

GSoC ‘18 Project Proposal
Organization: GNU Radio

gr-modtool overhaul

Swapnil Negi
Indian Institute of Technology Roorkee

1 Introduction

Presently gr-modtool is not Py3k compatible. But now most software developers are
moving towards python 3 because of its high intuitiveness, chained error handling
and various other intriguing features. So, it is a necessity to make the tool Py3k
compatible.
In the current scenario, applications are expected to be modular, customizable, and
easily extensible. All these can be accomplished by building a strong plug-in
architecture.
The code base of gr-modtool as of now is static, i.e., some portion of the tool is
repetitive. So, to improve the usability and understanding of the tool, it is highly
desirable to make it more functional.
In the proposal, the focus is mainly on the pockets of Py3k idiosyncrasies, the
patches where code needs to be functional for better usability and the methodology
for building modtool as a pluggable command line tool.

1.1 Primary features of project

1.​ Version independent compatibility with python 2 and python 3.
2.​ Rewrite the tool as a plug-in architecture
3.​ Refine the codebase to make the code more functional and restructuring the

present codeblocks
4.​ Write an actual UI for making the tool much more interactive (if possible)

2 Proposed workflow

Initially, I’ll work upon making the entire modtool python 3 compatible. Then, I will
work upon initialising plugin architecture, then rewriting the entire tool upgrading the
current utilities and user experience (if needed) while using the tool for building the
blocks. After that, I will start with the main task of making the code more functional
and rewriting the same as plug-in architecture with present functionalities like add,
remove, disable, etc. as plugins.

2.1 Python version independent compatibility

Although gr-modtool automates the boring, monotonous work involved in writing the
boilerplate code, makefile editing, etc. for cpp or python 2 developers, it is the need
of the hour to make it python 3 compatible.
So, the major patches of python 3 incompatibility that I observed are:

2.1.1 Handling Exceptions: In python 3, there is a change in methodology for
handling exceptions as it gets quite confusing when raising multiple kinds of
exceptions in python 2.
So the present code throws a SyntaxError for several try-except statements.
For example, in build_utils.py, the present code

try:​
 if os.environ['do_makefile'] == '0':​
 do_makefile = False​
 else:​
 do_makefile = True​
except KeyError, e:​
 do_makefile = False

changes to

try:​
 if os.environ['do_makefile'] == '0':​
 do_makefile = False​
 else:​
 do_makefile = True​
except KeyError as e:​
 do_makefile = False

​

2.1.2 Raising Exceptions: In python 3, there is a change in methodology for raising
exceptions since exceptions are classes and they need to be instantiated before
raising.
So, the present code raises SyntaxError while raising exceptions.
For example in build_utils.py, the present code:

mo = re.search (r'\.([a-z]+)\.t$', template_name)​
if not mo:​
 raise ValueError, "Incorrectly formed template_name '%s'" % (template_name,)​
return mo.group (1)

changes to

mo = re.search (r'\.([a-z]+)\.t$', template_name)​
if not mo:​
 raise ValueError("Incorrectly formed template_name '%s'" % (template_name,))​
return mo.group (1)

2.1.3 Import Statement: For modules that have been renamed we can use
try-except or can import the from __future__ python module.
There are several other variations like difference in print statement, metaclasses,
integer incompatibilities, etc. which will be incorporated if required.

2.2 Functional Code

Although gr-modtool works like magic and is extremely smooth and easy to use, the
codebase is fairly static chunk of code with series of if-then-else rules which makes
the code look slightly redundant and not very clear. These slight shortcomings can
be easily tackled by making the code more functional.
For example, in modtool_add.py, several parts of the code are repetitive like

self._info['blocktype'] = options.block_type​
if self._info['blocktype'] is None:​
 print str(self._block_types)​
 with SequenceCompleter(sorted(self._block_types)):​
 while self._info['blocktype'] not in self._block_types:​
 self._info['blocktype'] = raw_input("Enter block type: ")​
 if self._info['blocktype'] not in self._block_types:​
 print 'Must be one of ' + str(self._block_types)​
​

self._info['lang'] = options.lang​
if self._info['lang'] is None:​
 language_candidates = ('cpp', 'python')​
 with SequenceCompleter(language_candidates):​
 while self._info['lang'] not in language_candidates:​
 self._info['lang'] = raw_input("Language (python/cpp): ")

​
which can be made less redundant by functional approach like

def getValue(parameter, candidates):​
​ self._info[parameter] = options.parameter​
​ if self._info[parameter] is None:​
​ print str(candidates)​
​ with SequenceCompleter(sorted(candidates)):​
​ while self._info[parameter] not in candidates:​
​ self._info[parameter] = raw_input("Enter "+parameter+" type: ")​
​ if self._info[parameter] not in candidates:​
​ print 'Must be one of ' + str(candidates)

and then calling the function with the required parameters to get the value.

Moreover using a functional approach even for non redundant code eases the
process of program development and program testing. It serves as procedural
abstraction wherein a programmer uses it as a black box and just needs the name
and parameters to invoke it.
So, I will make the entire code functional to make it more readable and make future
development on tool a bit easy.

2.3 Plug-in architecture

Currently modtool is not available as a plug-in. The basic advantages of re-writing it
as a plugin architecture are:-

●​ Implementing and incorporating application features become easier.
●​ Isolating a module becomes easier
●​ Custom versions of applications can be created without source code

modifications.
●​ Disabling unwanted features becomes easier at user end

After the plug-in architecture is implemented the modtool can be extended to include
VOLK and RFNoC.

There will be three main classes of the architecture:-
●​ CLI: This is the main command line interface. It handles user input and

delegates execution to the plugin manager
●​ PluginManager: Loads plugins and calls the appropriate plugin method when

the user invokes the command line.
●​ AbstractPlugin: Defines common behavior for all plugins. Each plugin class

must extend this one to be considered a valid plugin.

The command line tool will have the following syntax: cli <plugin> <command>
[<arguments>] wherein arguments aren’t mandatory.

For example: cli gr_modtool add -t general or cli rfnocmodtool help are some
examples of valid commands.

The logic implementation of these classes (basic understanding) is:

●​ CLI: If the number of arguments are less than two, it will call pluginmanager to
show the list of available plugins with their functionalities and commands.
Else it will pass the plugin name and arguments to the pluginmanager without
the command to print the help of the plugin.

●​ PluginManager: Firstly, it will dynamically initialize the list of all available
plugins. After that, it will import the plug-in from the plugins list and load the
same.

Code for loading a plugin will look like:​

def load_plugin(self, plugin_name):​
 """ Loads a single plugin given its name """​
 if not plugin_name in __all__:​
 raise KeyError("Plugin " + plugin_name + " not found")​
 try:​
 plugin = self.__plugins[plugin_name]​
 except KeyError:​
 # Load the plugin only if not loaded yet​
 module = __import__("plugins." + plugin_name, fromlist=["plugins"])​
 plugin = module.load()​
 self.__plugins[plugin_name] = plugin​
 return plugin

After that it will call the given command of the given plugin with the user
specified arguments (if any).

Proper exception handling will also be worked upon.

●​ AbstractPlugin: This is the base class for all plugins. It simply reads all public
methods from the plugin class and exposes them to the plugin manager as
commands that can be invoked.

 Its basic structure looks like:

def _commands(self):​
 """ Get the list of commands for the current plugin.​
 By default all public methods in the plugin implementation​
 will be used as plugin commands. This method can be overriden​
 in subclasses to customize the available command list """​
 attrs = filter(lambda attr: not attr.startswith('_'), dir(self))​
 commands = {}​
 for attr in attrs:​
 method = getattr(self, attr)​
 commands[attr] = method​
 return commands

After that for building the plugins (presently just the gr_modtool plugin), the plugin
needs to be put in the plugins folder and its class should extend the AbstractPlugin.

There are several other tasks like creating metadata files, design the functions in the
gr_modtool plugin, etc. but that have been left intentionally.

3 The proposed work during GSoC 2018

A summary of proposed features are as follows:

●​ Properly implementing the version independent compatibility removing the
python 3 idiosyncrasies.

●​ Make the entire modtool codebase functional and easy to use while fixing the
present pre existing bugs

●​ Complete writing the modtool as a plugin architecture which can be easily
extended to include rfnocmodtool and volk modtool.

●​ Work on the current user interface (if time permits)

4 Timeline
I will utilize the period of community bonding to familiarize myself with the GNU
Radio community. I will also make sure to get a deeper insight over the source code.
This will then enable me to contribute more efficiently to the community. I will also
investigate various ways to implement the plugin architecture and work on building a
sample plugin architecture to get the hang of bugs and various issues that come
with it. I will also define minute details of the project so that I face minimal difficulty
in the coding period.

The necessary documentation will be done in parallel to to the development. There is
13 week coding period. I have made my deliverables on weekly basis. As the college
reopens in the last week of July, I have planned to work for 40-45 hours a week till
July end and 30-35 hours a week in the initial weeks of August.

The expected timeline of my project is given below:

April 23 - May 14

Define minute details of the project and build a sample plugin architecture.

May 14 - May 21

Make the entire modtool Python 3 compatible.

May 21 - May 28

Initialise the plugin architecture with the complete basic structure of CLI,
PluginManager and the AbstractPlugin (can be modified later if needed).

May 28 - June 4

Complete the basic structure of plugin architecture and the main plugin class which
extends the AbstractPlugin.

June 4 - June 11

Restructure modtool_newmod.py

June 11 - June 18

Restructure modtool_base.py

June 18 - June 25

Restructure modtool_add.py

June 25 - July 2

Restructure modtool_rm.py + bug fixes of all previous modules

July 2 - July 9

Restructure modtool_disable.py, modtool_rename.py

July 9 - July 16

Restructure modtool_help.py and modtool_info.py

July 16- July 23

Restructure the remaining modtool files

July 23 - July 30

Thoroughly test the entire modtool, buffer time for completing the remaining tasks

July 30 - Aug 6

Start working on UI of the tool

Aug 6 - Aug 14

Complete the project and submit the final report

**Here restructuring refers to incorporating functional behaviour. It also includes bug
fixes (if any) and adding features (if required) to the present tool.

Milestones

Phase-1: Py3k compatibility, complete basic structure of Plugin architecture.

Phase-2: Restructure modtool_newmod.py, modtool_base.py, modtool_add.py,
modtool_rm.py.

Final Evaluation: Complete rewriting modtool as plugin architecture, restructuring the
modtool to make it more functional and make it entirely python version independent.

6 Acknowledgement
I have thoroughly gone through the GSoC StudentInfo page and GSoC Manifest page.
I hereby assure that I will abide by the rules and regulations. I also accept the three
strikes rule and the details mentioned.

I also assure that I will communicate with the assigned mentor regularly, maintain
thorough transparency and keep my work up to date.

7 Personal Background and Previous Experience
I am a second year undergraduate at Indian Institute of Technology Roorkee. My
areas of interest are software development, competitive programming and applied
probability. I am proficient in Python, C++, JAVA, Javascript and PHP. I am familiar
with git environment as I work regularly on Gitlab. I haven’t contributed much to open
source but as we all know “Cyberspectrum is the best spectrum”, so I’ll really like
to contribute to GNU Radio and make it as my first remarkable experience. I am
proficient in two human languages including English.

I have the experience of working closely with a team as I am an active member of
Information management Group at IIT Roorkee, a bunch of passionate enthusiasts
who manage the institute main website, internet and intranet activities of the
university and the placement portal. My major project as a part of group is
‘Forminator’, an intranet based forms application in which the user can create forms,
select the audience groups or individuals, create groups for future use and use the
information database of the institute. The project has some remarkable features like
conditional fields implemented using tree algorithm.
I am also a member of Programming and Algorithms Group which is aimed at
spreading a culture for Algorithms and related stuff among people both in and
outside IIT Roorkee by organising contests, delivering lectures, etc.

I started off with GNU Radio in February 2018. To get familiarized with the code, I
made the following contributions to the codebase:

1.​ Pull request #1672: Edit Copyright gr-modtool generated files, add feature for
adding copyright holder

2.​ Pull request #1676: Improve check for block(s) removal in modtool_rm.py
3.​ Pull request #1679: Add script for blocking the creation of same blockname

I am highly interested to continue the contributions to GNU Radio even after the
GSoC period.

Here is the link to my CV.

http://img.channeli.in/
http://www.iitr.ac.in/
https://github.com/gnuradio/gnuradio/pull/1672
https://github.com/gnuradio/gnuradio/pull/1676
https://github.com/gnuradio/gnuradio/pull/1679
https://swap-nil7.github.io/resume.pdf

Contact details:
Address: Roorkee, Uttarakhand, India

Email : swapnil.negi09@gmail.com

Github : https://github.com/swap-nil7/

LinkedIn : https://www.linkedin.com/in/swapnil07/

Codechef: https://www.codechef.com/users/swapnil07

8 License
The entire code during the coding period will be transparent, i.e., available on Github.
The code submitted will be GPLv3 licensed.

9 Conclusion
gr-modtool is currently very powerful tool as it highly facilitates the user’s experience
by eliminating the necessity to type the boilerplate code, editing makefiles, etc. But
the inclusion of the above mentioned features will make the code more
customizable, extensible and will also ease the process of further program
development.

mailto:swapnil.negi09@gmail.com
https://github.com/swap-nil7/
https://www.linkedin.com/in/swapnil07/
https://www.codechef.com/users/swapnil07

	GSoC ‘18 Project Proposal
	Organization: GNU Radio

