
PARENT: http://bit.ly/unai-eda-megadoc

Building, packaging and installing​
Open Source EDA tooling​

for mixed HDL designs

Packaging + Distribution Systems​ 1
Overall Goals​ 2
Distribution: Canonical package managers (apk, apt, dnf, pacman, etc.)​ 2

Alpine Linux​ 3
Android​ 3
Arch Linux​ 3
Debian/Ubuntu​ 3
Fedora/CentOS/RedHat​ 3
Windows 10​ 3
macOS​ 4

Distribution: Static builds​ 4
Distribution: Conda​ 5
Distribution: Container images​ 6

Containers as portable build/testing environments​ 7
Distribution: CIPD (Chrome Infrastructure Package Deployment)​ 7
Distribution: Bazel / Remote Build Execution​ 8
Distribution: WASM and PIP?​ 9
Distribution: Others​ 10

Package Generation​ 11
CI Automation​ 12

Package Usage​ 12
Environment providers​ 13
Continuous integration​ 13

GitHub Actions scripts/helpers​ 13
GitLab​ 13

Playgrounds​ 13

http://bit.ly/unai-eda-megadoc

Packaging + Distribution Systems

Overall Goals
●​ Provide up to date EDA tooling.
●​ Easy to use, meaning both installing and keeping tools up to date.
●​ Coordinate the effort of maintainers providing different packaging solutions. For

example, by sharing smoke-tests (see hdl/smoke-tests).

See discussion about existing packaging alternatives in hdl/smoke-tests: CONTEXT.

https://github.com/hdl/smoke-tests/
https://github.com/hdl/smoke-tests/blob/main/CONTEXT.md

Distribution: Canonical package managers (apk, apt, dnf,
pacman, etc.)

Alpine Linux
To-Do: track which EDA tools are already packaged upstream.

Android
●​ https://github.com/termux
●​ ghdl/ghdl: dist/termux.sh

Arch Linux
●​ SymbiFlow/symbiflow-arch-pkgs

To-Do: track which EDA tools are already packaged upstream.

NOTE: PKGBUILD files used in Arch Linux are similar to the ones for MSYS2.

Debian/Ubuntu
To-Do: track which EDA tools are already packaged upstream.

Fedora/CentOS/RedHat
To-Do: track which EDA tools are already packaged upstream.

Windows 10
●​ hdl/MINGW-packages: contains the list of packages which are already upstreamed, and

which are work in progress.
●​ actions/virtual-environments#1572
●​ https://chocolatey.org/ : Nothing on it yet. It’s geared a bit toward sys-admins & IaC

environments but it’s a very straightforward CLI for installing stuff on Windows.
Standalone zipfiles or installers build otherhow can be packaged and distributed through
Chocolatey.

Proposal:

●​ Make all open source EDA tools available as MSYS2 packages. Upstream them to
msys2/MINGW-packages.

○​ Users might install/update the tools through pacman, just as they would do in
Arch Linux.

https://github.com/termux
https://github.com/ghdl/ghdl/blob/master/dist/termux.sh
https://github.com/SymbiFlow/symbiflow-arch-pkgs
https://github.com/hdl/MINGW-packages
https://github.com/actions/virtual-environments/issues/1572
https://chocolatey.org/
https://github.com/msys2/MINGW-packages

○​ Alternatively, a zipfile/tarball can be created with a minimal MSYS2 and all the
EDA tools.

●​ Provide alternative PKGBUILD files for generating static builds of the tools.
○​ Keep them in hdl/MINGW-packages, and let open-tool-forge/fpga-toolchain

consume static packages, instead of building them.
○​ Alternatively, keep static versions of PKGBUILD files in

open-tool-forge/fpga-toolchain, along with the plumbing for generating static
packages on GNU/Linux or macOS.

○​ Alternatively, migrate open-tool-forge/fpga-toolchain to hdl/static-toolchain or
hdl/static-packages.

NOTE: PKGBUILD files used in MSYS2 are similar to the ones for Arch Linux.

Work in progress: addition of PKGBUILD files in hdl/MINGW-packages for the tools available in
open-tool-forge/fpga-toolchain which are not checked in hdl/MINGW-packages#development
yet. See:

●​ hdl/MINGW-packages@ecpprog: mingw-w64-ecpprog
●​ hdl/MINGW-packages@openFPGALoader: mingw-w64-openFPGALoader
●​ hdl/MINGW-packages@icestorm: mingw-w64-icestorm
●​ hdl/MINGW-packages@yosys: mingw-w64-yosys

macOS
Homebrew packages are typically built locally, but there is the possibility to provide prebuilt
binaries in “bottles”. There are “recipes” for some of the tools in ktemkin/homebrew-oss-fpga.

There is also macports. I am unsure of the relative popularity between the two or if there are
other alternatives.

https://github.com/open-tool-forge/fpga-toolchain
https://github.com/hdl/MINGW-packages
https://github.com/open-tool-forge/fpga-toolchain
https://github.com/hdl/MINGW-packages#development
https://github.com/hdl/MINGW-packages/tree/ecpprog/mingw-w64-ecpprog
https://github.com/hdl/MINGW-packages/tree/openFPGALoader/mingw-w64-openFPGALoader
https://github.com/hdl/MINGW-packages/tree/icestorm/mingw-w64-icestorm
https://github.com/hdl/MINGW-packages/tree/yosys/mingw-w64-yosys
https://brew.sh/
https://github.com/ktemkin/homebrew-oss-fpga
https://www.macports.org/

Distribution: Static builds
See open-tool-forge/fpga-toolchain and the discussion about MINGW (Windows) packages
above.

https://github.com/open-tool-forge/fpga-toolchain

Distribution: Conda
●​ Generally good if you want a Python based solution.

To-Do: <put info about TimVideos / SymbiFlow / LiteX stuff here>

EDDA - Conda based system for FPGA and ASIC Dev

On Windows, PKGBUILD recipes for MSYS2 can potentially be used by Conda. This was done
3-4 years ago, but was not updated/maintained since then.

●​ https://gitter.im/msys2/msys2?at=60035c7bd5f4bf2965eebcd2
●​ https://github.com/ContinuumIO/anaconda-issues/issues/1484
●​ https://github.com/conda-forge/conda-forge.github.io/issues/112

https://docs.google.com/document/d/1BZcSzU-ur0J02uO5FSGHdJHYGnRfr4n4Cb7PMubXOD4/edit#
https://gitter.im/msys2/msys2?at=60035c7bd5f4bf2965eebcd2
https://github.com/ContinuumIO/anaconda-issues/issues/1484
https://github.com/conda-forge/conda-forge.github.io/issues/112

Distribution: Container images
●​ Docker, or Podman, or …
●​ hdl/containers

○​ hdl.github.io/containers: contains the list of already available tools and which are
the ready-to-use images.

●​ ghdl/docker
○​ github.com/ghdl/docker/blob/master/USE_CASES.md

●​ dbhi/qus QEMU + Docker
○​ dbhi/docker Multiarch images built with dbhi/qus

Proposal:

●​ Shall multiarch images be provided (at least for aarch64)?

NOTE: for using GUI apps in containers, see mviereck/x11docker and mviereck/runx.

Containers as portable build/testing environments

Packages can be built on containers and then used outside. Or, conversely, packages built
outside can be tested on containers. For instance, dbhi/qus is used in
open-tool-forge/fpga-toolchain for testing the generated static packages on containers for
foreign architectures (ARM). As another example, binaries built in arm32v7/ubuntu containers
can be then copied and executed on PYNQ boards from Xilinx. So, using QEMU + Docker
(dbhi/qus), the software partition of ZYNQ devices in PYNQ boards can be emulated. That's an
alternative to QEMU's system mode.

This approach might be extended to multiple distributions and multiple architectures. That is,
packages for Debian, Ubuntu, Fedora, Arch, Alpine, etc. and for amd64, aarch64, armv7, etc.
can be built and published in GitHub Actions. See
https://github.com/ghdl/docker/actions/runs/323183101 and
https://github.com/dbhi/docker/actions/runs/325224688.

https://github.com/hdl/containers
https://hdl.github.io/containers/
https://github.com/ghdl/docker
https://github.com/ghdl/docker/blob/master/USE_CASES.md
https://github.com/dbhi/qus
https://github.com/dbhi/docker
https://github.com/mviereck/x11docker
https://github.com/mviereck/runx
https://github.com/dbhi/qus
https://github.com/open-tool-forge/fpga-toolchain
https://github.com/dbhi/qus
https://github.com/ghdl/docker/actions/runs/323183101
https://github.com/ghdl/docker/actions/runs/323183101
https://github.com/dbhi/docker/actions/runs/325224688
https://github.com/dbhi/docker/actions/runs/325224688

Distribution: CIPD (Chrome Infrastructure Package Deployment)

●​ github.com/luci/luci-go/tree/master/cipd
●​ chromium.googlesource.com/chromium/src/+/master/docs/cipd.md

https://pigweed.googlesource.com/pigweed/pigweed/

git clone https://pigweed.googlesource.com/pigweed/pigweed​
cd pigweed​
source ./bootstrap.sh

https://github.com/luci/luci-go/tree/master/cipd
https://chromium.googlesource.com/chromium/src/+/master/docs/cipd.md
https://pigweed.googlesource.com/pigweed/pigweed/

Distribution: Bazel / Remote Build Execution
Bazel is an open-source build and test tool similar to Make, Maven, and Gradle. It uses a

human-readable, high-level build language. Bazel supports projects in multiple languages and builds

outputs for multiple platforms. Bazel supports large codebases across multiple repositories, and

large numbers of users.

●​ hdl/bazel_rules_hdl
●​ XLS - google/xls
●​ Verible - google/verible
●​ LiveHD - https://github.com/masc-ucsc/livehd/blob/master/external/BUILD.yosys

https://github.com/hdl/bazel_rules_hdl
https://github.com/google/xls
https://github.com/google/verible
https://github.com/masc-ucsc/livehd/blob/master/external/BUILD.yosys

Distribution: WASM and PIP?
YoWASP aims to distribute tools form YosysHQ compiled to WebAssembly via language
package managers like Python’s PyPI.

http://yowasp.org/
https://github.com/YosysHQ/
https://webassembly.org/
https://pypi.org/

Distribution: Others
●​ Snap?
●​ Flatpak?
●​ Spack? spack.rtfd.io

https://spack.readthedocs.io/en/latest/

Package Generation

CI Automation
Automation requirements for any of the distribution approaches explained in the previous
section can be implemented using any general CI service which supports at least, GNU/Linux,
Windows and macOS host, and Linux OCI containers. See notes in Distribution: Container
images.

The following are GitHub Actions workflow (CI) examples for:

●​ Building and testing projects.
●​ Building a deploying documentation to GitHub Pages.
●​ Building and publishing container images either to Docker Hub or to the GitHub Registry.

●​ github.com/ghdl/ghdl/tree/master/.github/workflows
●​ github.com/VUnit/vunit/tree/master/.github/workflows
●​ github.com/msys2/MINGW-packages/tree/master/.github/workflows
●​ github.com/im-tomu/fomu-toolchain/tree/master/.github/workflows
●​ github.com/VHDL/news/tree/master/.github/workflows
●​ github.com/hdl/awesome/tree/develop/.github/workflows
●​ github.com/VHDL/Compliance-Tests/tree/master/.github/workflows
●​ github.com/buildthedocs/btd/tree/master/.github/workflows

https://github.com/ghdl/ghdl/tree/master/.github/workflows
https://github.com/VUnit/vunit/tree/master/.github/workflows
https://github.com/msys2/MINGW-packages/tree/master/.github/workflows
https://github.com/im-tomu/fomu-toolchain/tree/master/.github/workflows
https://github.com/VHDL/news/tree/master/.github/workflows
https://github.com/hdl/awesome/tree/develop/.github/workflows
https://github.com/VHDL/Compliance-Tests/tree/master/.github/workflows
https://github.com/buildthedocs/btd/tree/master/.github/workflows

Package Usage

Environment providers
[To-Be-Completed]

Continuous integration

GitHub Actions scripts/helpers
Apart from GitHub Actions workflows, GitHub Actions scripts exist too. Unfortunately “GitHub
Actions” is used as a general term to refer to both of them. GitHub Actions scripts are to be
used as steps in a workflow. There are some actions for easing the setup/usage of EDA tools
within workflows:

●​ msys2/setup-msys2 (JavaScript)
●​ ghdl/setup-ghdl-ci (JavaScript)
●​ VUnit/vunit_action (Container - Bash)
●​ eine/tip/ (Container - Python)

In vunit.github.io/ci/intro all possible approaches for using EDA tools in GitHub Actions are
explained. In vunit.github.io/ci/usecases examples of five different approaches are shown.
Several of those are used in the following repositories, for didactic purposes:

●​ VUnit/tdd-intro
●​ ghdl/ghdl-cosim

In both of them, the main entrypoint to the testsuite is a pytest script. Some tests are defined as
bash scripts and others as VUnit run scripts.
​
Of course, using custom scripts (Bash, Python, …) and ignoring GitHub Actions scripts is also
possible:

●​ github.com/im-tomu/fomu-workshop/blob/master/.github/workflows/test.yml

GitLab
GitLab provides equivalent features to GitHub: CI and Pages (static site hosting). Hence, most
of container based GitHub Actions scripts are relatively easy to adapt for supporting GitLab too.
Differences rely on environment variable names and API details.

https://github.com/msys2/setup-msys2
https://github.com/ghdl/setup-ghdl-ci
https://github.com/VUnit/vunit_action
https://github.com/eine/tip/
http://vunit.github.io/ci/intro.html
http://vunit.github.io/ci/usecases.html
https://github.com/VUnit/tdd-intro
https://github.com/ghdl/ghdl-cosim
https://docs.pytest.org/en/stable/
https://github.com/im-tomu/fomu-workshop/blob/master/.github/workflows/test.yml

Playgrounds
●​ docker.com/play-with-docker
●​ hackfin/hdlplayground (binder)
●​ https://github.com/cocotb/cocotb/pull/1683 (gitpod)

https://www.docker.com/play-with-docker
https://github.com/hackfin/hdlplayground
https://github.com/cocotb/cocotb/pull/1683

	Building, packaging and installing​Open Source EDA tooling​for mixed HDL designs
	
	Packaging + Distribution Systems
	Overall Goals
	
	Distribution: Canonical package managers (apk, apt, dnf, pacman, etc.)
	Alpine Linux
	Android
	Arch Linux
	Debian/Ubuntu
	Fedora/CentOS/RedHat
	Windows 10
	macOS

	Distribution: Static builds
	
	Distribution: Conda
	Distribution: Container images
	Containers as portable build/testing environments

	Distribution: CIPD (Chrome Infrastructure Package Deployment)
	
	Distribution: Bazel / Remote Build Execution
	
	Distribution: WASM and PIP?
	
	Distribution: Others

	
	Package Generation
	CI Automation

	
	Package Usage
	Environment providers
	Continuous integration
	GitHub Actions scripts/helpers
	GitLab

	Playgrounds

