta to alter the way native code interfaces
with JavaScript. The New Expensify app is close to fully migrating to the New
Architecture mode.
Turbo Module - A Turbo Module is a native module that supports the New Architecture. It
cannot include native components, only methods and events.

Native configuration
In order to make an app possible to share to, we have to do some configuration on the
native side.

Content types
Both iOS and Android have systems for configuring what types of data can be shared to
the app. This controls whether New Expensify will show in the system share menu.

iOS requires configuring an NSExtensionActivationRule. There are presets for
certain types, and iOS also allows custom predicates to decide if a file or other data is
supported.

Android is configured using a list of MIME types, where wildcards are also allowed. For
example, image/jpeg, image/*, and */* are all valid items in the configuration list.

Android Send Intents
Android uses “intents” to message requests between different apps and their
components. To receive shared data from another app, we configure our app to respond
to the SEND intent with an “intent filter”.

iOS Share Extensions
In order to be able to share into an iOS app, that app has to implement a specific type of
app extension, called a share extension, which is a completely separate executable from
the main app. (This is in contrast to Android, where data can be shared directly to the
app).

Share extensions were designed to be quick to spin up, send data off, i.e., to a web API,
and then exit. They were not designed to send data directly to the local app, although this
is possible by deep linking into the main app, and sharing data between the share
extension and the main app via an app group, explained below.

https://developer.apple.com/library/archive/documentation/General/Conceptual/ExtensibilityPG/ExtensionScenarios.html#//apple_ref/doc/uid/TP40014214-CH21-SW8
https://developer.android.com/training/sharing/receive#supporting-mime-types
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/training/sharing/receive#update-manifest
https://developer.apple.com/library/archive/documentation/General/Conceptual/ExtensibilityPG/index.html#//apple_ref/doc/uid/TP40014214-CH20-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/ExtensibilityPG/Share.html

Share extensions are a separate executable

Share extensions, like all app extensions, are built as a separate executable. This means
that, by default, they don’t share code or data with the main application. But there are
mechanisms for sharing information between the two, such as app group directories
(described below), and the NSUserDefaults API for smaller amounts of user data.

Share extensions should be quick to open

It’s important that share extensions open quickly, since the user is performing a quick
task. Since we won’t be loading any UI in the share extension itself, this won’t be an
issue.

Detailed implementation of the solution
Libraries
React-native-share-menu (RNSM)
The react-native-share-menu library is the best fit for our needs of any existing tools; it
has existing support and documentation for customizing iOS share extension behavior
and passing data from the share extension to the main app, and tools for handling
incoming share data to the Android app.

We were able to get it working with a few patches. However, it’s slightly out of date and
hasn’t been maintained consistently. For example, there’s this open issue due to an API
change from react-native. Expensify has adopted the project, and Infinite Red has been
contributing PRs to get the library up-to-date.

We would also like to update the library with more features to support the desired sharing
workflow in New Expensify. See the react-native-share-menu updates section for details.

Javascript layer
Screens
All screens in this flow will:

●​ have a header with a back button,
●​ be titled “Share to Expensify”, except the MoneyRequestConfirmPage, which will

maintain its usual titles (“Manual” or “Split”, depending on whether a single
participant or multiple are selected, respectively).

●​ show the offline indicator at the bottom of the page when the user is offline.

ShareModalStackNavigator

We’ll add a ShareModalStackNavigator to contain the screens for this flow. This will
contain:

1.​ the Share entry point (ShareRootPage), where the user selects where to share
to,

2.​ the new screen to compose Share messages on (ShareComposeMessagePage)

https://developer.apple.com/library/archive/documentation/General/Conceptual/ExtensibilityPG/ExtensionScenarios.html#//apple_ref/doc/uid/TP40014214-CH21-SW1
https://github.com/meedan/react-native-share-menu
https://github.com/meedan/react-native-share-menu/issues/209
https://github.com/Expensify/react-native-share-menu/issues/254
https://docs.google.com/document/d/1qOF8NqRV6RwX3SZpykszVv3acQPuLkxWuHEroALdoPE/edit#heading=h.vudjf0oh8k63

JavaScript

3.​ a duplicated MoneyRequestConfirmPage for use in this modal stack.

const ShareModalStackNavigator = createModalStackNavigator({
 Share_Root: () => require('../../../pages/ShareRootPage').default,
 Share_Message: () => require('../../../pages/ShareComposeMessagePage').default,
 Share_Scan_Confirm: () => (`../../../MoneyRequestConfirmPage`).default,
});

ShareRootPage

ShareRootPage will contain an OnyxTabNavigator to support switching between
“Share” and “Scan” selection options:

●​ “Share” will use the new ShareSelectChat component,and

JavaScript

●​ “Scan” will use the existing MoneyRequestParticipantsSelector
component.

<OnyxTabNavigator
 id={CONST.TAB.SHARE_TAB_ID}
 selectedTab={fileIsScannable ? selectedTab : CONST.TAB.SHARE}
 hideTabBar={!fileIsScannable}
 tabBar={({state, navigation, position}) => (
 <TabSelector
 state={state}
 navigation={navigation}
 position={position}
 />
)}
>
 <TopTab.Screen
 name={CONST.TAB.SHARE}
 component={ShareSelectChat}
 />
 <TopTab.Screen
 name={CONST.TAB.SCAN}
 component={() => (
 <MoneyRequestParticipantsSelector
 participants={iou.participants}
 onAddParticipants={IOU.setMoneyRequestParticipants}
 navigateToRequest={() =>
navigateToScanConfirmationStep(CONST.IOU.TYPE.REQUEST)}
 navigateToSplit={() =>
navigateToScanConfirmationStep(CONST.IOU.TYPE.SPLIT)}
 iouType={CONST.IOU.TYPE.REQUEST}
 isScanRequest
 />
)}
 />
</OnyxTabNavigator>

Mirroring the implementation of the Request Money flow, we’ll store the selected tab
under
`${ONYXKEYS.COLLECTION.SELECTED_TAB}${CONST.TAB.SHARE_ROOT_TAB_I
D}`, which will store and re-use the last-selected tab for the next time the user opens this
screen.

If the file type of the shared data cannot be scanned, we do not want to render the tab bar.
However, we still want to record that the user went with “Share” during their last use of
this screen.

To accomplish this, we’ll update OnyxTabNavigator with a prop hideTabBar, to allow
us to hide the tab bar, while also storing that the last-used tab was “Share”.

We’ll decide when files are compatible with SmartScan by comparing with the existing list
of allowed extensions in the CONST file.

Handling files that are too large

We will warn users early when they’ve tried to share a file above the attachment limit.
We’ll use the same component that the current attachment picker uses: ConfirmModal.

https://github.com/Expensify/App/blob/67b3b59a782cb13c4e53a7686a52345b754f4ef7/src/CONST.ts#L54-L55
https://github.com/Expensify/App/blob/67b3b59a782cb13c4e53a7686a52345b754f4ef7/src/CONST.ts#L54-L55

Handling messages that are too long

ShareComposeMessagePage

For this new screen, we’ll use:

●​ OptionRow to display the conversation preview,
●​ FormProvider with the TextInput using autoGrowHeight, which we’ll

autofill if the shared data is text or a link. The TextInput will validate that the
message is not longer than 10k characters before it can be submitted (source on
limit).

●​ AttachmentView, displayed if the shared data is not text or a link

We’ll determine the type of data shared based on the mimeType property provided by
react-native-share-menu.

https://expensify.slack.com/archives/C01GTK53T8Q/p1699313093186399?thread_ts=1698881057.630769&cid=C01GTK53T8Q
https://expensify.slack.com/archives/C01GTK53T8Q/p1699313093186399?thread_ts=1698881057.630769&cid=C01GTK53T8Q

MoneyRequestConfirmPage

We don’t anticipate any changes to this existing page, where the user can see the receipt
and edit request details before submitting the request. We just need to add it under
another route in this modal stack so we can navigate to it properly.

Components
New: ChatSearch / ShareSelectChat

We’ll extract the OptionsSelector and shared business logic used in the existing
SearchPage into a generic ChatSearch component that can be re-used to search
through existing chats. The prop onSelectChat will control what the component does
when a chat is selected.
​

Unset

To wrap the ChatSearch component with specific behavior related to finding a chat to
search to, we’ll create the ShareSelectChat component.

Navigating to the share flow
React-native-share-menu currently guides app developers to set up listeners for share
data and then react within the listener when share data is present: in our case, navigate to
the Share Root page.

Instead, we’d like to configure react-native-share-menu to deep link directly to the share
modal root screen (e.g., on iOS, new-expensify://share). This should make
behavior more predictable and make troubleshooting any bugs easier (any underlying
errors with share data could cause a failure to navigate otherwise, and those errors
should be more immediately visible if you’re able to see the share screens).

We’ll compare this with the previous approach of using a listener to make sure it doesn’t
introduce new problems. We’re hoping it will be more performant, since we’ll navigate as
soon as possible.

Managing share data
Since share data is ephemeral, we will pass all data we can as route params to screens,
which reduces the amount of state cleanup we have to do. We may need to implement a
ShareContextProvider to manage the initial state passed by
react-native-share-menu, depending on the approach we’re able to take with navigation.

Native layer

Configuring content types

iOS

Using the NSExtensionActivationRule, we will be able to support files, text, and
links:​

<key>NSExtensionAttributes</key>
<dict>

<key>NSExtensionActivationRule</key>
<dict>

<key>NSExtensionActivationSupportsImageWithMaxCount</key>
<integer>1</integer>
<key>NSExtensionActivationSupportsText</key>
<true/>
<key>NSExtensionActivationSupportsWebURLWithMaxCount</key>
<integer>1</integer>
<key>NSExtensionActivationSupportsFileWithMaxCount</key>
<integer>1</integer>

Unset

</dict>
</dict>

Android

We set Android to accept all file types for the SEND intent, which covers share requests of
a single file or text string:​

<activity
 ...
 android:documentLaunchMode="never">
 ...
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="*/*" />
 </intent-filter>

</activity>

iOS implementation details
iOS needs a good deal more implementation: configuring the share extension to behave
how we want, and then enabling it to open the main app and share data with it.

Setting up the Share Extension

Largely following the guide from the basic iOS setup, and then for the native share
extension view.

In brief, we:

1.​ Create a new share app extension, using XCode, and configure, similar to the
main app:

a.​ Code signing
b.​ The Podfile needs the react-native-share-menu pod added to the share

extension started.
2.​ Add react-native-share-menu’s ShareViewController to the share extension.
3.​ Create an App Group that contains the main app and the share extension so that

they can share data.

Skipping the share extension UI

The default behavior of react-native-share-menu when not using a custom React Native
UI inside the share extension is to show an operating system modal with a file preview, a

https://github.com/meedan/react-native-share-menu/blob/master/IOS_INSTRUCTIONS.md
https://github.com/Expensify/react-native-share-menu/blob/master/IOS_INSTRUCTIONS.md
https://github.com/Expensify/react-native-share-menu/blob/master/IOS_INSTRUCTIONS.md

JavaScript

text input and a “Post” button, based on SLComposeServiceViewController (docs
link).

To avoid showing any UI, we modify its ShareViewController in the following ways:

1.​ Inherit from UIViewController instead of
SLComposeServiceViewController, so we can render no UI instead of the
iOS share modal

2.​ Immediately link to the main app during viewDidLoad

We’ll add this as a documented option in react-native-share-menu as well.

Managing temporary files on iOS

Normally, when sharing on iOS, the share extension receives a temporary copy of the file
that only lasts as long as the share extension stays open. The main app is not granted
access to this file, and as we’re sharing from the main app, we also need the file to last
longer than the share extension UI does. To get around this, within the share extension,
react-native-share-menu makes a copy of the file that the main app can access. But it
never cleans up those files.

In New Expensify, we need to ensure the copied file exists long enough to support a
pending API request, but is cleaned up after that request succeeds or fails.

To accomplish this, we’ll add a new Onyx key, TEMP_FILES_TO_DELETE, which will
track files that need cleaning up. We’ll populate this key with files to delete in
successData and failureData of Report.addActions (which contains the logic of
Report.addAttachments). We can encapsulate this logic in a utility function,
cleanUpActions:

// src/libs/actions/Share.ios.js

// constructs share-specific data for use in `addAttachment`
const cleanUpActions = (file) => {
 if (!file || !file.source.includes(appGroupPath)) return [];
 return [
 {
 onyxMethod: Onyx.METHOD.MERGE,
 key: ONYXKEYS.TEMP_FILES_TO_DELETE,
 value: [file],
 },
];
};

// src/libs/actions/Report.js

function addActions(reportID, text = '', file) {
 ...
 const successData = [{

https://developer.apple.com/documentation/social/slcomposeserviceviewcontroller
https://developer.apple.com/documentation/social/slcomposeserviceviewcontroller
https://github.com/Expensify/react-native-share-menu/blob/a8ab1ad4f71db29c169b9effdb937ff63dd4a59d/ios/ShareViewController.swift#L177-L195
https://github.com/Expensify/react-native-share-menu/blob/a8ab1ad4f71db29c169b9effdb937ff63dd4a59d/ios/ShareViewController.swift#L177-L195

JavaScript

 onyxMethod: Onyx.METHOD.MERGE,
 key: `${ONYXKEYS.COLLECTION.REPORT_ACTIONS}${reportID}`,
 value: _.mapObject(optimisticReportActions, () => ({pendingAction:
null})),
 },
 ...cleanUpActions(file),
];
 ...
}

And then in an Onyx connect call, we can watch for updates to this key and call a
method in react-native-share-menu, deleteTempCopy, to clean up the file:

let isCleaningUpTempFiles = false;
Onyx.connect({
 key: ONYXKEYS.TEMP_FILES_TO_DELETE,
 callback: (val) => {
 if (!val || isCleaningUpTempFiles) return;
 isCleaningUpTempFiles = true;
 val.forEach((file) => {
 ShareMenu.deleteTempCopy(file);
 });
 Onyx.set(ONYXKEYS.TEMP_FILES_TO_DELETE, []);
 isCleaningUpTempFiles = false;
 },
});

React-native-share-menu updates

React-native-share-menu is the best library available for sharing to a react native app.
That said, it’s in need of maintenance: both to catch up to current React Native
standards, as well as support features New Expensify needs. As a result, Expensify has
now adopted the library (GitHub issue).

Below, we’ll outline the changes we need to make to support share in New Expensify. All
of these changes will come with testing and changelog updates so it’s easy to cut a
release once we’re done.

Get the library up-to-date

We’ve already merged some simple fixes to the library to make it compatible with current
React Native:

1.​ jsBundleUrl arguments changed in recent React Native versions (issue link).
2.​ Update Android compileSdkVersion (issue link).

https://github.com/Expensify/react-native-share-menu/issues/254
https://github.com/Expensify/react-native-share-menu/issues/209
https://github.com/Expensify/react-native-share-menu/issues/261

3.​ ShareMenuModule.java needs to implement NativeEventEmitter methods to
avoid warnings (issue link).

There’s a few more items we’ll have to add to get everything up-to-date:

Update the example project

To ensure that all updates to react-native-share-menu are simple to test, we’ll update the
repository’s existing example project to the latest react-native version.

Add a privacy manifest for iOS

Starting with Xcode 15, Apple is requiring that libraries and apps that use specific
features register their “reason” for doing so in a new privacy manifest. This includes
UserDefaults, which react-native-share-menu uses to store shared data to pass to the
main app. Its usage of UserDefaults is fully compliant with the allowed “reason” (“Declare
this reason to access user defaults to read and write information that is only accessible to
the app itself”), so we only need to register the reason and we’re done.

Support the New Architecture

We were originally considering punting on this, but it sounds like New Architecture
support is close, and we shouldn’t introduce new libraries that don’t support it (Slack
conversation).

This will fortunately be straightforward. The app has no native components, so to support
the New Architecture, we just have to re-write it as a Turbo Module. The steps are:

1.​ Define a Codegen spec in Typescript that the native modules will conform to, and
add Codegen configuration to the project. This may require changing the data
structures used by native methods to accommodate Codegen.

2.​ Update the library’s podspec to New Architecture dependencies
3.​ Update the native module implementation to use the new specs and conform to

the New Architecture APIs (currently best explained by the New Turbo Module
guide: https://reactnative.dev/docs/the-new-architecture/pillars-turbomodules).

Fixes

MIME Type detection (iOS)

We’ve found that on iOS, when sharing from the Files app, react-native-share-menu was
always reporting MIME Types of text/plain to JavaScript, regardless of the actual file
type.

iOS uses Uniform Type Identifiers instead of MIME Types, and we have to match against
those identifiers and translate them into MIME Types. We found the root of the bug and
have a fix ready to go (GitHub link).

https://github.com/Expensify/react-native-share-menu/issues/191#issuecomment-1501150505
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files/describing_use_of_required_reason_api#4278401
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files/describing_use_of_required_reason_api#4278401
https://expensify.slack.com/archives/C01GTK53T8Q/p1700161526543319
https://expensify.slack.com/archives/C01GTK53T8Q/p1700161526543319
https://reactnative.dev/docs/the-new-architecture/pillars-turbomodules
https://developer.apple.com/documentation/uniformtypeidentifiers
https://github.com/Expensify/react-native-share-menu/pull/270/files

App group configuration (iOS)

RNSM incorrectly assumes that all app groups must match the pattern
group.<main.app.bundle.id> . This isn’t necessarily the case, and has caused pain
points while prototyping since different build schemes of Expensify have different bundle
ID structures. We’ll update the library to instead have the app group be directly configured
in Info.plist, instead of configuring it with the host app’s bundle ID.

viewDelegate crash (iOS)

There have been intermittent crashes on iOS due to issues with the view delegate state
handling. We have a basic fix for this, but there are related issues we should look into:

1.​ Sharing multiple times with continueInApp crashes (issue)
2.​ viewDidDisappear is not consistently called, so extension cleanup does not

happen consistently and can lead to memory issues (issue)

Features

Manage copied files (iOS)

As previously mentioned, when navigating to the main app to share on iOS, RNSM
currently copies files but never deletes them. We’ll add a deleteTempCopy method that
accepts a file name to allow apps to decide when files should be cleaned up.

“Skip share extension” support (iOS)

As previously mentioned, to support skipping the share extension UI entirely, we need to
modify the existing RNSM view controller. We’ll add this use case as a third documented
option to the project, which we’ll use in the app.

Publish it

Once we’ve got all our changes in, we’ll need to publish a new major version of the library.
The NPM publishing step will need to be handled by the Expensify team.

Manual tests
All of these tests should be performed on both Android and iOS.

SmartScan-compatible files
Note: these file extensions are compatible with SmartScan. Refer to this list when test
instructions say “find a file compatible with SmartScan”: 'jpg', 'jpeg', 'gif', 'png', 'pdf', 'htm',
'html', 'text', 'rtf', 'doc', 'tif', 'tiff', 'msword', 'zip', 'xml', 'message'.

https://github.com/infinitered/ExpensifyApp/pull/28/files#diff-1aa046d161a1081bd541198ac073c301a3773ce2f3591f5f88a5a6fc85c02e36R110
https://github.com/Expensify/react-native-share-menu/issues/135
https://github.com/Expensify/react-native-share-menu/issues/237
https://docs.google.com/document/d/1qOF8NqRV6RwX3SZpykszVv3acQPuLkxWuHEroALdoPE/edit#heading=h.7woivbujquva
https://docs.google.com/document/d/1qOF8NqRV6RwX3SZpykszVv3acQPuLkxWuHEroALdoPE/edit#heading=h.2aoc3w7wv3x3

User is online and already signed into the Expensify app
Share a single image to New Expensify

1.​ In another app, find an image compatible with SmartScan (with extension ‘jpg’,
‘jpeg’, ‘gif’, or ‘png’). Choose the share option, then choose New Expensify from
the list of apps.

2.​ The “Share to Expensify” UI will be shown, with a tab bar displaying “Share” and
“Scan”. Make sure “Share” is selected.

3.​ You should see a text input and a list of chats your user account is in. Choose a
chat to share with by searching for it in the text box, and selecting it in the list
shown beneath.

4.​ The Compose Message page will be shown. You should see:
a.​ The chat the share will be sent to
b.​ A text field where you can add an optional message. In this case, it should

be empty.
c.​ A preview of the image.
d.​ A green “Share” button at the bottom of the page.

5.​ Add a message to the message field.
6.​ Click “Share”. You should be redirected to the conversation you shared to, and

should see the shared image and message in that conversation.

Share a scannable, non-image file to New Expensify
What’s different from the image file test case? There will not be an image preview of
the file; instead, there will be an attachment component that displays the file name.

1.​ In another app, find a file that isn’t an image, but is compatible with SmartScan
(e.g., a zip file) to share. Choose the share option, then choose New Expensify
from the list of apps.

2.​ The “Share to Expensify” UI will be shown, with a tab bar displaying “Share” and
“Scan”. Make sure “Share” is selected.

3.​ You should see a text input and a list of chats your user account is in. Choose a
chat to share with by searching for it in the text box, and selecting it in the list
shown beneath.

4.​ The Compose Message page will be shown. You should see:
a.​ The chat the share will be sent to
b.​ A text field where you can add an optional message. In this case, it should

be empty.
c.​ A file attachment component showing a paper clip icon and the file’s name.
d.​ A green “Share” button at the bottom of the page.

5.​ Add a message to the message field.
6.​ Click “Share”. You should be redirected to the conversation you shared to, and

should see the shared image and message in that conversation.

Share a single, non-scannable file to New Expensify
What’s different from the image file test case? There will not be an image preview of
the file; instead, there will be an attachment component that displays the file name.

1.​ In another app, find a file that isn’t an image and isn’t compatible with SmartScan
(e.g., an mp3) to share. Choose the share option, then choose New Expensify
from the list of apps.

2.​ The “Share to Expensify” UI will be shown. The tab bar with “Scan” and “Share”
should not be shown.

3.​ You should see a text input and a list of chats your user account is in. Choose a
chat to share with by searching for it in the text box, and selecting it in the list
shown beneath.

4.​ The Compose Message page will be shown. You should see:
a.​ The chat the share will be sent to
b.​ A text field where you can add an optional message. In this case, it should

be empty.
c.​ A file attachment component showing a paper clip icon and the file’s name.
d.​ A green “Share” button at the bottom of the page.

5.​ Add a message to the message field.
6.​ Click “Share”. You should be redirected to the conversation you shared to, and

should see the shared image and message in that conversation.

Share text to New Expensify
What’s different from the image or file test cases? There will be no preview or
attachment component, and the text will be automatically inserted in the message field.

1.​ In another app, highlight and share some text, then choose New Expensify from
the list of apps to share to.

2.​ The “Share to Expensify” UI will be shown.There should be no tab bar with “Share”
and “Scan” as options. You can only proceed by sharing to a chat.

3.​ You should see a text input and a list of chats your user account is in. Choose a
chat to share with by searching for it in the text box, and selecting it in the list
shown beneath.

4.​ The Compose Message page will be shown. You should see:
a.​ The chat the share will be sent to
b.​ A text field, pre-filled with the text that was shared. You should be able to

edit this text.
c.​ A green “Share” button at the bottom of the page.

5.​ Edit the message in the message field.
6.​ Click “Share”. You should be redirected to the conversation you shared to, and

should see the message you wrote in that conversation.

Share a link to New Expensify
This test case should have the same behavior as sharing text. In the message field, the
link will not be clickable, highlighted, or previewed, just treated as text.

Input text into message field that is too long

1.​ Share text over 10k characters to New Expensify.
2.​ The “Share to Expensify” UI will be shown.There should be no tab bar with “Share”

and “Scan” as options. You can only proceed by sharing to a chat.
3.​ You should see a text input and a list of chats your user account is in. Choose a

chat to share with by searching for it in the text box, and selecting it in the list
shown beneath.

4.​ The Compose Message page will be shown. You should see:
a.​ The chat the share will be sent to
b.​ A text field, pre-filled with the text that was shared.
c.​ A green “Share” button at the bottom of the page.

5.​ Click “Share”. The message field should be highlighted red and inform you that the
message is too long to send.

6.​ Edit down the message to under 10k characters, and press “Share” again. The
message should be sent to the chat you selected.

Try to share multiple files to New Expensify

1.​ Go to an app that allows selecting and sharing of multiple files (e.g., a photo
gallery app).

2.​ Select and share multiple files.
3.​ You should not see New Expensify listed as an option among the applications in

the system share dialog.

Scan an image of a receipt

1.​ In another app, find an image of a receipt to share. Choose the share option, then
choose New Expensify from the list of apps.

2.​ The “Share to Expensify” UI will be shown, with a tab bar displaying “Share” and
“Scan”. Make sure “Scan” is selected.

3.​ You should see:
a.​ a text input
b.​ a list containing people and workspaces, each with a “Split” button

4.​ Choose a person to send the request to by searching for it in the text box, and
selecting it in the list shown beneath.

5.​ You should now see the Request Confirm page, with a preview of the receipt
image, and the option to edit request fields. Update fields as desired, and create
the request by pressing the “Request” button.

6.​ You should be redirected to the report for the request you just created, with a
preview of the request shown in the chat.

Scan a PDF of a receipt
Repeat the image test, but share a PDF instead of an image of a receipt.

Split a scanned request

1.​ In another app, find an image of a receipt to share. Choose the share option, then
choose New Expensify from the list of apps.

2.​ The “Share to Expensify” UI will be shown, with a tab bar displaying “Share” and
“Scan”. Make sure “Scan” is selected.

3.​ You should see:
a.​ a text input
b.​ a list containing people and workspaces, each with a “Split” button

4.​ Choose people to split between by pressing the “Split” button for multiple people,
and then press the large green “Split” button at the bottom of the screen.

a.​ Do not choose to Split with a workspace. This appears to be an option but
does not work. This is an existing bug (GitHub issue).

5.​ You should now see the Request Confirm page, with a preview of the receipt
image, and the option to edit request fields. Update fields as desired, and create
the request by pressing the “Request” button.

6.​ You should be redirected to the report for the request you just created, with a
preview of the request shown in the chat.

Backgrounding share and resuming
1.​ Share a file or text to New Expensify. Continue with the “Share” tab and choose a

chat to share to.
2.​ On the screen with the message input, add some text to the message input.
3.​ Open another app besides New Expensify (i.e., background New Expensify. Don’t

kill it.)
4.​ Re-open New Expensify. You should see the message input with the same text

you had before the app was backgrounded.
5.​ Send the message. You should see the message that you wrote sent to the chat.

Cancel flow before sharing
Using back button in header

1.​ Share a file to New Expensify.
2.​ On the chat selection screen, press the back button in the header.
3.​ The result depends on whether the app was previously opened:

a.​ If the New Expensify app was already open and running in the background,
the back button will navigate to the screen that was visible prior to the share
attempt

b.​ If the New Expensify app was not in the background prior to the share
attempt, the app will show the home screen (i.e., the most recently viewed
chat in the app).

https://github.com/Expensify/App/issues/27508

Abandon share attempt and try again with a new file
1.​ Share a file to New Expensify.
2.​ On the chat selection screen, choose a chat to share to.
3.​ Navigate fully back out of the app. How to do this depends on the platform:

a.​ On iOS, press the small “breadcrumb” button in the status bar with the
name of the app you shared from

b.​ On Android, use the back button/gesture until you exit New Expensify and
are returned to the app you shared from

4.​ Choose a different file to share to New Expensify. Follow the usual share steps,
and verify that the new file is what is previewed and sent.

Share a file over 24MB

1.​ In another app, select a file over 24MB. Choose the share option, then choose
New Expensify from the list of apps.

2.​ The “Share to Expensify” UI will be shown. In addition, a bottom sheet modal will
appear, saying that the file is too large to share.

3.​ Press the button in the modal to return to the New Expensify app. You should be
navigated to a report.

Test sticky tabs

1.​ Share anything into a chat in New Expensify using the “Share” tab.
2.​ Next, share an image file to New Expensify. When the app loads, it should focus

the “Share” tab.
3.​ Instead, click the “Scan” tab and add the image to a request. Finish creating the

request.
4.​ Next, share another image file into New Expensify. When the app loads, it should

now focus the “Scan” tab, since the last action you completed was scanning.

User is offline and already signed into the Expensify app
User experience should be the same for offline users, except they will see indicators that
they are offline at the bottom of each screen.

When looking at the conversation that they shared to, users who have remained offline
will see the same UI as when sending a message or attachment while offline otherwise.

Test offline share

1.​ Turn on airplane mode on phone
2.​ Choose a file to share, and share to New Expensify. On the screen where you

select a chat to share to, you should see an Offline indicator at the bottom of the
page.

3.​ Choose a chat to share the file to

4.​ You should see the Compose Message page with an Offline indicator at the
bottom of the page. Add a message and press send.

5.​ While offline, navigate to the chat you shared to
6.​ The offline message pending state should be shown
7.​ Turn off airplane mode on phone
8.​ The message should be sent, and attachment and message should become

visible in the conversation.
9.​ Verify the message was sent correctly by checking the chat on another device.

Test offline share after killing app, iOS
Note: this test is useful on iOS to ensure the temp file cleanup doesn’t occur prematurely.

1.​ On iOS, turn on airplane mode on phone
2.​ Choose a file to share, and share to New Expensify. On the screen where you

select a chat to share to, you should see an Offline indicator at the bottom of the
page.

3.​ Choose a chat to share the file to
4.​ You should see the Compose Message page with an Offline indicator at the

bottom of the page. Add a message and press send.
5.​ While still offline, swipe up to open the app switcher, and swipe New Expensify up

to kill the app
6.​ Re-open New Expensify and navigate to the chat you shared to
7.​ The offline message pending state should be shown
8.​ Turn off airplane mode on phone
9.​ The message should be sent, and attachment and message should become

visible in the conversation
10.​Verify the message was sent correctly by checking the chat on another device.

Test offline scanning

1.​ Turn on airplane mode on phone
2.​ Choose a receipt image to share, and share to New Expensify
3.​ The “Share to Expensify” UI will be shown, with a tab bar displaying “Share” and

“Scan”. “Share” should be selected by default. Choose “Scan” instead.
4.​ You should see:

a.​ a text input
b.​ a list containing people and workspaces, each with a “Split” button

5.​ Choose a person to send the request to by searching for it in the text box, and
selecting it in the list shown beneath.

6.​ You should now see the Request Confirm page, with a preview of the receipt
image, and the option to edit request fields. Update fields as desired, and create
the request by pressing the “Request” button.

7.​ You should be redirected to the report for the request you just created, with a
pending preview of the request shown in the chat.

8.​ Turn off airplane mode. The request should now be fully created.
9.​ Verify the request was sent correctly by checking the chat on another device.

User is not signed into the Expensify app

1.​ Log out in the New Expensify app if already signed in.
2.​ Go to another app and try to share a file to New Expensify
3.​ The login form will be displayed. Sign in.
4.​ The sign in process continues as normal. The user is not redirected to the share

flow.
5.​ Go back to the other app and try one of the share flows listed above. They should

work as described.

Automated tests
We do not plan on adding automated tests. The share operating system modal on iOS
cannot be operated by automated testing tools on a simulator, and when running on a
real device, the only testing option is to use XCUITest, which currently has issues with
deeply nested Views, as in a React Native app.

Alternate solutions (detailed)
Alternative libraries
There is another library react-native-share-extension to use RN in a share extension but
it’s even less maintained than react-native-share-menu.​
​
We could also write a new library, but despite the maintenance status of
react-native-share-menu it works well with the latest RN with a few small patches. It
makes the most sense to build on it as a foundation.

Supporting group creation for share to chat
Originally, we were supporting sharing to chats with people and groups, including
creating new groups, by reusing the “New Group” page. This did not support sharing to
rooms or other chats, however. From pre-design, the preferred solution was to start with
the “Chat Search” functionality, which allows sharing to any existing chat, as well as
creating new DMs. (Slack thread)

Custom React Native UI in the iOS share extension
React-native-share-menu supports embedding a custom React Native UI inside of the
share extension. We originally wrote a design document to support this flow. This
approach added implementation complexity, since the share extension is a separate
process, and the app’s storage layer was not implemented to support multiple threads
writing to it.

https://github.com/appium/appium/issues/14825#issue-725477513
https://github.com/appium/appium/issues/14825#issue-725477513
https://github.com/alinz/react-native-share-extension
https://github.com/meedan/react-native-share-menu
https://github.com/meedan/react-native-share-menu
https://expensify.slack.com/archives/C01GTK53T8Q/p1698880690247409

Given that this approach introduced platform differences and implementation complexity,
the feedback was to instead use an approach that skips the share extension and goes
directly to the main app. (Slack thread)

System requirements
We’ll need to work with the internal Expensify team on how we want to handle
react-native-share-menu updates and the new release of the library, as the Expensify
team will have control of the repo and the NPM account.

Plan of action / Rollout plan
These are the options we considered for breaking up the work:

1.​ Beta flags. We can’t use beta flags to hide the ability to share in the app, as that’s
controlled by native configuration.

2.​ Smaller PRs without the native configuration added. This will likely be more
trouble than it’s worth, because development and reviewing PRs would require
re-adding complex native configuration each time, which is easy to mess up (and
hard to automate, because most of the relevant files are managed by Xcode).

3.​ Ship for one platform at a time. Since Android is very simple compared to iOS,
we could ship Android alone first, but it’s not clear that it would be an
improvement. The problem with shipping Android first is that iOS requires us to
make enough changes to their shared API that we’d end up redoing a significant
chunk of work, and would need to test Android again at the end of the process. It’s
fairly trivial to add Android on at the end of the process.

4.​ Split up “Share” and “Scan”. This would not impact development time much, but
could reduce complexity in PR review and testing. Overall it’s not clear that it
would be worth it, as most of the work will be in foundational code, not the features
themselves.

As a result, we decided that a feature branch for Native Share would be the best
approach. These are the steps:

1.​ We will implement this feature on a feature branch on the Infinite Red fork of the
project.

2.​ Simultaneously, we will plan and implement the changes necessary for
react-native-share-menu.

3.​ We’ll do a major version release of react-native-share-menu once all the changes
are in. We’ll need Expensify’s help for this.

4.​ Once the new version react-native-share-menu is released, we’ll incorporate it into
the feature branch and make the PR against New Expensify.

https://expensify.slack.com/archives/C01GTK53T8Q/p1696119018806989?thread_ts=1680526472.867539&cid=C01GTK53T8Q

Communication Plan
A thorough Communication Plan ensures our internal (help docs, Zingtree) and external
resources (Community posts and marketing items) are completed on time when the
product changes. The leader of this design doc is responsible for the below tasks.​

1.​ Create a Launch/Guides task GH using this template, a #launch team member
will be automatically assigned after you create the GH. The Launch team member
will be responsible for organizing any sales campaign related to the project.

2.​ Create an External Resource GH using this template, a
#Resource-Management team member will be automatically assigned after you
create the GH and responsible for organizing the updates.

3.​ Create an Internal Resource GH using this template, a #Resource-Management
team member will be automatically assigned after you create the GH and
responsible for organizing the updates.

a.​ Reach out in #resource-management if you have any questions about
making these GHs.

4.​ Marketing Comms Chore GH using this template a #marketing team member will
be automatically assigned after you create the GH and responsible for organizing
the updates

5.​ Wrap up CAP Sheet entries. As soon as your project(s) go live, please note your
Launch Date(s) on the CAP Sheet.​

Detailed implementation reviewed by
Authors:
Please make sure to get the correct number of reviews from each G&R tier before
beginning to implement the detailed portion. Please follow this SO to guarantee reviews
by applying the DesignDocReview label to your tracking issue. Thanks!

Reviewers:
After you have thoroughly reviewed this doc, add your name and date in the section that
corresponds to your Growth and Recognition tier.

Expensifiers + Graduates (Need at least 2)
 - Chirag 2023-11-22
- Amy 2023-11-27
 - Ariel 2023-12-01

Project Managers (Need at least 2)

- Stites 2023-11-27

https://github.com/Expensify/Expensify/issues/new?assignees=&labels=Launch%2C+Tasks%2C+Weekly%2C+AutoAssignerLaunch&template=LaunchGuidesTask.md&title=Launch%2FGuides+Team+%5BFeature%5D+Tasks
https://github.com/Expensify/Expensify/issues/new?assignees=&labels=AutoAssignerResource%2C+SuccessCoach%2C+Task%2C+Weekly&template=ExternalResourceUpdate.md&title=
https://github.com/Expensify/Expensify/issues/new?assignees=&labels=AutoAssignerResource%2C+SuccessCoach%2C+Task%2C+Weekly&template=Internal_Resource_Updates.md&title=
https://expensify.slack.com/archives/C01CDUN4SMD
https://github.com/Expensify/Expensify/issues/new?assignees=&labels=AutoAssignerMarketing%2C+Task%2C+Weekly&template=Marketingcomms.md&title=Marketing+Comms+chore+%5BProject+name%5D
https://docs.google.com/spreadsheets/d/1gZ9HPyq3jtVYoiHgKAkabaqSDhKb1zqv0gNhaPj17os
https://stackoverflow.com/c/expensify/questions/13557

- Greeny 2023-12-06

Product Managers or Generalists (Need at least 4 engineers and 4
non-engineers)

 - John L 2023-11-20
 Puneet - seems like a solid and thorough plan to me. Let’s do it! 2023-11-21

2023-11-24 - Tom
 Steph E 2023-11-28
- Conor P 2023-11-29
- Robert C. 2023-12-04

Project wrap up
Once the project is finished, update the CAP Sheet project status and launch date. Then,
complete this section and email its contents to strategy@. What went well? What could
we have done better? What did we learn?

https://docs.google.com/spreadsheets/d/1gZ9HPyq3jtVYoiHgKAkabaqSDhKb1zqv0gNhaPj17os

	
	V.2 Native Share Menus -Share to New Expensify
	Strategic Context
	
	High-level overview of the problem
	Timeline and urgency
	Terminology
	High-level of proposed solution
	Share
	Scan
	User is not logged in

	UI Additions & Changes
	App Icon in Native Share Menu
	Share
	Choosing who to share to
	Warning when files are too large

	Previewing the share
	Sharing files
	Sharing text
	Sending the shared data
	Error handling

	Scan
	Selecting a single target
	Splitting an expense among multiple people
	Confirming the details of the request

	Abandoning a share attempt
	Return to New Expensify
	Returning to the app they shared from

	Expensify.com / new.expensify.com
	Data storage
	Economic considerations
	Accounting Implications
	
	Reviewed By

	Legal and Compliance considerations
	Risk Assessment
	For every project that requires a code/hardware change:

	Out of scope considerations
	Alternate solutions
	High-level overview reviewed by
	Offline support
	Detailed background
	Terminology
	Native configuration
	Content types
	Android Send Intents

	
	iOS Share Extensions
	Share extensions are a separate executable
	Share extensions should be quick to open

	Detailed implementation of the solution
	Libraries
	React-native-share-menu (RNSM)

	Javascript layer
	Screens
	ShareModalStackNavigator
	
	ShareRootPage
	
	Handling files that are too large
	Handling messages that are too long

	ShareComposeMessagePage
	MoneyRequestConfirmPage
	

	Components
	New: ChatSearch / ShareSelectChat

	Navigating to the share flow
	Managing share data

	Native layer
	Configuring content types
	iOS
	Android

	iOS implementation details
	Setting up the Share Extension
	Skipping the share extension UI
	Managing temporary files on iOS

	React-native-share-menu updates
	Get the library up-to-date
	Update the example project
	Add a privacy manifest for iOS
	Support the New Architecture
	Fixes
	MIME Type detection (iOS)
	App group configuration (iOS)
	viewDelegate crash (iOS)

	Features
	Manage copied files (iOS)
	“Skip share extension” support (iOS)

	Publish it

	Manual tests
	SmartScan-compatible files
	User is online and already signed into the Expensify app
	Share a single image to New Expensify
	Share a scannable, non-image file to New Expensify
	Share a single, non-scannable file to New Expensify
	Share text to New Expensify
	Share a link to New Expensify
	Input text into message field that is too long
	Try to share multiple files to New Expensify
	Scan an image of a receipt
	Scan a PDF of a receipt
	Split a scanned request
	Backgrounding share and resuming
	Cancel flow before sharing
	Using back button in header

	Abandon share attempt and try again with a new file
	Share a file over 24MB
	Test sticky tabs

	User is offline and already signed into the Expensify app
	
	Test offline share
	Test offline share after killing app, iOS
	Test offline scanning

	User is not signed into the Expensify app

	Automated tests
	Alternate solutions (detailed)
	Alternative libraries
	Supporting group creation for share to chat
	Custom React Native UI in the iOS share extension

	System requirements
	Plan of action / Rollout plan
	Communication Plan
	Detailed implementation reviewed by
	Project wrap up

