
Static & Dynamic Memory
http://www.cplusplus.com/doc/tutorial/dynamic/

Outline:

●​ Static memory & the stack
●​ Static keyword
●​ Dynamic memory & the heap

Stack Memory

Recap:

●​ When you declare a variable in C++, the appropriate memory space is allocated on the
stack.

●​ With "normal" variable declarations, the memory is allocated for as long as the declaring
function is active.

●​ Let's look at an example:

#include <iostream>
using namespace std;

int x=5;​ ​ // global variable, allocated for as long as program is active

void foo(){
​ int z=3;​ ​ // local to foo, allocated only for duration of foo
​
​ cout << x << endl;
​ //cout << y;​ ​ <-- error​ ​
​ cout << z << endl;
}

int main() {
​
​ int y=4;​ ​ // local to main, also allocated for program duration
​ foo();
​
​ cout << x << endl;
​ cout << y << endl;​
​ //cout << z << endl;​ <-- error
​
​ return 0;
}

See memory diagram below.

http://www.cplusplus.com/doc/tutorial/dynamic/

Memory diagram:

●​ The stack is the area where non-global variables is allocated.
●​ Each function's memory on the stack is called a stack frame.

Static memory

Although variables in one stack frame are not directly accessible from other frames, pointers
can work around this. However, your results might not be what you expect.

●​ What happens to the local variable x when foo terminates?

#include <iostream>
using namespace std;

int* foo(){

​ int x = 5;

//static int x = 5;
​ return &x;

}

int main() {
​
​ int* y = foo();
​ cout << *y;
​
​ return 0;
}

★​ It might do the same thing with or without the static keyword,
★​ Without static, the local variable x is "freed" when foo terminates, so its memory could

be overwritten.
★​ The static keyword keeps the variable "alive," even after its declaring function has

terminated.

Dynamic Memory

The primary disadvantage of stack / static memory is:
●​ Memory needs must be determined before program execution.
●​ This leaves no room for allocating memory in response to a user's needs.

For example:

●​ Say you're writing a program that read's information about students, line by line, until a
sentinel keyword (like 'exit') is entered.

●​ You don't know how many lines of information your program will need to process.

A solution:

●​ Allocate an array that is as long as you will possibly need.
●​ The main drawback of this solution should be readily apparent.

// previous program code…

string student[5000];

// start getting lines of data…

Better solution:

●​ Allow the user to declare how many lines they will enter.
●​ Allocate memory on demand with the new keyword.
●​ Using new returns a pointer to the data on the heap (more on this below).

//previous code…

int n;

cout << "How many students?";
cin >> n;

string *student_data = new string[n];

// get data
for(int i=0; i<n; i++){
 cin >> student_data[i];
}

// PROCESS DATA

// when you're done, make sure you deallocate the memory
delete[] student_data;

Dynamic memory and the heap:

●​ When you use the new keyword, the memory is allocated on the heap.
●​ The heap is another memory space, specifically for dynamic memory.
●​ Memory allocated on the heap is not freed until the programmer frees it explicitly with the

delete keyword.

