
Hi all,​
​
Automatic differentiation (AD) is a key component in algorithms used in machine learning, 
scientific computing, and elsewhere.​
​
For the last year-and-a-half, the `Enzyme` group have been looking at the practical possibility of 
doing automatic differentiation as part of the LLVM optimization pipeline. Performing automatic 
differentiation in LLVM is quite beneficial as it allows all of the languages that lower to LLVM to 
incorporate automatic differentiation without much additional work. It also allows for automatic 
differentiation across languages, which is similarly beneficial.​
​
One unexpected benefit we found of doing AD at the LLVM-level is that there is a significant 
performance benefit (4.2x in our tests) to be gained by performing AD after LLVM’s optimization 
passes [1]. 
 
After several months of testing with various users including the Rust [4, 5], C/C++, Julia [6], 
Fortran, and machine learning communities, we’d like to share LLVM-based automatic 
differentiation more widely and ask to be considered as an LLVM incubator project. 
 
Our code is available here (https://github.com/wsmoses/Enzyme/tree/master/enzyme) as a 
plugin for LLVM versions 7 through master. We’ve had weekly meetings for the past several 
months with folks from MIT, Argonne, Princeton, Google, NVIDIA, and Facebook and welcome 
anyone who wants to join. Documentation and install instructions for Enzyme is available here: 
https://enzyme.mit.edu. We have our charter available here: ​
https://docs.google.com/document/d/10IK2EgZa-4WF0lOSlkND1_cX3IQLAxEVSOWqbQzNpcs/
edit# 
 
Performing automatic differentiation inside of LLVM presents several interesting technical 
questions, which we’ve explored with the community in a poster and SRC talk at the 2020 US 
LLVM Dev Meeting [2, 3]. 
 
The Enzyme team 
 
[1] 
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf 
[2] https://c.wsmoses.com/posters/Enzyme-llvmdev.pdf 
[3] https://www.youtube.com/watch?v=auQNFDlaXdM, 
https://c.wsmoses.com/presentations/enzyme-llvmdev-reduced.pdf 
[4] https://github.com/tiberiusferreira/oxide-enzyme https://github.com/bytesnake/oxide-enzyme,  
[5] 
https://internals.rust-lang.org/t/automatic-differentiation-differential-programming-via-llvm/13188  
[6] https://github.com/wsmoses/Enzyme.jl 
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Enzyme is a project for high-performance automatic differentiation. The Enzyme community 
aims to be open and welcoming. If you'd like to participate, you can do so in a number of ways. 
 
 * Join our [mailing list](https://groups.google.com/d/forum/enzyme-dev) 
 * Join our weekly open-design call (see mailing list for meeting link) 
 * Participate in development on [Github](https://github.com/wsmoses/Enzyme) 
 
 
# Abstract 
 
Applying differentiable programming techniques and machine learning algorithms to foreign 
programs requires developers to either rewrite their code in a machine learning framework, or 
otherwise provide derivatives of the foreign code. This project develops Enzyme, a 
high-performance automatic differentiation (AD) compiler plugin for the LLVM compiler 
framework capable of synthesizing gradients of statically analyzable programs expressed in the 
LLVM intermediate representation (IR). Enzyme synthesizes gradients for programs written in 
any language whose compiler targets LLVM IR including C, C++, Fortran, Julia, Rust, Swift, 
MLIR, etc., thereby providing native AD capabilities in these languages. Unlike traditional 
source-to-source and operator-overloading tools, Enzyme performs AD on optimized IR. 
 
# Introduction 
 
Machine learning (ML) frameworks such as PyTorch and TensorFlow have become widespread 
as the primary workhorses of the modern ML community. Computing gradients necessary for 
algorithms such as backpropagation, Bayesian inference, uncertainty quantification, and 
probabilistic programming requires all of the code being differentiated to be written in these 
frameworks. This is problematic for applying ML to new domains as existing tools like physics 
simulators, game engines, and climate models are not written in the domain specific languages 
(DSL’s) of ML frameworks. The rewriting required has been identified as the quintessential 
challenge of applying ML to scientific computing. As stated by Rackauckas “this is [the key 
challenge of scientific ML] because, if there is just one part of your loss function that isn’t 
AD-compatible, then the whole network won’t train.” 
 
To remedy this issue, the trend has been to either create new DSL’s that make the rewriting 
process easier or to add differentiation as a first-class construct in programming languages. This 



results in efficient gradients, but still requires rewriting in either the DSL or the differentiable 
programming language. Developers may want to use code foreign to a ML framework to either 
re-use existing tools or write loss functions in a language with an easier abstraction for their use 
case. While there exist reverse-mode automatic differentiation (AD) frameworks for various 
languages, using them automatically on foreign code for an ML framework is difficult as they still 
require rewriting and have limited support for cross-language AD and libraries. The two primary 
approaches to computing gradients are as follows. 
 

●​ Operator-overloading tools compute derivatives by providing differentiable versions of 
existing language constructs. Examples include Adept/ADOL-C, C++ libraries providing 
differentiable types; and JAX/Autograd, Python libraries providing derivatives of 
NumPy-style functions. These approaches, however, require rewriting programs to use 
differentiable operators in place of standard language utilities. This prevents 
differentiation of many libraries and code in other languages. 

●​ Source-rewriting tools analyze the source code of programs and emits source code 
defining the gradient. Examples of tools include Tapenade for C and Fortran; ADIC for C 
and C++; and Zygote for Julia. Users must provide all code being differentiated to the 
tool ahead-of-time and must write programs in a specific subset of the language. This 
makes source-rewriting hard to use with header-only libraries and impossible to use with 
precompiled libraries. Both operator-overloading and source-rewriting AD systems 
differentiate programs before optimization.​
 

Performing AD on unoptimized programs, however, may result in complicated gradients that 
cannot be simplified by future optimization. 
 
For example, consider the following program that normalizes a vector in O(N^2) time. Running 
loop-invariant code-motion (LICM) reduces the runtime to O(N) by moving the call to mag 
outside the loop. 
 

// Compute magnitude in O(N)​
float mag(const float* x);​
​
void norm(float* out, float* in) {​
    // code motion optimization can move outside the loop​
    // float res = mag(in);​
    for(int i=0; i<N; i++) {​
      out[i] = in[i]/mag(in);​
    }​
}​
​
void __enzyme_autodiff(void*, ...);​
​
void grad_norm(float* out, float* d_out, float* in, float* d_in) {​



  __enzyme_autodiff((void*)norm, out, d_out, in, d_in);​
} 

 
Differentiating the O(N) optimized program results in the O(N) gradient on the left, which has the 
corresponding grad_mag call outside the loop. If AD is run first, then the call to grad_mag 
remains inside the loop as shown on the right. A subsequent run of the LICM optimization, 
however, cannot move the call to grad_mag outside the loop as it uses the variable d_res, 
defined in the loop. 
 

Loop-Invariant Code Motion, then AD, O(N) AD, then LICM, O(N^2) 

void grad_norm(float* out, float* d_out,​
               float*  in, float* d_in) 

{​
  float res = mag(in);​
  for (int i=0; i<N; i++) {​
    out[i] = in[i]/res;​
  }​
  float d_res = 0;​
  for (int i=0; i<N; i++) {​
    d_res += -in[i]*in[i]/res \    

                    * d_out[i];​
    d_in[i] += d_out[i]/res;​
  }​
  grad_mag(in, d_in, d_res);​
} 

void grad_norm(float* out, float* d_out,​
               float*  in, float* d_in) 

{​
  float res = mag(in);​
  for (int i=0; i<N; i++) {​
    out[i] = in[i]/res;​
  }​
  for (int i=0; i<N; i++) {​
    float d_res = -in[i]*in[i]/res \​
                        * d_out[i];​
    d_in[i] += d_out[i]/res;​
    grad_mag(in, d_in, d_res);​
  }​
} 

 
 
Traditional AD systems have not operated on optimized intermediate representation (IR) as 
doing so requires either re-implementing all of the optimizations or working at a low-level after 
which optimization has already been performed. We remedy this by implementing Enzyme 
inside of LLVM directly. 
 
In addition to allowing better performance by integration with LLVM’s existing optimization and 
analysis passes, this also allows AD to be implemented once for a variety of languages. 
Moreover, AD within LLVM allows for cross-language AD. Enzyme can also use existing pieces 
of LLVM infrastructure such as link-time optimization and embedded bitcode to enable 
multisource AD. 
 
 
# Type Analysis 
 



Performing automatic differentiation at a low-level presents additional challenges as several 
pieces of high-level information that AD traditionally relies upon may be absent. Consider the 
following program which copies 8 bytes of data.  
 

void f(void* dst, void* src) {​
  memcpy(dst, src, 8);​
} 

 
Depending on what the underlying type of the data is, a different reverse pass is required. 
 

Gradient memcpy for double inputs Gradient memcpy for float input 

void grad_f(double* dst, double* ddst,​
            double* src, double* dsrc) {​
  // Forward pass​
  memcpy(dst, src, 8);​
  // Reverse pass​
  dsrc[0] += ddst[0];​
  ddst[0] = 0;​
 

 

} 

void grad_f(float* dst, float* ddst,​
            float* src, float* dsrc) {​
  // Forward pass​
  memcpy(dst, src, 8);​
  // Reverse pass​
  dsrc[0] += ddst[0];​
  ddst[0] = 0;​
  dsrc[1] += ddst[1]; 

  ddst[1] = 0;​
} 

 
Enzyme creates a new interprocedural fixedpoint analysis rather than relying on types 
prescribed by LLVM. Every value in a function is given a type tree that describes the known type 
at any given byte offset in the value. If the type at a particular offset is a pointer type, we have a 
new type tree that represents the types inside that offset. 
 
# Activity Analysis 
 
Activity analysis determines what instructions could impact the gradient computation and is 
common in automatic differentiation systems to avoid performing unnecessary adjoints. Enzyme 
also uses activity analysis to avoid taking gradients of “undifferentiable” instructions such as the 
cpuid instruction. An instruction is active if and only if it can propagate a differential value to its 
return or another memory location. For example, a function that counts the length of a an active 
input array would not be active. In our implementation of activity analysis, we leverage LLVM’s 
alias analysis and type analysis to help prove that instructions are inactive. As an example, any 
read-only function that returns an integer must be inactive since it cannot propagate differential 
values through the return or any memory location. This is true because the differential value of 
any integer value must be zero and while the instruction can read active memory it cannot 
propagate it anywhere. 
 
# Parallelism 
 



Support for parallelism is ongoing. Performing automatic differentiation on parallel code adds 
additional complexities around races. A benign read-race in the forward-pass becomes a 
write-races in the reverse pass which can lead to incorrect code. In addition to integrating with 
existing LLVM tools for automatically parallelizing code, Enzyme currently supports a limited 
subset of OpenMP and CUDA codes as input, using atomic operations to ensure correctness. A 
current research effort is improving performance through the use of parallel reductions and 
expanding the scope of parallel programs handled as inputs. 


