
Cloud Native Disaster Recovery for
Stateful Workloads
NOTE: this document is available via this link: https://bit.ly/cncf-cloud-native-DR

Introduction
The purpose of this document is to introduce a new way of thinking about disaster recovery in a
cloud native setting.

To do so, we introduce the concept of Cloud Native Disaster Recovery and which characteristics
it should have.

To be able to see how Cloud Native Disaster Recovery is possible, we provide the reader with
some high-level understanding of the problems that need to be addressed when designing a
disaster recovery strategy for stateful applications in a cloud native setting.

In section one, this document covers some definitions around basic availability and consistency
concepts and in section two it explains availability and consistency-related concepts that are
intrinsic to every distributed stateful workload and that determine the logical design of these
applications. In the third section, it provides an overview of the landscape for consensus
protocols needed to coordinate different instances of stateful workload clusters. Finally in the
fourth and last section it provides some archetypal disaster recovery strategies for container
native stateful workloads.

Cloud Native Disaster Recovery - a Definition
We can introduce Cloud Native Disaster Recovery (CNDR) with a compare and contrast table
with more traditional disaster recovery approaches (note that for traditional disaster recovery we
mean the typical approach used by most companies in pre-cloud era):

Concern Traditional DR Cloud Native DR

Type of deployment active/passive, rarely
active/active

Active / active

Disaster Detection and
Recovery Trigger

Human Autonomous

Disaster Recovery Procedure
execution

Mix of manual and automated
tasks

Automated

https://bit.ly/cncf-cloud-native-DR

Recovery Time Objective
(RTO)

From close to zero to hours Close to zero

Recovery Point Objective
(RPO)

From zero to hours Exactly zero for strongly
consistent deployments.
Theoretically unbounded,
practically close to zero for
eventual consistent
deployments.

DR Process Owner Often the Storage Team Application Team

Capabilities needed for DR From storage
(backup/restore, volume
sync)

From networking (east-west
communication, global load
balancer)

* The information in this table are generally accepted attributes and measurements for Disaster
Recovery architectures

Many traditional organizations have active / passive deployments when it comes to stateful
workloads. Sometimes the stateless tier of the application is deployed in an active / active
fashion, but the stateful part (database, storage layer) is rarely. In cloud native disaster recovery
both stateless and stateful tiers can be deployed in an active / active fashion. In this case by
active / active we mean that each and every instance of the stateful workload can take write and
read requests.
Notice that active / passive designs are still possible (and common) in cloud deployments, see
active / passive examples for more information about that approach.

In traditional disaster recovery, usually there is a human decision involved in acknowledging that
a disaster occurred and the Disaster Recovery procedure needs to be initiated. In CNDR, the
system needs to autonomously (and quickly) make the decision that a fault has occurred and
react to it.

In traditional disaster recovery the actual recovery procedure is often a mix of human action and
automated tasks. This is normally due to the complexity of the recovery procedure itself and the
fact that it is rarely exercised and, therefore, typically there has not been a focused investment
in automating it. In CNDR, the recovery procedure must be fully automated. Combining this with
the previous property, the result is that, in CNDR, a disaster event must be treated in a similar
way as a HA event.

In traditional DR RTO and RPO (which are the two main metrics to measure a DR procedure
effectiveness and will be defined later in the document) can vary from close to zero to several
hours. The general narrative is that these metrics can be brought as close to zero as one wants
but the cost of doing so grows exponentially as one approaches zero. In CNDR it is generally
easier and more cost effective to achieve zero or close to zero. As we will see below,
advancements in technology have made this possible without incurring prohibitive costs.

The ownership of the DR procedure formally has always belonged to the app team, which is
accountable for business continuity, but often in traditional DR the app team just inherits the DR
SLAs of the storage that it uses, de facto yielding the ownership of the DR procedure to the
storage team. In CNDR the responsibility is squarely on the application teams who have to
choose stateful middleware that is capable of achieving the desired DR SLAs.

Finally, in traditional DR, the main capabilities used to build the disaster recovery strategy often
come from the storage team, in the form of ability to do backup and restore or to configure
volume replications. As we will see later in this document, the main capabilities needed for
building CNDR strategies come from networking, and specifically regards the ability to
communicate in a east-west pattern between the geographies of data-center involved in the
design and the ability to deploy a global load balancer that can direct traffic to the active
locations.

Considerations on Availability and Consistency
A distributed stateful application needs to deal with Availability (the ability to successfully serve
requests) and Consistency (the property of keeping state consistent across the various
instances that constitute the distributed workload). There is a significant amount of literature
around these concepts, here we are going to recap what is important for the sake of our disaster
recovery conversation.

Failure domain
Failure domains are areas of an IT system in which the components within that area may fail all
at the same time due to a single event.
Examples of failure domains are: CPUs, boards, processes, nodes, racks, entire kubernetes
clusters, network zones and data centers.

As one can ascertain from these examples, failure domains exist at different scales.
When deploying a distributed stateful workload, one should consider the various failure domains
at hand, and make sure that the various instances of the stateful workload are positioned in
different failure domains.

In Kubernetes, there are standard node labels (topology.kubernetes.io/region,
topology.kubernetes.io/zone,and kubernetes.io/hostname) to capture the idea of failure domains
in a cluster. Designers of stateful workloads should consider creating anti-affinity rules based on
those labels when packaging their software to be deployed in Kubernetes.

High Availability
High Availability (HA) is a property of a system that allows it to continue performing normally in
the presence of failures. Normally, with HA, it is intended the ability to withstand exactly one

https://kubernetes.io/docs/reference/labels-annotations-taints/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://en.wikipedia.org/wiki/High_availability

failure. If there is a desire to withstand more than one failure, such as two, it can be written as
HA-2. Similarly, three failures can be written as HA-3.

The foundational idea of HA is that the Mean Time to Repair (MTTR), a failure must be much
shorter than the Mean Time Between Failures (MTBF) (MTTR << MTBF), allowing something or
someone to repair the broken component before another components breaks (two broken
components would imply a degraded system for HA-1).

It is often understated that something needs to promptly notify a system administrator that the
system has a broken component (by the very same definition of HA one should not be able to
determine a degradation solely by the normal outputs of the system).

As a result, a proper monitoring and alerting system must be in place. Otherwise, an HA system
would just keep functioning until the second failure occurs (~2xMTBF) and then still be broken,
defeating the initial purpose of HA.

Given a failure domain, HA can be thought of as answering the question: What happens to our
workload when one of the components of this failure domain breaks?

With regards to stateful workloads, HA implies that one needs multiple instances (at least two)
of each workload, and that the state of these instances needs to be replicated between them.

If, for example, one builds a stateful system with two instances and instance A suddenly cannot
contact instance B, instance A will have to make a decision whether to keep working or not.
Instance A cannot know whether instance B is down or healthy-but-unreachable. It is also
possible that instance A is unreachable. This is known as a split brain scenario.

In practice, in a distributed system, failures are indistinguishable from network partitioning where
the presumably failed component has become unreachable due to a network failure.

If a piece of software is designed to keep working when the peers are unreachable, its state
may become inconsistent. On the other hand, if a piece of software is designed to stop when
the peers are unreachable, then it will maintain consistency, but will not be available.

https://en.wikipedia.org/wiki/Mean_time_to_repair
https://en.wikipedia.org/wiki/Mean_time_between_failures
https://en.wikipedia.org/wiki/Split-brain_(computing)

Consistency
Consistency is the property of a distributed stateful workload where all the instances of the
workload “observe” the same state.
The realization that by temporarily relaxing consistency, one could build stateful workloads that
horizontally scale to a theoretically unlimited size gave birth to a Cambrian explosion of
eventually consistent workloads. Typically these workloads expose a NoSQL interface (as the
SQL interface is associated with strict consistency), however that is not necessary.

When an issue arises in eventually consistent workloads, two or more sections of the cluster are
allowed to have a different state (drift) and to continue serving requests based on the state
understood by each member of the cluster. When the issue is resolved, a conflict resolution
algorithm ultimately decides which of the available conflicting states wins. This process can take
some time, but it is guaranteed to end as long as no other changes occur.

Eventual consistency is not suitable in every scenario (for example financial applications often
need to be strictly consistent), and even when it’s applicable, there are several areas of concern
including:

1.​ No SLA that can be placed on how long diverged states will take to converge. In
situations where the state keeps changing rapidly, the time that it takes to catch up may
be lengthy or never resolve.

2.​ Eventual consistency does not mean eventual correctness. While after the conflict
resolution phase takes place all instances will be in a consistent state, there is no
guarantee that they will end up in the correct state given the logical requirements of the
business problem at hand.

The realization of the second point mentioned above has pushed many organizations to seek
strictly consistent and available solutions.

The CAP Theorem
The relation between consistency and availability for distributed stateful workloads is formalized
in the CAP theorem. Simply put, the CAP theorem states in case of network partitioning (P), one
can choose between consistency (C) or availability (A), but cannot have both.

During a network partition, the stateful workload will need to operate in a degraded state: either
read-only if the application chooses consistency, or inconsistent if the application chooses
availability.

https://en.wikipedia.org/wiki/CAP_theorem

A corollary of the CAP theorem called PACELC (if Partition, then either Availability or
Consistency, Else then either Latency or Consistency) states that under normal conditions
(absence of a network partition), one needs to choose between latency (L) or consistency (C).
That is to say that under normal circumstances, one can optimize for either speed or
consistency of the data, but not for both.

The following table illustrates several stateful workload and their choice in terms of PACELC
Theorem:

Product CAP Choice (either
Availability or Consistency)

PACELC Choice (either
Latency or Consistency)

DynamoDB Availability Latency

Cassandra Availability Latency

MySQL Consistency Consistency

MongoDB Consistency Consistency

Source wikipedia, see the link for more examples.

The definition of network partition is described with mathematical precision by the CAP theorem
and goes beyond the scope of this document, however an approximate but good mental model
is the following: if the strict majority of instances can communicate with each other, there is no
network partitioning. Otherwise, a network partition has occurred.

So, in terms of HA (i.e. when we account for one failure), if there are three or more instances of
a stateful workload, for the CAP theorem we can have both availability and consistency. In
general, if the stateful workload is deployed across three or more failure domains, it can be

https://en.wikipedia.org/wiki/PACELC_theorem
https://en.wikipedia.org/wiki/PACELC_theorem

designed to be always available and consistent with respect to the failure of one of those failure
domains.

Disaster Recovery
Disaster recovery (DR) refers to the strategy for recovering from the complete loss of a
datacenter. The failure domain in this situation is the entire datacenter.

Given a failure domain, DR can be thought of as answering the question: What happens to the
workload when all of the components of this failure domain break?

Disaster recovery is usually associated with two metrics:

●​ Recovery Time Objective (RTO): the time it takes to have systems back online after a
datacenter fails.

●​ Recovery Point Objective (RPO): time interval of state loss from the last saved state to
the time the datacenter fails.

In the old days, these metrics were measured in hours, and required that users followed a set of
manual steps to recover a system.

Most DR strategies employed an active/passive approach, in which one primary datacenter was
handling the load under normal circumstances and a secondary datacenter was activated only if
the primary went down.

But, having an entire datacenter sitting idle was recognized as a waste. As a result, more
active/active deployments were employed, especially for stateless applications.

With an active/active deployment, one can set the expectations that both RTO and RPO can be
reduced to almost zero, by virtue of the fact that if one datacenter fails, traffic can be
automatically directed to the other datacenter (through the use of health checks). This
configuration is also known as disaster avoidance.

Given the discussion of the CAP theorem, to achieve a disaster avoidance strategy where the
stateful workload is always available and consistent, one needs to spread the workload across
at least three data centers.

https://en.wikipedia.org/wiki/Disaster_recovery
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Time_Objective
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Point_Objective
https://searchservervirtualization.techtarget.com/feature/The-difference-between-disaster-avoidance-and-recovery

Anatomy of a Stateful application
An argument can be made that all distributed stateful workloads share the same logical internal
structure because, after all, they are all trying to solve the same complex problem: keeping a
shared state consistent while at the same time processing requests in an efficient way.
Granted that actual implementations can greatly vary, the following diagram represents the
logical internal structure of a distributed stateful workload:

API Layer
The API layer is the component that exposes the externally visible functionality of the distributed
stateful workload. This layer deeply characterizes the kind of workload:

●​ Block device API (iSCSI, FiberChannel, ceph rbd, …)
●​ Distributed File System (NFS, CIFS …)
●​ SQL Database (SQL over various binary protocols: mysql, postgresql …)
●​ NOSQL Database (various kinds of no sql database protocol)
●​ Key Value store and other cache systems
●​ Message queue (JMS, AMQP, kafka…)

The API layer takes care of of the following concerns

●​ Authentication and authorization
●​ Input validation
●​ Access strategy identification (i.e. how to efficiently access storage in order to respond

as quickly as possible to the current request)
●​ Orchestration of the requests and/or coordination with other instances.

Coordination Layer
The coordination layer ensures replicas and shards correctly participate in the request along
with updating their status if needed. This is accomplished via consensus algorithms (the
following sections will provide more details about this process).

Storage Layer
The storage layer is in charge of persisting the state on durable storage. See the CNCF paper
on storage for all the storage options available in this space.
The storage layer can be highly optimized depending on the API interface exposed. For
example, in the case of streaming systems, essentially only one kind of write operation is
allowed (append a message at the end of the queue). This very specific use case can be highly
optimized, for example, granting Kafka the ability to ingest an enormous amount of messages.
On the other hand, in many cases, the access pattern can be so random that a generic storage
subsystem can be used. RocksDB is one such implementation using an embeddable storage
subsystem and there are several stateful workloads (SQL, noSQL, queue system, object
storage, etc…) that are built on top of it.

Replicas
Replicas are a way to increase availability of a stateful workload. By having multiple replicas,
the workload can continue servicing requests even when one of the replicas becomes
unavailable. To do so, replicas’ state must be kept in sync. Replicas can work in master/slave or
multimaster mode depending on the implementation. Master replicas can execute both read and
write type of requests, while normally slave replicas can only carry out read requests. In
addition, replicas can also help with scaling horizontally the workload.

Replicas are called in different ways by different kinds of stateful workloads, but the concept
remains roughly the same. The following are some such examples from popular products:

Product Name Name used for Replicas

ElasticSearch replica

https://bit.ly/cncf-storage-whitepaperV2
https://bit.ly/cncf-storage-whitepaperV2
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/blob/master/USERS.md

Cassandra keyspace

MongoDB replica set

CockroachDB replica

Shards
Shards are a way to increase the general throughput of the workload. Usually, the state space is
broken down into two or more shards based on a hashing algorithm. The client or a proxy
decides where to send requests based on the computed hash. This dramatically increases
horizontal scalability, whereas historically for RDBMS, vertical scaling was often the only
practical approach.

From an availability perspective, shards do not have a significant impact, although they can
decrease the MTTF of the system as a whole. Each shard is an island, and the same availability
considerations that apply to a non-sharded database also apply to each individual shard.
Stateful workloads can have replicas of shards which sync their state to increase the availability
of each individual shard.

Shards, however, while allowing for horizontal scalability, introduce the additional complication
of needing to maintain consistency between them. If a transaction involves multiple shards,
there needs to be a method to ensure that all of the involved shards are coordinated into
participating in their portion of the transaction.

Shards also introduce the issue of deciding how to divide the data. If one has a single
data-space that needs sharding, the decision is relatively simple. However, when there are
multiple data-spaces in a single database that need sharding, it can be difficult to calculate the
optimal sharding policy. Unbalanced or unoptimized shards can impact the availability and
performance of the system.

Shards are widely adopted in modern databases to allow for unbounded scalability and need to
be taken into consideration especially with regard to the multi-shard consistency issue.

Shards are called in different ways by different kinds of stateful workloads, but the concept
remains roughly the same. Examples include:

Product Name Name used for Shards

ElasticSearch index

Cassandra partition

MongoDB shards

CockroachDB range

Putting it all together
The following diagram summarizes many of the concepts that have been discussed thus far and
consists of a deployment of a stateful workload with two shards. Each shard has 3 replicas with
independent storage volumes.

Consensus Protocols
Consensus Protocols allow for the coordination of distributed processes by agreeing on the
actions that will be taken.
Two major families of consensus protocols can be identified: Shared state (between instances)
and unshared state.

Shared state better suits the replicas coordination use case while unshared state is preferred by
the shard coordination use case.

In shared state consensus protocol, only the strict majority of the instances need to agree on the
proposed action, while in unshared state consensus protocol all of the instances need to agree
or else the transaction fails.

Consensus protocols should be treated in a similar manner as encryption algorithms; only those
that have been thoroughly tested and validated should be trusted.

Shared State Consensus Protocols
A component of shared state consensus protocols is a leader election process. After an
agreement from a strict majority of the members of a stateful workload cluster, a leader is
designated as the ultimate and undiscussed owner of the state.

As long as the strict majority of the elements of the cluster can communicate with each other,
the cluster can continue to operate in a non-degraded state (without violating the CAP theorem).
This results in a stateful system that is both consistent and available, while sustaining a number
of failures.

In a cluster of two, if a member is lost, the remaining member does not represent the strict
majority. In a cluster of three, if a member is lost, the two remaining members do represent the
strict majority. As a consequence, for a stateful workload that implements a leader election
protocol, there must be at least three nodes to preserve availability and consistency in the
presence of one failure (HA-1).

As of today, there are two main generally accepted and formally proven consensus algorithms
based on leader election:

●​ Paxos - Generally considered very efficient, but can be difficult to understand and is
challenged by several real world corner cases.

●​ Raft - Generally considered easy to understand for most real life scenarios, even though
it is less efficient.

Most of the new stateful software tends to be based on Raft as it is simpler to implement.

https://en.wikipedia.org/wiki/Leader_election
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Raft_(computer_science)

Reliable Replicated State Machines
A replicated state machine (RSM) is a system that executes the same set of operations, in the
same order, on several processes. A reliable replicated state machine relies on a consensus
protocol to ensure that a set of operations are agreed upon and executed in absolute order by
all the instances of a stateful workload.

Notice that given the concept of log of operations in the Raft consensus protocol, with Raft it is
easier to implement a Reliable Replicated State Machine.

Reliable Replicated Data Store
Reliable Replicated Data Store builds on the concept of reliably replicated state machines. The
goal of the replicated state machine is to store data in datastores.
Reliably replicated data stores are a foundational building block of modern stateful workloads
and govern how replicas are synchronized.

The previous diagram depicts how a Reliable Replicated Data store can be created by
combining a reliable Replicated State Machine and a Storage Layer.

https://en.wikipedia.org/wiki/State_machine_replication
https://sre.google/sre-book/managing-critical-state/#reliable-replicated-state-machines
https://en.wikipedia.org/wiki/Raft_(algorithm)#Log_replication
https://sre.google/sre-book/managing-critical-state/#reliable-replicated-datastores-and-configuration-stores

Unshared State Consensus Protocols
Unshared state consensus protocols can be used to coordinate processes by agreeing on some
action to perform. Notice that the action can be different for each of the processes involved. For
this reason a coordinator is needed to orchestrate the involved processes and keep track of
what action each process needs to perform. Unshared state consensus protocols are apt at
coordinating cross-shard requests.

2PC
2PC (two-phase commit) is a specialized form of consensus protocol used for coordination
between participants in a distributed atomic transaction to decide on whether to commit or abort
(roll back) the transaction. 2PC is not resilient to all possible failures, and in some cases,
outside (e.g. human) intervention is needed to remedy failures. Also, it is a blocking protocol. All
participants block between sending in their vote (see below), and receiving the outcome of the
transaction from the co-ordinator. If the co-ordinator fails permanently, participants may block
indefinitely, without outside intervention. In normal, non-failure cases, the protocol consists of
two phases, whence it derives its name:

1.​ The commit-request phase (or voting phase), in which a coordinator requests all
participants to take the necessary steps for either committing or aborting the transaction
and to vote, either "Yes" (on success) , or "No" (on failure)

2.​ The commit phase, in which case the coordinator decides whether to commit (if all
participants have voted "Yes") or abort, and notifies all participants accordingly.

3PC
3PC adds an additional phase to the 2PC protocol to address the indefinite blocking issue
mentioned above. But 3PC still cannot recover from network segmentation, and due to the
additional phase, requires more network round-trips, resulting in higher transaction latency

Examples of consensus protocol used by stateful workloads
The following table illustrates several stateful workloads products and their choices in terms of
consensus protocols.

Product Replica consensus protocol Shard consensus protocol

Etcd Raft N/A (no support for shards)

Consul Raft N/A (no support for shards)

Zookeeper Atomic Broadcast (a derivative
of Paxos)

N/A (no support for shards)

ElasticSearch Paxos N/A (No support for transactions)

Cassandra Paxos Supported, but details are not
available.

MongoDB Paxos Homegrown protocol.

CockroachDB Raft 2PC

YugabyteDB Raft 2PC

TiKV Raft Percolator

Spanner Raft 2PC+high-precision time service

Kafka A custom derivative of PacificA Custom Implementation of 2PC

Cloud Native Disaster Recovery - An Example
Reference Design
This section describes two reference implementation approaches to cloud native disaster
recovery as defined at the beginning of this document. The first approach features strong
consistency, while the second is an eventual consistency approach.

Strong Consistency
A strong consistency cloud native disaster recovery deployment can be built by picking a
stateful workload that favors consistency in the CAP theorem.
The high-level architecture is displayed in the following diagram:

As we can see a global load balancer distributes traffic to the datacenters. The global load
balancer should be able to sense the application health in each datacenter with the use of
health checks. The global load balancer should also be able to implement different load
balancing policies. A common load balancing policy in these scenarios is low latency, where a
consumer is redirected to the closest data center, using latency as the metrics for distance.

The traffic may reach directly the stateful workload after being load balanced, but more typically
it will reach some stateless front-end tier. The front-end tier will access the stateful workload in
the same locality.

The stateful workload can communicate in an east-west fashion with the other instances
deployed in the other region/datacenters in order to sync the state.

When a disaster occurs, the global load balancer will detect the unavailability of one of the data
centers and redirect all traffic to the remaining active datacenters. No action needs to occur on
the stateful workload as it will manage the loss of a cluster member. Likewise when normal
operations are resumed the stateful workload will reorganize itself and the recovered instances
will become active after catching up with any state loss they may have incurred into. Once the
recovered instances become active again the global load balancer will sense that and will
resume serving traffic to the recovered data center or regions. No human intervention is needed
in either case.

Strongly consistent deployments guarantee an RPO of exactly zero.

Given that in order to guarantee consistency messages have to be replicated across
datacenters which have possibly high-latency between them, these architectures may not be
suitable for all the applications, especially not for very latency-sensitive applications.

Considerations on network partitioning

Network partitioning is a situation that requires some attention in this kind of deployments.
Network partitioning is different from a disaster situation that takes down an entire datacenter as
we have described previously. Here is what a network partition might look like:

In this situation connectivity between datacenter one and the other datacenters is not possible.
Notice that connectivity from outside the data centers may still be possible so from the global
load balancer perspective all data centers are still available.
In this situation the because the stateful workload instances in the datacenter 1 cannot reach
quorum they will make themselves unavailable. If the global load balancer health check is
sophisticated enough to detect that the stateful workload instances are not available,
connections will be redirected to the available data centers and the system will behave as when
in a disaster situation. If the health checks are not sophisticated enough, consumers connecting
to datacenter one will receive an error. In either case consistency of data is guaranteed.

Kubernetes implementation considerations

A possible implementation of the described above active/active strongly consistent strategy in
kubernetes is depicted below:

In order to implement this architecture we need the following capabilities:

1.​ A global load balancer with the ability to define health checks. The global load balancer
should be configured based on the state of kubernetes clusters. Ideally an operator
would do that.

2.​ The ability for the instances of the stateful workload to communicate in an east-west
fashion between the clusters. This can be achieved in many ways depending on the CNI
implementations. For some CNI implementations, pods are directly routable from outside
the pod’s network, in this case cross-cluster discoverability is needed. Other CNI
implementations define an overlay network for the pods, in this case an overlay network
to overlay network routability is needed. This can be implemented via a network tunnel.

Surprisingly, the capabilities needed for cloud native disaster recovery fall in the networking area
rather than in the storage area as one might have expected.rea as one might have expected.

Eventual Consistency

An eventually consistent cloud native disaster recovery deployment can be built by picking a
stateful workload that favors availability in the CAP theorem.
The architecture will look as follows:

https://github.com/kubernetes-sigs/mcs-api

For this discussion, we define as an eventual consistent workload a workload that persists data
locally first and then propagates the changes to its peers. This simplification is needed to make
the discussion tractable and does not change the conclusions. Many eventually consistent
workloads allow you to define the number of copies of the data that have to have been persisted
before the transaction can be considered successful. As long as the number of copies is lesser
than the strict majority, we still have an eventual consistent behavior, if the number of consistent
copies is equal or higher than the strict majority of the instances, then we fall in the strongly
consistent camp (see paragraph above).
Differently from a strongly consistent deployment, here we need only two datacenters.
When a disaster occurs, the global load balancer will detect the unavailability of one of the data
centers and start direct connections to the other one. This is similar to what happens with
strongly consistent deployments, resulting in a RTO close to zero. The main difference from a
strongly consistent deployment is that there can be some transactions that have been persisted
locally in the datacenter that is hit by the disaster and have not been synched with the other
datacenter. The consequence of this is that the RPO of this architecture is not zero. Under
normal circumstances the RPO will be very small, likely a multiple of the latency between the
two datacenters. But if the system is under stress unsynced transactions will accumulate on one

side with no upper bound, yielding a theoretically unbounded RPO (however this is an unlikely
situation).
When the disaster situation is recovered, the instances of the stateful workload running in the
restored site will sync back automatically and, when ready, the global load balancer will start
distributing traffic to both datacenters. No human intervention is required.

Considerations on network partitioning
A network partition scenario for an eventual consistent deployment looks as the following
diagram:

As shown in the picture, connectivity between datacenter one and two is interrupted. From a
consumer and load balancer perspective though, both data centers are still available.
Consumers of this service will be able to connect and operate normally, but the state of the
stateful workload will diverge between the two sites.
When the partition condition is removed, the state will converge based on a state reconciliation
logic. Notice that this logic does not guarantee that the final state will be correct in the
application-specific business logic sense.

Kubernetes implementation considerations

A possible implementation of the described above active/active eventual consistent strategy in
kubernetes is depicted below:

The same implementation-related considerations as for the strongly consistent deployment
apply here, the main difference is that we need only two data centers/regions.

Examples of Active/Passive Disaster Recovery
Strategies
This section describes traditional disaster recovery strategies. These strategies employ active /
passive approaches and can be easily implemented with two datacenters. The active / passive
nature of these approaches yields worse results than strategies based active / active
approaches with regards to the two key metrics of disaster recovery: RTO and RPO. That said,
these approaches are still possible in cloud native environments.

In an active/passive scenario, the overall architecture is depicted below:

In the preceding diagram, a global load balancer directs traffic to one of the data centers. The
application is configured to replicate its state to the passive site.

When a disaster strikes, the following needs to occur:

1.​ The application is activated (either started, or configured to be master) in the passive
site.

2.​ The global load balancer needs to be switched to direct traffic to the passive site.

These actions can be automated and performed in a relatively timely fashion. However, the
decision to trigger that automation depends on declaring a disaster on the primary site (a task
that typically involves human interaction). As a result, downtime is typically experienced by the
application.

Once the disaster has been resolved, traffic should be switched back to the primary site. Likely,
the easiest way this can be accomplished is to perform the disaster procedure in the opposite
direction. Once again, while this procedure can be automated, it will still likely require some
downtime.

Previously, we described a very generic process to design an active/passive disaster recovery
scenario. The entire architecture hinges on the ability to replicate state from the active site to the
passive site. The following are several ways this task can be accomplished. Keep in mind that
each workload is different, so these are various approaches that could be used. The ultimate
choice depends on the applicability for the target environment.

Backups and Restore

While performing backups can provide invaluable protection against application
misconfiguration, bugs or human error, there are performance implications that are applied to a
DR strategy. In fact, this approach introduces an RPO that is equal to the frequency of backup
for the RTO discussed above.
Modern solutions try to backup the stateful workload while it is serving requests. Many
databases must be quiesced before taking a snapshot of their storage or else the snapshot risks
being inconsistent preventing the database instance on the recovery side from starting.
Quiescing, which roughly corresponds to stopping processing requests and flushing all the OS
file caches, might be done very quickly, giving the illusion to the user of uninterrupted service.

Considering recreating this deployment with Kubernees, it should be noted that Kubernetes
does not natively offer the abstractions of backup and restores (snapshots help close the gap),
however there are several storage vendors that have introduced backup and restore options as
operators.

Volume-Level Replication
With volume replication, state is replicated at the storage level. Volume replication can be
synchronous (typically used on low latency scenarios) or asynchronous. In either case, the
application must be designed to operate in a way that guarantees storage is always consistent,
or at least recoverable.

Most storage solutions support volume replication, however note that many stateful workloads
do not cope well with volume-level replication and there is a risk of data corruption when using
this approach.

When implementing this approach in Kubernetes, one should consider that Kubernetes does not
offer a standard primitive to set up volume replication between two different clusters. So, at least
for the time being, a non native Kubernetes-standard extensions must be used to support this
capability.

Configuring volume replication outside of the Kubernetes abstraction is always a possibility.
However, since the static nature of this method of configuration usually conflicts with dynamic
volume provisioning, careful considerations must be taken into the design.

Application Level Replication
With application level replication, the replication is facilitated by the application itself. Again, the
replication can be synchronous or asynchronous. Because the replication is application-driven,,
there is a guarantee that storage will always be in a consistent state. Most traditional databases
can be configured in this fashion with a primary running in the active site, and a secondary
running in the passive site.

In order for the primary to synchronize with the secondary, it must be possible to establish a
connection from the master instance to the slave instance (and vice-versa when recovering after
a disaster).

A possible solution to address this issue is to establish a network tunnel between the clusters in
such a way that pods in one cluster can directly communicate to pods in the other clusters.

Unfortunately, Kubernetes does not offer a standard abstraction to create network tunnels
between clusters. However, there are community projects that offer this functionality including
Submariner and Cilium.

https://submariner.io/
https://cilium.io/

	Cloud Native Disaster Recovery for Stateful Workloads
	Introduction
	Cloud Native Disaster Recovery - a Definition
	Considerations on Availability and Consistency
	Failure domain
	High Availability
	Consistency
	The CAP Theorem
	Disaster Recovery

	Anatomy of a Stateful application
	API Layer
	Coordination Layer
	Storage Layer
	Replicas
	Shards
	Putting it all together

	Consensus Protocols
	Shared State Consensus Protocols
	Reliable Replicated State Machines
	Reliable Replicated Data Store

	Unshared State Consensus Protocols
	2PC
	3PC

	Examples of consensus protocol used by stateful workloads

	Cloud Native Disaster Recovery - An Example Reference Design
	Strong Consistency
	Considerations on network partitioning
	Kubernetes implementation considerations

	Eventual Consistency
	Considerations on network partitioning
	Kubernetes implementation considerations

	Examples of Active/Passive Disaster Recovery Strategies
	Backups and Restore
	Volume-Level Replication
	Application Level Replication

