
p. 1 of 4

Arrays & C-Strings

C++ Arrays vs. Python Lists
Declaring & Initializing
Arrays in Memory
Iterating over an Array
Multidimensional Arrays
Passing and Returning Arrays

C++ Arrays vs. Python Lists

●​ Notable differences:

C++ Arrays Python Lists

- Single type
- Fixed length
- Simply continuous storage in memory

- Multiple types
- Variable length
- Highly abstract type

Declaring & Initializing

●​ You must declare the type and the length
●​ You can initialize all elements using a list with braces, but only when you declare the

array.

int foo [5]; // 5 uninitialized integers

int bar [5] = { 16, 2, 77, 40, 12071 };

//foo = { 1, 2, 3, 4, 5 }; // can't do it.

Arrays in Memory

●​ An array is simply a continuous block of memory.
●​ Review: Integers & Memory

●​ For example, recall that an integer on our development platform is 4 bytes (32
bits).

●​ When you declare an integer, 4 bytes of memory are reserved and referenced by
the variable.

●​ The variable name provides access to the memory location.
●​ Integer Arrays

●​ When you declare an array of integers, size 5, a 20 byte block of memory is
reserved (5 ints * 4 bytes)

●​ The name of the array is a pointer to the beginning of the block of memory.

p. 2 of 4

●​ What this means for you, the developer:

●​ Since an array variable is just a pointer, it doesn't provide the methods of, for
example, Python's Lists. For example, no length, add, remove, etc...

Iterating over an Array

●​ Since you already know the length, you can just use a for loop:

// declare a constant
const int LEN=10;
int my_arr[LEN];

// initialize all elements to zero
for(int i=0; i<LEN; i++){
 my_arr[i] = 0;
}

Multidimensional Arrays

●​ Sometimes you want to store a tabular data (e.g. multiplication table). You can use a
two-dimensional array for this:

#define W 10
#define H 3

int mult_table[W][H];

for(int j=0; j<H; j++){
 for (int i=0; i<W; i++){

 mult_table[i][j] =(i + 1)*(j + 1);

 } // end inner-loop
} // end outer-loop

★​ Write a method that will now iterate through mult_table and print each element in tabular

format (hint: use the '\t' character)

Passing and Returning Arrays

●​ When you pass an array as a function parameter, a pointer is actually passed.
●​ Both of the function signatures below are valid ways to "pass" an array to a function.

p. 3 of 4

void print_array(int arr[], int len){

 for (int i=0; i<len; i++){
 cout << arr[i] << endl;
 } // end for

 cout << endl;

} // end print_array

void print_reverse(int *arr, int len){

 for (int i=len-1; i>=0; i--){
 cout << arr[i] << endl;
 } // end for

 cout << endl;

} // end print_reverse

★​ Why is it necessary to pass the length of the array?

●​ Returning:

○​ To "return" an array, you return a pointer.
○​ This example has little practical use, since you must already have access to the

array in the calling function.

int* foo(int* a){
​
​ a[0] = 5;
​ return a;
}

p. 4 of 4

C-Strings

A C-string is just an array of characters, with a special symbol called the sentinel that indicates
the end of the string.

●​ The sentinel character for a C-string is '\0'

Demo:
// two ways to declare C-strings
char name[] = { 'J', 'o', 'e', '\0' };
char name[] = "Jane";

// printing a C-string
cout << name << endl;

// iterating through a C-string
for(int i=0; name[i] != '\0'; i++){
 cout << name[i];
}
cout << endl;

	Arrays & C-Strings
	C++ Arrays vs. Python Lists
	Declaring & Initializing
	Arrays in Memory
	Iterating over an Array
	Multidimensional Arrays
	Passing and Returning Arrays

