Static & Dynamic Memory

http://www.cplusplus.com/doc/tutorial/dynamic/

Outline:
e Static memory & the stack
e Static keyword
e Dynamic memory & the heap

Stack Memory

Recap:
e When you declare a variable in C++, the appropriate memory space is allocated on the
stack.
e With "normal" variable declarations, the memory is allocated for as long as the declaring
function is active.
e Let'slook at an example:

#include <iostream>
using namespace std;

int x=5; // global variable, allocated for as long as program is active

void foo(){
int z=3; // local to foo, allocated only for duration of foo

cout << x << endl;
//cout << y; <-- error
cout << z << endl;

}

int main() {

int y=4; // local to main, also allocated for program duration
foo();

cout << x << endl;
cout << y << endl;
//cout << z << endl; <-- error

return 0;

See memory diagram below.

http://www.cplusplus.com/doc/tutorial/dynamic/

Memory diagram:
e The stack is the area where non-global variables is allocated.
e Each function's memory on the stack is called a stack frame.

Global

||||||||||||||||||||||

||||||||||||||||||||||

Static memory

Although variables in one stack frame are not directly accessible from other frames, pointers
can work around this. However, your results might not be what you expect.
e What happens to the local variable x when foo terminates?

#include <iostream>
using namespace std;

int* foo(){
int x = 5;

//static int x = 5;
return &x;

}
int main() {

int* y = foo();
cout << *y;

return 9;

% It might do the same thing with or without the static keyword,

% Without static, the local variable x is "freed" when foo terminates, so its memory could
be overwritten.

% The static keyword keeps the variable "alive," even after its declaring function has
terminated.

Dynamic Memory

The primary disadvantage of stack / static memory is:
e Memory needs must be determined before program execution.
e This leaves no room for allocating memory in response to a user's needs.

For example:
e Say you're writing a program that read's information about students, line by line, until a
sentinel keyword (like 'exit') is entered.
e You don't know how many lines of information your program will need to process.

A solution:
e Allocate an array that is as long as you will possibly need.
e The main drawback of this solution should be readily apparent.

// previous program code...
string student[5000];

// start getting lines of data...

Better solution:
e Allow the user to declare how many lines they will enter.
e Allocate memory on demand with the new keyword.
e Using new returns a pointer to the data on the heap (more on this below).

//previous code...
int n;

cout << "How many students?";
cin >> n;

string *student_data = new string[n];
// get data
for(int i=0; i<n; i++){
cin >> student_data[i];
}

// PROCESS DATA

// when you're done, make sure you deallocate the memory
delete[] student_data;

Dynamic memory and the heap:
e \When you use the new keyword, the memory is allocated on the heap.
e The heap is another memory space, specifically for dynamic memory.
e Memory allocated on the heap is not freed until the programmer frees it explicitly with the
delete keyword.

