
Very brief look at a handful of cheats in Dark Souls III ranging from mild annoyances to
dangerous exploits. Not an exhaustive list, Blue Sentinel has hundreds of patches for almost
every single networked interaction, but they generally fall into one of these categories.

Crashes

Out-of-bounds coordinates and collision related issues
Overview:
FLT_MAX/FLT_MIN, +/-inf, or (float)NaN coordinates from player entities cause serious
performance issues due to issues with movement interpolation and collision. Turning off
collision fixes the crash and performance issues around this but it’s unreliable.

Fix:
Stop players going to these locations, checking player frame update packets for the new
coordinates and checking for NaN, ensuring both the local and other players in the session
can either not be teleported away, or at the very least don’t teleport away on the local player
screen.

Bullet-related frame drops
Overview:
Simply put, bullets which either have an enormous hitbox, expand over time, or cause a lot
of visual effects put a great deal of strain on the game. This isn’t just restricted to bullets
either, it is possible to do this by producing other visual effects (e.g. receiving souls) to
accomplish the same effect.

Fix:
Manually blacklisting bullets, alternatively checking local param files for large bullet hitboxes
and not allowing them to be spawned in an excessive quantity. The game already has a cap
on bullets at ~128.

Heap exhaustion
Overview:
Dark Souls III accepts size arguments for HeapAlloc through P2P traffic, that’s pretty much
all that needs saying. You can either deplete that particular heap or run it all out at once, to
either cause problems immediately or a bit later on.

The game also doesn’t check to see if memory has been allocated successfully in some
areas.

Fix:
Sanity checks on heap sizes that are networked, or alternatively to just re-calculate what the
size should be based on the amount of data segments received from the other player.

Out-of-bounds reads
Overview:
Too many to count, generally either related to packets declaring the amount of data
segments they have themselves, with no bounds checking or verification, or mostly null
pointers. The game does check for null pointers when trying to retrieve a WorldChrIns
pointer from an entity handle / WhoID but in certain places it just doesn’t.

Fix:
Bounds checking, verification of data segments, retrieving WorldChrIns pointers and
checking them before allowing the game to retrieve them for itself - Avoiding code
modifications.

Out-of-bounds writes
Overview:
As above - lots of these. Hard to use but have the most malicious potential

Fix:
Same as the out-of-bounds reads. The issues are usually lack of bounds checking so it’s a
simple exercise to make sure nothing is accessing memory that it shouldn’t be.

Stack overflow
Overview:
Specific here to enemy action and enemy world initiation packets, there is no packing
integrity performed on packed data to check if it has been formed correctly or not. Functions
allocate 300 - 400 bytes of memory for the buffer in order to unpack the data in to, but from
my testing you can go well above 900 bytes which overwrites the stack cookie and ultimately
crashes the application.

Fix:
Enemy action packets are flawed in that they have no bounds checking on the argument
which tells the game how many segments of enemy action data is in the packet, therefore
you can send a 4-byte packet and declare 4 billion segments of data. This would be fairly
benign but eventually leads to a lengthy freeze and eventual crash due to out-of-bounds
read.

Therefore both the segment count and segment unpacked size need to be managed.

ACE / RCE
Overview:
Allows execution of attacker-written code on an otherwise uncompromised machine. Wholly
unreliable, but has a very low complexity so is very easy to pull off and apply to a greater
proportion of players.

Fix:
Fixing the underlying cause (not going into detail here because still not seen in the wild)

Exploits

Malicious / Instant-kill effects
Overview:
Instant kills: Annoying but tricky to patch.

Fix:
Player number spoofing patches, on-hit effect validation, damage re-calculation based on
the attacking player’s character.

Player number spoofing
Overview:
Dark Souls III sometimes uses a unique number in P2P packets to identify which player to
perform an action on. It uses this number to get WorldChrIns structures to the player it
wants. Two players who share the same player number will experience strange game
behaviours, not limited to the game receiving data from a remote player, and applying it to
the local player in error.

In addition to this, when the remote player is constructed it allocates a PlayerGameData slot
for them by using their player number. In this way two players may share the same
PlayerGameData structure.

Fix:
Discarding player numbers, as they are from older code in favour of SteamGameData
pointers to find which player has sent what packet.

Bad warps
Overview:
Warping players to an invalid map with a normal (but not usually networked) MsgMapEvent
(‘LuaWarpEvent_01’). This is used normally in conjunction with other game events in order
to warp you from one bonfire to another, however when used alone will take you to an invalid
map where you’ll continue to fall and die over and over.

Fix:
Ignore these events.

PvE damage
Overview:
PvE damage packets (packet 21) can be modified to become PvP damage packets. The
difference is that you can directly modify the stamina and/or health of the other player,
regardless of iframes or distance.

Fix:
Ignoring PvE damage packets that are structured to be PvP damage packets.

Humanity / Soul changes
Overview:
Allows direct modification of humanity (aka: ‘HeroPoint’). This is fairly benign because this
attribute isn’t used in Dark Souls III.

Fix:
The packet is not sent under normal game circumstances. Ignoring it works.

Attribute and player game data changes
Overview:
Allows modification of player game data (aka: ‘PlayerParam’) such as attributes, name,
covenant, play time, etc.

Fix:
Fixing the underlying cause (not going into detail here because still not seen in the wild)

Invalid items
Overview:
Item networking is strange and confusing in Dark Souls games. It’s host based unlike many
other parts, and involves a relay of different types of item object packets:

-​ Type 0: ‘RequestWorldItemInfo’
-​ Type 1: ‘DeleteItemCategory ‘
-​ Type 2: ‘OnDelete’
-​ Type 3: ‘RemoteToHost’
-​ Type 4: ‘HostToRemote’
-​ Type 5: ‘PickupRequest’
-​ Type 6: ‘Give’

So in an example, if Player A was a host, and player B was a phantom. Player B joins the
world and sends a type 0 packet to the host. The host then sends them a type 1 packet back
which removes a certain category of items from displaying (for example ItemLot items,
enemy drops, etc.) and also one type 4 packet for every existing item object there is in the
world.

If player B drops an item, they will send a type 3 packet to the host, who will then send a
type 4 packet to everyone who is connected, which registers the item on the ground.
If player B then picks that item up, they send a type 5 packet to the host, who sends a type 6
packet back with the item information inside it. If two players pick up the same item at the
same time, only one of them will get it (whoever sends the packet type 5 first)

Now the issue is that you can just skip right to type 6 packets. It has no prerequisites and
doesn’t need the item to exist on the ground. This is how the ‘Item Give’ cheat works, where
cheats can put items right into your inventory.

Fix:
Confirmation of packet type 5 sending before accepting a packet type 6. Working on an item
whitelist basis is much easier than a blacklist.

Game state changes
Overview:
The game needs to network game event flags in order for synchronous multiplayer, however
there is no differentiation between flags that should and shouldn’t be set by other players.
Some examples of these are:

-​ Flags that proceed your character to the next new game cycle
-​ Flags that either cause friendly NPCs to become hostile, or disappear
-​ Flags that prevent interactions with certain objects (e.g. ladders)
-​ Flags that kill bosses
-​ ..

The host is at greatest risk here - Phantoms have a unique flag set (‘IsMyWorld’) to false
which means that any game events set aren’t saved to their progression flags in their own
world. Killing an invader’s boss isn’t going to do anything because once they return to their
original world the flag will be restored.

That being said, flags that warp the player or affect other flags can be harmful to save files.
Even though setting the NG+ flag on an invader’s game is fairly harmless, it sets off a series
of events that returns the player back to their own world before wiping basically every other
game flag. This is why invaders just have their progress reset, and don’t advance to a higher
game cycle.

Fix:
Monitoring of incoming game progression flags, making automatic backups of saves via Blue
Sentinel.

	Crashes
	Out-of-bounds coordinates and collision related issues
	Bullet-related frame drops
	Heap exhaustion
	Out-of-bounds reads
	Out-of-bounds writes
	Stack overflow
	ACE / RCE

	Exploits
	Malicious / Instant-kill effects
	Player number spoofing
	Bad warps
	PvE damage
	Humanity / Soul changes
	Attribute and player game data changes
	Invalid items
	Game state changes

