
CellOrganizer for Docker Tutorial

V2.10, May 13, 2023

What CellOrganizer does
•​ CellOrganizer is an open source system for using microscope images to learn

statistical models of the structure of cell components and of how those components
are organized relative to each other.

•​ Since these models can be used to synthesize new images reflecting what the model
learned, they are referred to as generative models.

•​ For example, CellOrganizer can take fluorescence microscope images of many cells
expressing a GFP-tagged lysosomal protein and construct a model of how the cell and
nuclear shapes vary among those cells, how many lysosomes are typically found per
cell, how they vary in size, and where they are typically located relative to the cell
and nuclear boundaries.

•​ Publications describing the development and use of various software components of
CellOrganizer are located here. An overview of the principles behind CellOrganizer
can be found here.

•​ CellOrganizer can learn many different types of models that are appropriate for
different cell properties.

About the tutorial
•​ You will need to install Docker and pull the CellOrganizer Docker image.
•​ The tutorials highlight different capabilities of CellOrganizer, using provided example

image datasets and existing models.
•​ If you would like to build CellOrganizer models with your own images, please see the

text under Tutorial 1 below about appropriate organization and file formats.
•​ The MMBioS CellOrganizer team is available to answer questions, help diagnose

problems, receive requests for new features, and generally try to ensure the
success of your projects using CellOrganizer for your projects. You can contact
us by emailing cellorganizer-dev@compbio.cmu.edu.

File housekeeping

•​ When you run the CellOrganizer Docker container, it connects to a local folder that
will appear as local in the main Jupyter window. After you have run the
Download_files notebook (during installation), three folders will have been created
within this local folder: models, images, and notebooks. This tutorial uses the files in
the workshop_demos folder in the notebooks folder.

•​ Output files from most notebooks are created in a results folder (which will
automatically be created by the first notebook that uses it). Inside that folder will be
folders corresponding to each tutorial Module.

http://cellorganizer.org/Publications
http://www.sciencedirect.com/science/article/pii/S1046202315301298
mailto:cellorganizer-dev@compbio.cmu.edu

The CellOrganizer API
•​ There are four main CellOrganizer functions. img2slml makes models from images.

slml2img synthesizes images from models. slml2info describes a model. slml2report
compares two different models. There are also auxiliary functions for working
directly with object shape representations.

Tutorial Modules

Tutorial Module 1. Working with images

This tutorial covers how to organize your own images for use with CellOrganizer. Typically,
telling CellOrganizer what files to use to construct a model is done using wildcards (e.g.,
“Expt1Sample*Nuclear.tif”), and it is helpful to organize your files to facilitate this.

You can do this module later if you first want to learn how to use CellOrganizer using provided
images.

CellOrganizer requires that its input be single cells. There are three major options for how to
do this. The first is to have a separate file for each cell. The second is to have multiple cells in
each image (the way they were presumably acquired) and provide an additional file containing a
“cell mask” to specify where a cell is located within the image; this file is a binary image in
which the on pixels are to be included in the cell. The third is to have multiple cells in an
OME-TIFF file and include Regions Of Interest (ROIs) to for each cell.

CellOrganizer also needs to know which fluorescence channel should be used to construct
which parts of the model. There are again two basic ways to do this. The first is to have
separate files for each channel, and include into the appropriate argument when calling
CellOrganizer. The second is to have all channels in the same file and specify the channel
number as part of the filenames. The second approach requires that you use OME-TIFF files.

Doing cell segmentation and saving images into OME-TIFF files is covered in
Tutorial Module 5.

●​ Module 1A shows how to provide input images in the three different ways and builds a
simple model to verify that the input images are provided properly

The notebook has example code for reading files into CellOrganizer the three different
ways: files contain single channel/single cell, files contain single channel/multiple cells,
and files contain multiple channels/multiple cells. It is initially set to use the first method,
but you can comment out that cell and uncomment a different cell to use one of the other
methods. You can also modify the notebook to use your own images and run the
notebook to see if they are being read properly.

●​ Module 1B builds a more accurate model of cell and nuclear shape (using the

SPHARM-RPDM method)

SPHARM-RPDM models provide a much more accurate representation of cell and/or
nuclear shape. They take longer to calculate and therefore this Module downsamples the
images before building the model so that it takes less time.

The point of this module is to illustrate how you can change the type of model
being built. Note that changing the type of model may change which options

are used to fine-tune the model learning process. See XXX for a list of the
different types of models and which options apply to each.

Tutorial Module 2. Working with shape models

Tutorial 2 notebooks contain example code which can be run to create shape models using
img2slml and then illustrates some things that can be done with those models using slml2info,
slml2report and slml2img.

●​ Module 2A uses img2slml to train two cell and nuclear shape models for later comparison
(Input: single cell dataset; output: two models, Module2A1 and Module2A2)

●​ Module 2B uses slml2info to generate and customize reports

(Input: a model file; output: index.html and various PNG files containing plots)

●​ Module 2C uses slml2report to compare cell shape models
(Input: two model files; output: index.html and various PNG files containing plots)

●​ Module 2D uses slml2img to generate a synthetic cell

(Input: a model file; output: multi-image TIFF files containing cell and nuclear masks)

The notebook creates a folder with the same name as the model that will contain a folder
name img containing a folder named cell1. This will contain files cell1.tif and nucleus.tif
which will contain 2D images corresponding to consecutive slices of the 3D cell.

●​ Module 2E uses slml2info to generate a movie showing one cell shape “evolving” into
another cell shape
(Input: a model file; output: AVI file showing one cell morphing into another)

Tutorial Module 3. Working with basic organelle models

Tutorial 3 notebooks introduce organelle models. The properties of the models can be visualized
through slml2info and slml2report.

●​ Module 3A Builds a basic cell, nuclear and organelle model

●​ Module 3B Generate reports on an organelle model with slml2info (input: model)

●​ Module 3C Compare organelle models with slml2report (input: two or more existing
models)

●​ Module 3D Generates a synthetic cell image from a model

This notebook creates a folder with the same name as the model that will contain a folder
name img containing a folder named cell1. This will contain files cell1.tif, nucleus.tif and
which will contain 2D images corresponding to consecutive slices of the 3D cell.

Tutorial Module 4. Working with spharm-obj models

Tutorial 4 introduces spharm-obj models, which provide a highly-detailed representation of the
size, shape and subcellular distribution of organelles and other subcellular structures. They use
the same SPHARM-RPDM capability that is used for modeling cell and nuclear shape.
spharm-obj models are described in a recent Bioinformatics paper which uses them to compare
real with synthetic cell images created using deep learning. Note that CellOrganizer does not yet
(as of version 2.10) support synthesizing images from this model type – coming soon!

●​ Module 4A creates a spharm-obj organelle model from just one image (to minimize
compute time). More generalizable models can be created by modifying the notebook so
that is uses a larger collection of images.

●​ Module 4B uses slml2report to compare spharm-obj models of two different organelles.

The comparison includes comparing the organelle shapes and their subcellular
distributions. The models used are from the Bioinformatics paper.

Tutorial Module 5. Working with your own images

As discussed in Tutorial 1, CellOrganizer needs segmented single cells in order to build models.
Tutorial 1 shows various ways to do this for the case where each image contains a single cell. An
alternative is to allow images to contain more than one cell but to provide a set of
“Regions-Of-Interest” (ROIs) defining which pixels/voxels of the image belong to each cell.

●​ Module 5 shows how to create an OME-TIFF image file with ROIs out of an original
image and a segmentation “mask” image. The mask image can be created with any of a
number of cell segmentation packages, such as CellPose and DeepCell. The mask is an
“indexed image” that is the same dimensions as the original image for which the value of
each pixel/voxel is the number of the cell to which that that pixel belongs. The Module
uses example images from the provided images folder.

Tutorial Module 6. Working with cell parameterizations

https://doi.org/10.1093/bioinformatics/btac688
https://doi.org/10.1093/bioinformatics/btac688

Tutorial 6 shows how to read the contents of a CellOrganizer Matlab binary file (MAT-file) into a
python dictionary. The contents include documentation of some of the model creation settings
and, most importantly, the parameters describing the nuclear, cell and/or organelle models.

●​ Module 6A extracts information from a cell shape model.
The notebook reads a .mat file into a python dictionary and illustrates the keys used to
store various parts of the model. It then shows how to reconstruct a full SPHARM
descriptor from the lower-dimensional shape embedding. Lastly, it creates a histogram of
the cell sizes.

●​ Module 6B extracts information from an organelle model.

This notebook is similar to Module 6A except that the .mat file read contains a protein
(organelle) model instead of a cell shape model and some additional analyses are include.
After reconstructing a full SPHARM descriptor, it displays parts of the organelle
subcellular position model. It then shows how to use the parameterizations of shape and
position to determine whether organelle shape is correlated with organelle position. It
finishes by showing how to retrieve the original image of each of the organelles and
makes a histogram of the Hausdorff distance between each organelle and its shape
representation (a stringent measure of how good the model is).

Tutorial Module 7. Simulating cell biochemistry with different geometries

Module 7 is an advanced module that illustrates using synthetic cell geometries produced from
CellOrganizer models in combination with a biochemical model to simulate cell biochemistry in
in varying realistic geometries.

●​ Module 7A takes as input a CellOrganizer 3D model and a Virtual Cell biochemistry
specification and produces five Virtual Cell markup files that combine the biochemistry
with a synthetic cell geometry generated from the CellOrganizer model. These files can
be imported into Virtual Cell to do the simulations. See

 for Running Virtual Cell simulations using CellOrganizer generated files.docx
instructions.
To adapt the notebook to your work, you can:
●​ Change the CellOrganizer geometry model by setting model_name.
●​ Change the number of geometries and simulations generated by setting

numberOfSynthesizedImages.
●​ Change the reaction network by setting vcml_name to the name of your VCML file

and setting vcml_gist_url = None.
●​ Change the simulation time, accuracy, and related parameters by setting

default_time_step, end_time, etc.

https://docs.google.com/document/d/1FzIgdH-9nrulpyTEShzfpLqlyMmVUw4u/edit?usp=sharing&ouid=104109728454428718679&rtpof=true&sd=true

●​ Module 7B takes as input a CellOrganizer 3D model and produces files containing a
synthetic cell geometry that can be imported into the visualization program Blender
(https://www.blender.org).

●​ Module 7C takes as input a CellOrganizer 3D model and produces a synthetic cell
geometry file in SBML spatial format (see https://doi.org/10.1515/jib-2022-0054 for a
description of the standard). These files are readable by a number of simulation tools.

Tutorial Module 8. Building object shape representations directly

Module 8 is an advanced module that illustrates how to directly generate a shape descriptor
(using spherical harmonics) for a shape that you provide, without having to construct a
CellOrganizer model using img2slml.

●​ Module 8A converts a 3D image into a spherical harmonic representation using
CellOrganizer SPHARM-RPDM functionality. The module has three parts corresponding
to the 3 main functions:

​ • Image2SPHARMparameterization takes an image and converts it into a structure that
contains the spherical harmonic parameters along with additional metadata information.
​ • SPHARMparameterization2Mesh takes a generated structure of spherical harmonic
parameters and converts it into a mesh structure that contains vertices and faces.
​ • SPHARMparameterization2Image takes a generated structure of spherical harmonic
parameters and converts it into a 3D array or image.

●​ Module 8B creates a “movie” of continuous shape changes by interpolating between two

shapes using principal component reduction of the full shape descriptors. Similar to
Module 6, it illustrates how to extract shape descriptors from a CellOrganizer model and
manipulate them to show the evolution of one shape into another.

Some closing technical information

●​ When running these notebooks, the output from python appears in the notebook cell,
while the output from the compiled CellOrganizer Matlab executables appears in the
terminal window that was used to start the Docker container. Matlab errors listed in the
terminal window will include a trace of the Matlab module and line numbers that
generated the error. For those interested in debugging a problem, the line numbers can be
referenced against the Matlab code, which can be found at

https://github.com/murphygroup/cellorganizer

●​ Inside the container, the CellOrganizer python library can be found at

/opt/conda/lib/python3.7/site-packages/cellorganizer

https://www.blender.org
https://doi.org/10.1515/jib-2022-0054
https://github.com/murphygroup/cellorganizer

●​ As mentioned above, questions, help requests and/or new feature suggestions can be sent
to​

cellorganizer@compbio.cmu.edu

●​ All files created by the modules in this tutorial can be found at

https://cmu.box.com/s/1kzsye9u7m8o8grvj7b1t0vn9xitz87e

mailto:cellorganizer@compbio.cmu.edu
https://cmu.box.com/s/1kzsye9u7m8o8grvj7b1t0vn9xitz87e

	CellOrganizer for Docker Tutorial
	What CellOrganizer does
	About the tutorial
	File housekeeping
	The CellOrganizer API
	Tutorial Modules
	Some closing technical information

