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Introduction 
The purpose of this document is to introduce a new way of thinking about disaster recovery in a 
cloud native setting.  
 
To do so, we introduce the concept of Cloud Native Disaster Recovery and which characteristics 
it should have.  
 
To be able to see how Cloud Native Disaster Recovery is possible, we provide the reader with 
some high-level understanding of the problems that need to be addressed when designing a 
disaster recovery strategy for stateful applications in a cloud native setting. 
 
In section one, this document covers some definitions around basic availability and consistency 
concepts and in section two it explains availability and consistency-related concepts that are 
intrinsic to every distributed stateful workload and that determine the logical design of these 
applications. In the third section, it provides an overview of the landscape for consensus 
protocols needed to coordinate different instances of stateful workload clusters. Finally in the 
fourth and last section it provides some archetypal disaster recovery strategies for container 
native stateful workloads. 
 

Cloud Native Disaster Recovery - a Definition 
We can introduce Cloud Native Disaster Recovery (CNDR) with a compare and contrast table 
with more traditional disaster recovery approaches (note that for traditional disaster recovery we 
mean the typical approach used by most companies in pre-cloud era): 
 

Concern Traditional DR Cloud Native DR 

Type of deployment active/passive, rarely 
active/active 

Active / active 

Disaster Detection and 
Recovery Trigger 

Human Autonomous 

Disaster Recovery Procedure 
execution 

Mix of manual and automated 
tasks 

Automated 

https://bit.ly/cncf-cloud-native-DR


Recovery Time Objective 
(RTO) 

From close to zero to hours Close to zero 

Recovery Point Objective 
(RPO) 

From zero to hours Exactly zero for strongly 
consistent deployments. 
Theoretically unbounded, 
practically close to zero for 
eventual consistent 
deployments. 

DR Process Owner Often the Storage Team Application Team 

Capabilities needed for DR From storage 
(backup/restore, volume 
sync) 

From networking (east-west 
communication, global load 
balancer) 

* The information in this table are generally accepted attributes and measurements for Disaster 
Recovery architectures 
 
Many traditional organizations have active / passive deployments when it comes to stateful 
workloads. Sometimes the stateless tier of the application is deployed in an active / active 
fashion, but the stateful part (database, storage layer) is rarely. In cloud native disaster recovery 
both stateless and stateful tiers can be deployed in an active / active fashion. In this case by 
active / active we mean that each and every instance of the stateful workload can take write and 
read requests.  
Notice that active / passive designs are still possible (and common) in cloud deployments, see 
active / passive examples for more information about that approach. 
  
In traditional disaster recovery, usually there is a human decision involved in acknowledging that 
a disaster occurred and the Disaster Recovery procedure needs to be initiated. In CNDR, the 
system needs to autonomously (and quickly) make the decision that a fault has occurred and 
react to it.  
 
In traditional disaster recovery the actual recovery procedure is often a mix of human action and 
automated tasks. This is normally due to the complexity of the recovery procedure itself and the 
fact that it is rarely exercised and, therefore, typically there has not been a focused investment 
in automating it. In CNDR, the recovery procedure must be fully automated. Combining this with 
the previous property, the result is that, in CNDR, a disaster event must be treated in a similar 
way as a HA event. 
 
In traditional DR RTO and RPO (which are the two main metrics to measure a DR procedure 
effectiveness and will be defined later in the document) can vary from close to zero to several 
hours. The general narrative is that these metrics can be brought as close to zero as one wants 
but the cost of doing so grows exponentially as one approaches zero. In CNDR it is generally 
easier and more cost effective to achieve zero or close to zero. As we will see below, 
advancements in technology have made this possible without incurring prohibitive costs. 
 



The ownership of the DR procedure formally has always belonged to the app team, which is 
accountable for business continuity, but often in traditional DR the app team just inherits the DR 
SLAs of the storage that it uses, de facto yielding the ownership of the DR procedure to the 
storage team. In CNDR the responsibility is squarely on the application teams who have to 
choose stateful middleware that is capable of achieving the desired DR SLAs. 
 
Finally, in traditional DR, the main capabilities used to build the disaster recovery strategy often 
come from the storage team, in the form of ability to do backup and restore or to configure 
volume replications. As we will see later in this document, the main capabilities needed for 
building CNDR strategies come from networking, and specifically regards the ability to 
communicate in a east-west pattern between the geographies of data-center involved in the 
design and the ability to deploy a global load balancer that can direct traffic to the active 
locations. 

Considerations on Availability and Consistency 
A distributed stateful application needs to deal with Availability (the ability to successfully serve 
requests) and Consistency (the property of keeping state consistent across the various 
instances that constitute the distributed workload). There is a significant amount of literature 
around these concepts, here we are going to recap what is important for the sake of our disaster 
recovery conversation. 

Failure domain 
Failure domains are areas of an IT system in which the components within that area may fail all 
at the same time due to a single event. 
Examples of failure domains are: CPUs, boards, processes, nodes, racks, entire kubernetes 
clusters, network zones and data centers. 
 
As one can ascertain from these examples, failure domains exist at different scales. 
When deploying a distributed stateful workload, one should consider the various failure domains 
at hand, and make sure that the various instances of the stateful workload are positioned in 
different failure domains. 
 
In Kubernetes, there are standard node labels (topology.kubernetes.io/region, 
topology.kubernetes.io/zone,and kubernetes.io/hostname) to capture the idea of failure domains 
in a cluster. Designers of stateful workloads should consider creating anti-affinity rules based on 
those labels when packaging their software to be deployed in Kubernetes. 

High Availability 
High Availability (HA) is a property of a system that allows it to continue performing normally in 
the presence of failures. Normally, with HA, it is intended the ability to withstand exactly one 

https://kubernetes.io/docs/reference/labels-annotations-taints/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://en.wikipedia.org/wiki/High_availability


failure. If there is a desire to withstand more than one failure, such as two, it can be written as 
HA-2. Similarly, three failures can be written as HA-3. 
 
The foundational idea of HA is that the Mean Time to Repair (MTTR), a failure must be much 
shorter than the Mean Time Between Failures (MTBF) (MTTR << MTBF), allowing something or 
someone to repair the broken component before another components breaks (two broken 
components would imply a degraded system for HA-1). 
 
It is often understated that something needs to promptly notify a system administrator that the 
system has a broken component (by the very same definition of HA one should not be able to 
determine a degradation solely by the normal outputs of the system). 
 
As a result, a proper monitoring and alerting system must be in place. Otherwise, an HA system 
would just keep functioning until the second failure occurs (~2xMTBF) and then still be broken, 
defeating the initial purpose of HA.  
 
Given a failure domain, HA can be thought of as answering the question: What happens to our 
workload when one of the components of this failure domain breaks? 
 
With regards to stateful workloads, HA implies that one needs multiple instances (at least two) 
of each workload, and that the state of these instances needs to be replicated between them.  
 
If, for example, one builds a stateful system with two instances and instance A suddenly cannot 
contact instance B, instance A will have to make a decision whether to keep working or not. 
Instance A cannot know whether instance B is down or healthy-but-unreachable. It is also 
possible that instance A is unreachable. This is known as a split brain scenario.  
 
In practice, in a distributed system, failures are indistinguishable from network partitioning where 
the presumably failed component has become unreachable due to a network failure. 

 
If a piece of software is designed to keep working when the peers are unreachable, its state 
may become inconsistent. On the other hand, if a piece of software is designed to stop when 
the peers are unreachable, then it will maintain consistency, but will not be available. 

https://en.wikipedia.org/wiki/Mean_time_to_repair
https://en.wikipedia.org/wiki/Mean_time_between_failures
https://en.wikipedia.org/wiki/Split-brain_(computing)


Consistency 
Consistency is the property of a distributed stateful workload where all the instances of the 
workload “observe” the same state. 
The realization that by temporarily relaxing  consistency, one could build stateful workloads that 
horizontally scale to a theoretically unlimited size gave birth to a Cambrian explosion of 
eventually consistent workloads. Typically these workloads expose a NoSQL interface (as the 
SQL interface is associated with strict consistency), however that is not necessary.  
 
When an issue arises in eventually consistent workloads, two or more sections of the cluster are 
allowed to have a different state (drift) and to continue serving requests based on the state 
understood by each member of the cluster. When the issue is resolved, a conflict resolution 
algorithm ultimately decides which of the available conflicting states wins. This process can take 
some time, but it is guaranteed to end as long as no other changes occur. 
 
Eventual consistency is not suitable in every scenario (for example financial applications often 
need to be strictly consistent), and even when it’s applicable, there are several areas of concern 
including: 

1.​ No SLA that can be placed on how long diverged states will take to converge. In 
situations where the state keeps changing rapidly, the time that it takes to catch up may 
be lengthy or never resolve. 

2.​ Eventual consistency does not mean eventual correctness. While after the conflict 
resolution phase takes place all instances will be in a consistent state, there is no 
guarantee that they will end up in the correct state given the logical requirements of the 
business problem at hand.  

 
The realization of the second point mentioned above has pushed many organizations to seek 
strictly consistent and available solutions. 

The CAP Theorem 
The relation between consistency and availability for distributed stateful workloads is formalized 
in the CAP theorem. Simply put, the CAP theorem states in case of network partitioning (P), one 
can choose between consistency (C) or availability (A), but cannot have both. 

During a network partition, the stateful workload will need to operate in a degraded state: either 
read-only if the application chooses consistency, or inconsistent if the application chooses 
availability. 

https://en.wikipedia.org/wiki/CAP_theorem


 

A corollary of the CAP theorem called PACELC (if Partition, then either Availability or 
Consistency, Else then either Latency or Consistency) states that under normal conditions 
(absence of a network partition), one needs to choose between latency (L) or consistency (C). 
That is to say that under normal circumstances, one can optimize for either speed or 
consistency of the data, but not for both. 

The following table illustrates several stateful workload and their choice in terms of PACELC 
Theorem: 

Product CAP Choice (either 
Availability or Consistency) 

PACELC Choice (either 
Latency or Consistency) 

DynamoDB Availability Latency 

Cassandra Availability Latency 

MySQL Consistency Consistency 

MongoDB Consistency Consistency 

 

Source wikipedia, see the link for more examples. 

The definition of network partition is described with mathematical precision by the CAP theorem 
and goes beyond the scope of this document, however an approximate but good mental model 
is the following: if the strict majority of instances can communicate with each other, there is no 
network partitioning. Otherwise, a network partition has occurred. 

So, in terms of HA (i.e. when we account for one failure), if there are three or more instances of 
a stateful workload, for the CAP theorem we can have both availability and consistency. In 
general, if the stateful workload is deployed across three or more failure domains, it can be 

https://en.wikipedia.org/wiki/PACELC_theorem
https://en.wikipedia.org/wiki/PACELC_theorem


designed to be always available and consistent with respect to the failure of one of those failure 
domains.  

Disaster Recovery 
Disaster recovery (DR) refers to the strategy for recovering from the complete loss of a 
datacenter. The failure domain in this situation is the entire datacenter. 
 
Given a failure domain, DR can be thought of as answering the question: What happens to the 
workload when all of the components of this failure domain break? 
 
Disaster recovery is usually associated with two metrics: 

●​ Recovery Time Objective (RTO): the time it takes to have systems back online after a 
datacenter fails. 

●​ Recovery Point Objective (RPO): time interval of state loss from the last saved state to 
the time the datacenter fails. 

 
In the old days, these metrics were measured in hours, and required that users followed a set of 
manual steps to recover a system. 
 
Most DR strategies employed an active/passive approach, in which one primary datacenter was 
handling the load under normal circumstances and a secondary datacenter was activated only if 
the primary went down. 
 
But, having an entire datacenter sitting idle was recognized as a waste. As a result, more 
active/active deployments were employed, especially for stateless applications. 
 
With an active/active deployment, one can set the expectations that both RTO and RPO can be 
reduced to almost zero, by virtue of the fact that if one datacenter fails, traffic can be 
automatically directed to the other datacenter (through the use of health checks). This 
configuration is also known as disaster avoidance. 
 
Given the discussion of the CAP theorem, to achieve a disaster avoidance strategy where the 
stateful workload is always available and consistent, one needs to spread the workload across 
at least three data centers. 

https://en.wikipedia.org/wiki/Disaster_recovery
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Time_Objective
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Point_Objective
https://searchservervirtualization.techtarget.com/feature/The-difference-between-disaster-avoidance-and-recovery


Anatomy of a Stateful application 
An argument can be made that all distributed stateful workloads share the same logical internal 
structure because, after all, they are all trying to solve the same complex problem: keeping a 
shared state consistent while at the same time processing requests in an efficient way. 
Granted that actual implementations can greatly vary, the following diagram represents the 
logical internal structure of a distributed stateful workload: 

 

API Layer 
The API layer is the component that exposes the externally visible functionality of the distributed 
stateful workload. This layer deeply characterizes the kind of workload: 

●​ Block device API (iSCSI, FiberChannel, ceph rbd, …) 
●​ Distributed File System (NFS, CIFS …) 
●​ SQL Database (SQL over various binary protocols: mysql, postgresql …) 
●​ NOSQL Database (various kinds of no sql database protocol) 
●​ Key Value store and other cache systems 
●​ Message queue (JMS, AMQP, kafka…) 

 
The API layer takes care of of the following concerns 

●​ Authentication and authorization 
●​ Input validation 
●​ Access strategy identification (i.e. how to efficiently access storage in order to respond 

as quickly as possible to the current request) 
●​ Orchestration of the requests and/or coordination with other instances. 

Coordination Layer 
The coordination layer ensures replicas and shards correctly participate in the request along 
with updating their status if needed. This is accomplished via consensus algorithms (the 
following sections will provide more details about this process). 



Storage Layer 
The storage layer is in charge of persisting the state on durable storage. See the CNCF paper 
on storage for all the storage options available in this space. 
The storage layer can be highly optimized depending on the API interface exposed. For 
example, in the case of streaming systems, essentially only one kind of write operation is 
allowed (append a message at the end of the queue). This very specific use case can be highly 
optimized, for example, granting Kafka the ability to ingest an enormous amount of messages. 
On the other hand, in many cases, the access pattern can be so random that a generic storage 
subsystem can be used. RocksDB is one such implementation using an embeddable storage 
subsystem and there are several stateful workloads (SQL, noSQL, queue system, object 
storage, etc…) that are built on top of it.  

Replicas 
Replicas are a way to increase availability of a stateful workload. By having multiple replicas, 
the workload can continue servicing requests even when one of the replicas becomes 
unavailable. To do so, replicas’ state must be kept in sync. Replicas can work in master/slave or 
multimaster mode depending on the implementation. Master replicas can execute both read and 
write type of requests, while normally slave replicas can only carry out read requests. In 
addition, replicas can also help with scaling horizontally the workload. 
 

 
 
Replicas are called in different ways by different kinds of stateful workloads, but the concept 
remains roughly the same. The following are some such examples from popular products: 
 

Product Name Name used for Replicas 

ElasticSearch replica 

https://bit.ly/cncf-storage-whitepaperV2
https://bit.ly/cncf-storage-whitepaperV2
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/blob/master/USERS.md


Cassandra keyspace 

MongoDB replica set 

CockroachDB replica 

 

Shards 
Shards are a way to increase the general throughput of the workload. Usually, the state space is 
broken down into two or more shards based on a hashing algorithm. The client or a proxy 
decides where to send requests based on the computed hash. This dramatically increases 
horizontal scalability, whereas historically for RDBMS, vertical scaling was often the only 
practical approach. 

From an availability perspective, shards do not have a significant impact, although they can 
decrease the MTTF of the system as a whole. Each shard is an island, and the same availability 
considerations that apply to a non-sharded database also apply to each individual shard. 
Stateful workloads can have replicas of shards which sync their state to increase the availability 
of each individual shard. 

 

Shards, however, while allowing for horizontal scalability, introduce the additional complication 
of needing to maintain consistency between them. If a transaction involves multiple shards, 
there needs to be a method to ensure that all of the involved shards are coordinated into 
participating in their portion of the transaction. 

Shards also introduce the issue of deciding how to divide the data. If one has a single 
data-space that needs sharding, the decision is relatively simple. However, when there are 
multiple data-spaces in a single database that need sharding, it can be difficult to calculate the 
optimal sharding policy. Unbalanced or unoptimized shards can impact the availability and 
performance of the system. 



Shards are widely adopted in modern databases to allow for unbounded scalability and need to 
be taken into consideration especially with regard to the multi-shard consistency issue. 

Shards are called in different ways by different kinds of stateful workloads, but the concept 
remains roughly the same. Examples include: 
 
 

Product Name Name used for Shards 

ElasticSearch index 

Cassandra partition 

MongoDB shards 

CockroachDB range 

 

Putting it all together 
The following diagram summarizes many of the concepts that have been discussed thus far and 
consists of a deployment of a stateful workload with two shards. Each shard has 3 replicas with 
independent storage volumes. 

 
 



Consensus Protocols 
Consensus Protocols allow for the coordination of distributed processes by agreeing on the  
actions that will  be taken. 
Two major families of consensus protocols can be identified: Shared state (between instances) 
and unshared state. 
 
Shared state better suits the replicas coordination use case while unshared state is preferred by 
the shard coordination use case. 
 
In shared state consensus protocol, only the strict majority of the instances need to agree on the 
proposed action, while in unshared state consensus protocol all of the instances need to agree 
or else the transaction fails. 
 
Consensus protocols should be treated in a similar manner as encryption algorithms; only those 
that have been thoroughly tested and validated should be trusted. 

Shared State Consensus Protocols 
A component of shared state consensus protocols is a leader election process. After an 
agreement from a strict majority of the members of a stateful workload cluster, a leader is 
designated  as the ultimate and undiscussed owner of the state. 
 
As long as the strict majority of the elements of the cluster can communicate with each other, 
the cluster can continue to operate in a non-degraded state (without violating the CAP theorem). 
This results in a stateful system that is both consistent and available, while sustaining a number 
of failures. 
 
In a cluster of two, if a member is lost, the remaining member does not represent the strict 
majority. In a cluster of three, if a member is lost, the two remaining members do represent the 
strict majority. As a consequence, for a stateful workload that implements a leader election 
protocol, there must be at least three nodes to preserve availability and consistency in the 
presence of one failure (HA-1). 
 
As of today, there are two main generally accepted and formally proven consensus algorithms 
based on leader election: 

●​ Paxos - Generally considered very efficient, but can be difficult  to understand and is 
challenged by several real world corner cases. 

●​ Raft - Generally considered easy to understand for most real life scenarios, even though 
it is less efficient. 

 
Most of the new stateful software tends to be based on Raft as it is simpler to implement. 

https://en.wikipedia.org/wiki/Leader_election
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Raft_(computer_science)


Reliable Replicated State Machines 
A replicated state machine (RSM) is a system that executes the same set of operations, in the 
same order, on several processes. A reliable replicated state machine relies on a consensus 
protocol to ensure that a set of operations are agreed upon and executed in absolute order by 
all the instances of a stateful workload. 
 
Notice that given the concept of log of operations in the Raft consensus protocol, with Raft it is 
easier to implement a Reliable Replicated State Machine.  

Reliable Replicated Data Store 
Reliable Replicated Data Store builds on the concept of reliably replicated state machines. The 
goal of the replicated state machine is to store data in datastores. 
Reliably replicated data stores are a foundational building block of modern stateful workloads 
and govern how replicas are synchronized. 
 

 
 
The previous diagram depicts how a Reliable Replicated Data store can be created by 
combining a reliable Replicated State Machine and a Storage Layer. 

https://en.wikipedia.org/wiki/State_machine_replication
https://sre.google/sre-book/managing-critical-state/#reliable-replicated-state-machines
https://en.wikipedia.org/wiki/Raft_(algorithm)#Log_replication
https://sre.google/sre-book/managing-critical-state/#reliable-replicated-datastores-and-configuration-stores


Unshared State Consensus Protocols 
Unshared state consensus protocols can be used to coordinate processes by agreeing on some 
action to perform. Notice that the action can be different for each of the processes involved. For 
this reason a coordinator is needed to orchestrate the involved processes and keep track of 
what action each process needs to perform. Unshared state consensus protocols are apt at 
coordinating cross-shard requests. 

2PC 
2PC (two-phase commit) is a specialized form of consensus protocol used for coordination 
between participants in a distributed atomic transaction to decide on whether to commit or abort 
(roll back) the transaction. 2PC is not resilient to all possible failures, and in some cases, 
outside (e.g. human) intervention is needed to remedy failures. Also, it is a blocking protocol. All 
participants block between sending in their vote (see below), and receiving the outcome of the 
transaction from the co-ordinator. If the co-ordinator fails permanently, participants may block 
indefinitely, without outside intervention. In normal, non-failure cases, the protocol consists of 
two phases, whence it derives its name:  

1.​ The commit-request phase (or voting phase), in which a coordinator requests all 
participants to take the necessary steps for either committing or aborting the transaction 
and to vote, either "Yes" (on success) , or "No" (on failure)  

2.​ The commit phase, in which case the coordinator decides whether to commit (if all 
participants have voted "Yes") or abort, and notifies all participants accordingly. 

3PC 
3PC adds an additional phase to the 2PC protocol to address the indefinite blocking issue 
mentioned above. But 3PC still cannot recover from network segmentation, and due to the 
additional phase, requires more network round-trips, resulting in higher transaction latency 
 

Examples of consensus protocol used by stateful workloads 
The following table illustrates several stateful workloads products and their choices in terms of 
consensus protocols. 
 

Product Replica consensus protocol Shard consensus protocol  

Etcd Raft N/A (no support for shards) 

Consul Raft N/A (no support for shards) 

Zookeeper Atomic Broadcast (a derivative 
of Paxos) 

N/A (no support for shards) 

ElasticSearch Paxos N/A (No support for transactions) 



Cassandra Paxos Supported, but details are not 
available. 

MongoDB Paxos Homegrown protocol. 

CockroachDB Raft 2PC 

YugabyteDB Raft 2PC 

TiKV Raft Percolator 

Spanner Raft 2PC+high-precision time service 

Kafka A custom derivative of PacificA Custom Implementation of 2PC 

 

Cloud Native Disaster Recovery - An Example 
Reference Design 
This section describes two reference implementation approaches to cloud native disaster 
recovery as defined at the beginning of this document. The first approach features strong 
consistency, while the second is an eventual consistency approach. 
 

Strong Consistency 
A strong consistency cloud native disaster recovery deployment can be built by picking a 
stateful workload that favors consistency in the CAP theorem. 
The high-level architecture is displayed in the following diagram: 



 

As we can see a global load balancer distributes traffic to the datacenters. The global load 
balancer should be able to sense the application health in each datacenter with the use of 
health checks. The global load balancer should also be able to implement different load 
balancing policies. A common load balancing policy in these scenarios is low latency, where a 
consumer is redirected to the closest data center, using latency as the metrics for distance.  

The traffic may reach directly the stateful workload after being load balanced, but more typically 
it will reach some stateless front-end tier. The front-end tier will access the stateful workload in 
the same locality. 

The stateful workload can communicate in an east-west fashion with the other instances 
deployed in the other region/datacenters in order to sync the state.  

When a disaster occurs, the global load balancer will detect the unavailability of one of the data 
centers and redirect all traffic to the remaining active datacenters. No action needs to occur on 
the stateful workload as it will  manage the loss of a cluster member. Likewise when normal 
operations are resumed the stateful workload will reorganize itself and the recovered instances 
will become active after catching up with any state loss they may have incurred into. Once the 
recovered instances become active again the global load balancer will sense that and will 
resume serving traffic to the recovered data center or regions. No human intervention is needed 
in either case. 

Strongly consistent deployments guarantee an RPO of exactly zero. 



Given that in order to guarantee consistency messages have to be replicated across 
datacenters which have possibly high-latency between them, these architectures may not be 
suitable for all the applications, especially not for very latency-sensitive applications. 

Considerations on network partitioning 

Network partitioning is a situation that requires some attention in this kind of deployments. 
Network partitioning is different from a disaster situation that takes down an entire datacenter as 
we have described previously. Here is what a network partition might look like: 

 
In this situation connectivity between datacenter one and the other datacenters is not possible. 
Notice that connectivity from outside the data centers may still be possible so from the global 
load balancer perspective all data centers are still available. 
In this situation the because the stateful workload instances in the datacenter 1 cannot reach 
quorum they will make themselves unavailable. If the global load balancer health check is 
sophisticated enough to detect that the stateful workload instances are not available, 
connections will be redirected to the available data centers and the system will behave as when 
in a disaster situation. If the health checks are not sophisticated enough, consumers connecting 
to datacenter one will receive an error. In either case consistency of data is guaranteed. 

Kubernetes implementation considerations 

A possible implementation of the described above active/active strongly consistent strategy in 
kubernetes is depicted below: 



 

In order to implement this architecture we need the following capabilities: 

1.​ A global load balancer with the ability to define health checks. The global load balancer 
should be configured based on the state of kubernetes clusters. Ideally an operator 
would do that.  

2.​ The ability for the instances of the stateful workload to communicate in an east-west 
fashion between the clusters. This can be achieved in many ways depending on the CNI 
implementations. For some CNI implementations, pods are directly routable from outside 
the pod’s network, in this case cross-cluster discoverability is needed. Other CNI 
implementations define an overlay network for the pods, in this case an overlay network 
to overlay network routability is needed. This can be implemented via a network tunnel. 

Surprisingly, the capabilities needed for cloud native disaster recovery fall in the networking area 
rather than in the storage area as one might have expected.rea as one might have expected. 

Eventual Consistency 

An eventually consistent cloud native disaster recovery deployment can be built by picking a 
stateful workload that favors availability in the CAP theorem. 
The architecture will look as follows: 
 

https://github.com/kubernetes-sigs/mcs-api


 
For this discussion, we define as an eventual consistent workload a workload that persists data 
locally first and then propagates the changes to its peers. This simplification is needed to make 
the discussion tractable and does not change the conclusions. Many eventually consistent 
workloads allow you to define the number of copies of the data that have to have been persisted 
before the transaction can be considered successful. As long as the number of copies is lesser 
than the strict majority, we still have an eventual consistent behavior, if the number of consistent 
copies is equal or higher than the strict majority of the instances, then we fall in the strongly 
consistent camp (see paragraph above). 
Differently from a strongly consistent deployment, here we need only two datacenters. 
When a disaster occurs, the global load balancer will detect the unavailability of one of the data 
centers and start direct connections to the other one. This is similar to what happens with 
strongly consistent deployments, resulting in a RTO close to zero. The main difference from a 
strongly consistent deployment is that there can be some transactions that have been persisted 
locally in the datacenter that is hit by the disaster and have not been synched with the other 
datacenter. The consequence of this is that the RPO of this architecture is not zero. Under 
normal circumstances the RPO will be very small, likely a multiple of the latency between the 
two datacenters. But if the system is under stress unsynced transactions will accumulate on one 



side with no upper bound, yielding a theoretically unbounded RPO (however this is an unlikely 
situation). 
When the disaster situation is recovered, the instances of the stateful workload running in the 
restored site will sync back automatically and, when ready, the global load balancer will start 
distributing traffic to both datacenters. No human intervention is required. 

Considerations on network partitioning 
A network partition scenario for an eventual consistent deployment looks as the following 
diagram: 

 
As shown in the picture, connectivity between datacenter one and two is interrupted. From a 
consumer and load balancer perspective though, both data centers are still available. 
Consumers of this service will be able to connect and operate normally, but the state of the 
stateful workload will diverge between the two sites. 
When the partition condition is removed, the state will converge based on a state reconciliation 
logic. Notice that this logic does not guarantee that the final state will be correct in the 
application-specific business logic sense.  



Kubernetes implementation considerations 

A possible implementation of the described above active/active eventual consistent strategy in 
kubernetes is depicted below: 

 
 
The same implementation-related considerations as for the strongly consistent deployment 
apply here, the main difference is that we need only two data centers/regions.  
 



Examples of Active/Passive Disaster Recovery 
Strategies 
This section describes traditional disaster recovery strategies. These strategies employ active / 
passive approaches and can be easily implemented with two datacenters. The active / passive 
nature of these approaches yields worse results than strategies based active / active 
approaches with regards to the two key metrics of disaster recovery: RTO and RPO. That said, 
these approaches are still possible in cloud native environments. 

In an active/passive scenario, the overall architecture is depicted below: 
 

 
 



In the preceding diagram, a global load balancer directs traffic to one of the data centers. The 
application is configured to replicate its state to the passive site. 
 
When a disaster strikes, the following needs to occur: 

1.​ The application is activated (either started, or configured to be master) in the passive 
site. 

2.​ The global load balancer needs to be switched to direct traffic to the passive site. 
 
These actions can be automated and performed in a relatively timely fashion. However, the 
decision to trigger that automation depends on declaring a disaster on the primary site (a task 
that typically involves human interaction). As a result, downtime is typically experienced by the 
application. 
 
Once the disaster has been resolved, traffic should be  switched back to the primary site. Likely, 
the easiest way this can be accomplished is to perform the disaster procedure in the opposite 
direction. Once again, while this procedure can be automated, it will still likely require some 
downtime. 
 
Previously, we described a very generic process to design an active/passive disaster recovery 
scenario. The entire architecture hinges on the ability to replicate state from the active site to the 
passive site. The following are several ways this task can be accomplished. Keep in mind that 
each workload is different, so these are various approaches that could be used. The ultimate 
choice depends on the applicability for the target environment. 

Backups and Restore 

While performing backups can provide invaluable protection against application 
misconfiguration, bugs or human error, there are performance implications that are applied to a 
DR strategy. In fact, this approach introduces an RPO that is equal to the frequency of backup 
for the RTO discussed above. 
Modern solutions try to backup the stateful workload while it is serving requests. Many 
databases must be quiesced before taking a snapshot of their storage or else the snapshot risks 
being inconsistent preventing the database instance on the recovery side from starting. 
Quiescing, which roughly corresponds to stopping processing requests and flushing all the OS 
file caches, might be done very quickly, giving the illusion to the user of uninterrupted service. 



 

 
Considering recreating this deployment with Kubernees, it should be noted that Kubernetes 
does not natively offer the abstractions of backup and restores (snapshots help close the gap), 
however there are several storage vendors that have introduced backup and restore options as 
operators. 
 



Volume-Level Replication 
With volume replication, state is replicated at the storage level. Volume replication can be 
synchronous (typically used on low latency scenarios) or asynchronous. In either case, the 
application must be designed to operate in a way that guarantees storage is always consistent, 
or at least recoverable. 

 
Most storage solutions support volume replication, however note that many stateful workloads 
do not cope well with volume-level replication and there is a risk of data corruption when using 
this approach. 
 
When implementing this approach in Kubernetes, one should consider that Kubernetes does not 
offer a standard primitive to set up volume replication between two different clusters. So, at least 
for the time being, a non native Kubernetes-standard extensions must be used to support this 
capability. 
 
Configuring volume replication outside of the Kubernetes abstraction is always a possibility. 
However, since the static nature of this method of configuration usually conflicts with dynamic 
volume provisioning, careful considerations must be taken into the design. 



Application Level Replication 
With application level replication, the replication is facilitated by the application itself. Again, the 
replication can be synchronous or asynchronous. Because the replication is application-driven,, 
there is a guarantee that storage will always be in a consistent state. Most traditional databases 
can be configured in this fashion with a primary running in the active site, and a secondary 
running in the passive site. 
 

 
 
In order for the primary to synchronize with the secondary, it must be possible to establish a 
connection from the master instance to the slave instance (and vice-versa when recovering after 
a disaster).  
 
A possible solution to address this issue is to establish a network tunnel between the clusters in 
such a way that pods in one cluster can directly communicate to pods in the other clusters. 



 
Unfortunately, Kubernetes does not offer a standard abstraction to create network tunnels 
between clusters. However, there are community projects that offer this functionality including 
Submariner and Cilium. 
 

https://submariner.io/
https://cilium.io/
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