Automated VM Registration for Mesh Expansion

Shared with Istio Community

A

~

Owner: sven@google.com, howardjohn@ Status: WIP | In Review | Approved | Obsolete
Working Group: Environments, Networking Created: 2019/11/15

Approvers: Environments [x], Networking [x]

TL;DR

e We can improve Mesh Expansion by automating creation of WorkloadEntries when they
connect to Pilot.

Overview

As part of simplifying the onboarding of VMs to the mesh, we propose to automatically configure
WorkloadEntries from Istiod. This alleviates the need for users to manually manage workload
entries as instances are added/deleted, allowing them to utilize Istiod as a service discovery
mechanism rather than manual action.

Related documents:
e Virtual Machine Health Checking builds upon this document, adding automated health
checking
e Design: Simplified VM Configuration Generation adds a new WorkloadGroup containing
a template for WorkloadEntry. This is a prerequisite.
e XDS Authorization will add authorization to verify clients do not spoof their identity. This
is a prerequisite.

Goals:
e Support auto-registration of VMs in the mesh.
Non-goals
e Support health checking and status reporting of VMs (covered by another doc)

User Guide

Today, a user would:
1. create a WorkloadGroup with information about their workload

Shared with Istio Community

mailto:sven@google.com
https://docs.google.com/document/d/1G4s_PrmvkwCKoH_kXVeSUAszsaj3ZfpIlraSdeTSPKU/edit#
https://docs.google.com/document/d/1-RVOpCGbcDdr-yM4UrT0WgfHZglgQZlPL1d1aZbqEbk
https://github.com/istio/istio/issues/24008

2. Setup the VM to run Istio
3. Manually create a workload entry pointing at the VM
4. When the VM is removed, they will need to manually remove the workload entry

With these changes:
1. create a WorkloadGroup with information about their workload

2. Setup the VM to run Istio

Steps 3 and 4 are configured automatically.

Design

| APl Server

; i Application
Pilot Envoy

| T i VM

Cluster
High Level Overview
To enable auto-registration we would add code to Pilot to support creating a WorkloadEntry for
each Envoy connected from a VM. On connection, we will create a WorkloadEntry. The contents
of this will be derived from the XDS Node Metadata. On disconnect, this WorkloadEntry will be
removed (see "Life Cycle" for details).

WorkloadEntry creation

From the node metadata, we will retrieve the backing WorkloadGroup, which we will take the
ports, service account, and labels from. The IP address is also included in the metadata and will
be used. These are configured by ISTIO_META_WORKLOAD_NAME, ISTIO_META_NAMESPACE, and
ISTIO_META_INSTANCE_IPS, all of which are included as part of Design: Simplified VM
Configuration Generation.

The name will be derived from the IP address.
For example:

Shared with Istio Community

https://docs.google.com/document/d/1-RVOpCGbcDdr-yM4UrT0WgfHZglgQZlPL1d1aZbqEbk/edit?ts=5f0387d4#
https://docs.google.com/document/d/1-RVOpCGbcDdr-yM4UrT0WgfHZglgQZlPL1d1aZbqEbk/edit?ts=5f0387d4#

apiVersion: networking.istio.io/vlbetal
kind: WorkloadGroup

metadata:
name: foo
namespace: bar
spec:
labels:
app: foo
bar: baz
network: default
ports:
http: 8080
grpc: 3550

serviceAccount: foobar

Connecting with IP address 1.2.3.4

Will translate to:

apiVersion: networking.istio.io/vlbetal
kind: WorkloadEntry
metadata:
name: foo-1-2-3-4
namespace: bar
labels:
workloadentry.istio.io/managed-by: workloadentry-controller.istio.io
istio.io/workload-group: foo

spec:

labels:

app: foo

bar: baz
network: default
ports:

http: 8080

grpc: 3550

serviceAccount: foobar
address: 1.2.3.4
status:
istio.io/workloadentry-controller: istiod-554684c688-1x8zn

Shared with Istio Community

The workloadentry.istio.io/managed-by and istio.io/workload-group are inspired by
EndpointSlice, which has similar labels. The first identifies this as auto registered, while the
second provides a backpointer to the original workload group.

Authorization

As part of this effort, we need to ensure XDS clients cannot impersonate other workloads and
hijack traffic unexpectedly. Specifically, we will check that the namespace and service account
of the WorkloadGroup matches the identity of the XDS client (derived from the SPIFFE cert,
which encodes both of these).

Rollout Plan

Auto Registration will be enabled as a feature flag in Pilot. Additionally, a new XDS node
metadata will be added to opt in on a per workload basis. This allows both gradual rollouts, and
allows users to manage certain WorkloadEntries, or all WorkloadEntries, manually.

Lifecycle (WIP)

For prior art, we can examine the Kubernetes EndpointSlice controller, which handles similar
concerns. However, this implementation relies on joining two persisted objects(Pod and
Service), whereas in our case we have a persisted object (Service) and transient information
(XDS connection state). As a result, the EndpointSlice implementation does not suffer from
many of these concerns.

In the happy case, the lifecycle is simple: on connection we create a WorkloadEntry, and on
disconnect we remove it. However, there are many important cases off this path to consider.

Istio-agent disconnects, and reconnects to the same instance
Istio-agent disconnects, and reconnects to a different instance
Istio-agent disconnects, and does not reconnect

Istiod shutdown gracefully

Istiod shutdown non-gracefully (crash)

Istio-agent disconnects, then Istiod exits

Istiod exits, istio-agent never reconnects to another instance

No ok owdh -~

To handle these cases, | propose the following lifecycle:
1. On connection:
a. Lookup WorkloadEntry by a stable name defined in "WorkloadEntry creation".
i. Ifit exists: update status to indicated the connected pod, and time of
connection
ii. If it does not exist: create a new workload entry, as defined in
"WorkloadEntry creation”
iii. Ifitisin our removal queue (see "On disconnect"), remove it
2. On disconnect:

Shared with Istio Community

https://github.com/kubernetes/kubernetes/blob/master/pkg/controller/endpointslice/reconciler.go#L59

a. Update WorkloadEntry status to remove
istio.io/workloadentry-controller, and add
istio.io/workloadentry-disconnect-time.

b. Add to a queue for removal. After GRACE_PERIOD_SECONDS, we will check
the workload entry. If there is no istio.io/workloadentry-controller
set, we will delete it entirely from the api-server. If there is a controller set, do
nothing - it has reconnected to another instance.

3. Periodically, every GRACE_PERIOD_SECONDS * 10:

a. lIstiod will query all workload entries (note: this is from in memory cache, not an
api-server call) for entries with istio.io/workloadentry-controller
unset and istio.io/workloadentry-disconnect-time more than
GRACE_PERIOD_SECONDS old.

Why this works:

e Cases 1, 2, and 3 will all resultin the istio.io/workloadentry-controller
annotation being removed. In case 1, Istiod will remove it from its removal queue on
reconnect. In case 2, Istiod will attempt to remove it, but see the
istio.io/workloadentry-controller has now been set, and skip. In case 3, it
will be removed after GRACE_PERIOD_SECONDS in the queue

e Case 4, 5: in this case, no modification of the WorkloadEntry occurs. However, when it
reconnects to another instance, it will now be tracked by that instance

e Case 6: This is managed by the periodic checking done by each instance

e (Case 7: This is not currently covered.

Network Resilience

There may be cases where there are widespread connectivity issues between pods and Istiod.
This would lead to a large chunk of VMs being removed at once. This is not a problem
Kubernetes faces with health checks; if kubelet is disconnected from the api-server, health
status cannot be reported so endpoints will retain their previous state.

We do not currently have any way to identify this situation from an aggressive scale down of
VMs. As a result, the initial implementation will not have any built in mitigations for this issue.

This is an area we should consider addressing prior to promoting to beta/stable.

Alternatives
1) Do nothing and ask users to create WorkloadEntry themselves.
a) Con: Users have to keep the VMs in sync with the API Server.
2) Do this through PilotAgent directly to the APl Server
a) Con: Requires access to the API Server (credentials),
b) Cons: issues around health checking; if a VM suddenly dies we need a way to
clean things up

Shared with Istio Community

Test Plan: AutoRegistration

As part of this effort, we will move the existing VM tests to auto registration, rather than manual
WorkloadEntry creation. This covers the end to end happy cases. In addition:

Positive Tests:
e Autoregister same IP on different networks (create multiple instances)
e VM removed if it exits cleanly.
e Multiple pilot replicas, each VM connected to a single pilot
e Multiple pilot replicas, each has a connection asserting the same IP

Negative Tests:
e Autoregister same IP on same network (VM crashes and comes back up)
e VM garbage collected if VM crashes
e VM garbage collected if pilot crashes

Performance/Scale Tests:
e Pilot can handle autoregistration of appropriate number of WorkloadEntry instances.
e Pilot gracefully handles high churn of WorkloadEntry instances.
e Comparison of Istiod/api-server resource utilization of pods vs workload entry for large
scale/churn

Appendix

@howardjohn various thoughts
We need to ensure that WorkloadEntries are stable against:
e Transient XDS disconnect/reconnect (to same or different instance)
e Pilot shut down (graceful and not graceful)
e Likely can use similar techniques used in k8s configmap leader election
o Can we do something smart with ownerRef? make the owning pilot the owner ref
so if its removed it will get GCed?

m On graceful shutdown, remove ourself as the owner and add a label
"check-for-deletion: timestamp". Other instances periodically poll for this
label and if its been on an object for more than X seconds delete it

m On forceful shutdown, there are two possibilities:

e 1. K8s GCs the workload entry
e 2. We reconnect to a new lIstiod before GC, and swap the
ownerRef
o Make sure there is no race here...

Shared with Istio Community

	Automated VM Registration for Mesh Expansion
	
	TL;DR
	Overview
	User Guide
	Design
	High Level Overview
	WorkloadEntry creation
	Authorization
	Rollout Plan
	Lifecycle (WIP)
	Network Resilience
	Alternatives

	Test Plan: AutoRegistration
	Appendix
	@howardjohn various thoughts

