0:16
Gails and today I'm going to bring you
0:18
the chemistry of water screencast
0:19
session number one. We're going to kind
0:21
of leave behind our look at atoms,
0:23
elements in the periodic table and begin
0:26
applying what you learned in the first
0:27
part of our basic chemistry unit by
0:29
looking at the unique properties of 0:31
0.31
water which derive from really the
0:34
structure of the water molecule and
0:35
hydrogen bonds that we find between
0:37
molecules. That'll be the focus of this
0:39

400 students. This is Mr.

first screencast. And hopefully by the 0:40
end of this first screencast, you'll
0:42
have a better idea of what causes what
0:44
you see here on this picture. You've
0:46
probably seen this before where you have
0:48
water droplets that are sort of pulled
0:49
up on the surface of uh could be a leaf
0:52
like you see in this picture or even on
0:53
on the surface of a car in the early
0:56
morning. The hope is that after you've
0:58
seen about the structure of water and
1:00
been introduced to a hydrogen bond that
1:02
you would be able to explain what causes

1:06
of your mind. Why do water droplets form
1:08
the way that they do? So let's get right
1:10
into looking at the structure of water
1:12
and then we'll follow up with looking at
1:13
something called a hydrogen bond.
1:16
All right. So, we're going to begin by
1:17
looking at this water molecule over
1:19
here. We have two hydrogen atoms.
1:21
Remember, we know the chemical formula
1:23
of water is H2O. So, we have two
1:24
hydrogen atoms that are each joined to
1:27
this oxygen atom by a single polar

this. So keep that kind of in the back

1:32	
the electro negativity screencast that	
1:35	
whenever we have an oxygen atom that's	
1:37	
going to bond with either carbon or	
1:39	
hydrogen, oxygen has a a greater electro	
1:42	
negativity value. Not so much that it's	
1:44	
going to completely pull the electrons	
1:45	
away, but enough that it's going to pull	
1:48	
the electrons closer to itself. So they	
1:50	
are the electrons are essentially being	
1:52	
shared unequally, right? And that's what	
1:54	
makes this a polar covealent bond. If we	
1:57	
could visualize this, these these two	
1:58	

recommend that you draw this into your

notes. What this represents here is the

pole, opposites, right? So we have a

charge. Polar, think north pole, south

slightly negative charge on the oxygen 3:28
end and a slightly positive charge on
3:30
the hydrogen end. This is a a critical
3:32
concept. This is really important in
3:34
understanding not only the structure of
3:36
water but also its interactions with
3:38
other materials that we'll learn about
3:40
in subsequent screencasts.
3:42
Now, I'm going to show you a a brief
3:45
video that will explain in a little bit
3:47
more detail the structure of water, and
3:49
it's going to introduce to you the idea
3:50
of the hydrogen bond, which was also

going to be an important concept as we 3:53
move forward in biology. So, let's take
3:55
a look at that video.
3:57
[Music]
3:59
Now, water's physical properties, tough
4:02
yet fluid, make it the backbone of
4:05
everything from tiny cells to the
4:07
world's weather systems. It's a small,
4:09
simple molecule that covers 70% of the
4:13
planet. It's a liquid that carves out
4:16
the planet's surface and an electrically
4:18
lopsided chemical that makes all life
4:21
possible. And over time, it cuts like a

the hydrogen atoms, it's a slightly
5:00
positive part. So, this enables water to 5:03
5.03
do something pretty spectacular. When
5:06
it's in combination with other water
5:08
molecules, the hydrogen parts get
5:10
attracted to the oxygen part of its
5:13
nearest neighbor. And so, the molecules
5:15
kind of squeeze
5:18
together. This attraction, known as the
5:21
hydrogen bond, is at the core of water's
5:24
amazing properties.
5:26
All right. In the video that you just
5:27
watched, obviously we reviewed the idea

that water itself is a polar molecule 5:31 with a slightly negative end near the 5:33 oxygen atoms and a slightly positive end 5:35 near the hydrogen atoms. You were also 5:38 introduced to the hydrogen bond. Now a 5:40 hydrogen bond is a weak attraction. It's 5:44 not as strong as an ionic or a covealent 5:46 bond, but it's a very important type of 5:48 bond in biological compounds and 5:50 substances. Essentially, the way a 5:52 hydrogen bond works is it's the weak 5:53 attraction between the hydrogen atom of 5:55 one molecule and a slightly negative

6:00
idea here, and this I can't overstate
6:02
this enough. A lot of times what
6:04
students will mistake is that the
6:05
hydrogen bond is between the oxygen and
6:08
the hydrogen here within the molecule.
6:10
And that's not correct. If you look at
6:12
the picture here on the right, this is a
6:14
more accurate representation. A hydrogen
6:16
bond is is a the attraction between the
6:19
slightly positive hydrogen on one
6:22
molecule. So we see it right here and 6:24
V.ET
then the slightly negative atom within

atom within another molecule. Now, a key

again, this is a very important concept

as we move forward through our our water 7:01 chemistry portion of the basic chemistry 7:03 unit and then into organic chemistry and 7:06 cell biology. So, really for the 7:07 remainder of this semester, this is an 7:09 important concept to build on. So, let's 7:11 make sure you pay attention to this. 7:12 Let's look at the animation and we'll 7:13 wrap it all up. 7:44 ΑII 7:57 right. So in that animation, what you 7:59 saw was how uh the water molecule

itself, the structure of the water

molecule makes hydrogen bonding 8:05
possible. We get the interaction between
8:07
the slightly positive hydrogen atom on
8:09
one molecule and a slightly negative
8:12
atom within another molecule. So in this
8:14
case when we talk about water obviously
8:16
that slightly negative atom is the
8:17
oxygen atom. All right so a brief
8:20
screencast here but the structure of
8:22
water and the hydrogen bonds that form
8:25
as a result of it play a hugely
8:27
important role in what we're going to
8:28
learn next. So please make sure you've

8:32
recommend that you go back and watch
8:33
this screencast one more time. Uh and
8:35
then when we come back into class
8:37
together we'll go through some practice.
8:39
We're going to use some of these models
8:41
here. You'll get a chance to work with
8:44
these little models of water molecules
8:46
and you'll actually be able to see how
8:48
hydrogen bonds form between
0.50
8:50
them. They're kind of fun to play with.
8:53
And then as we are playing around with
8:55
these models, we're going to learn about

taken really good notes. I would even

8:58
make life possible. So until we see you
9:01
in class, this has been Mr. Gails. See
9:04
you in biology.
9:06
[Music]
9:15
[Music]

some of the properties of water that